Properties

Label 1248.4.m.a.337.21
Level $1248$
Weight $4$
Character 1248.337
Analytic conductor $73.634$
Analytic rank $0$
Dimension $84$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1248,4,Mod(337,1248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1248.337");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1248.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.6343836872\)
Analytic rank: \(0\)
Dimension: \(84\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.21
Character \(\chi\) \(=\) 1248.337
Dual form 1248.4.m.a.337.23

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} -8.71484 q^{5} +16.6675i q^{7} -9.00000 q^{9} +35.9563 q^{11} +(46.8360 - 1.83976i) q^{13} +26.1445i q^{15} +23.1651 q^{17} -30.2303 q^{19} +50.0026 q^{21} -72.9013 q^{23} -49.0516 q^{25} +27.0000i q^{27} +119.929i q^{29} -96.3119i q^{31} -107.869i q^{33} -145.255i q^{35} -33.6307 q^{37} +(-5.51929 - 140.508i) q^{39} -60.2958i q^{41} +6.93666i q^{43} +78.4335 q^{45} -452.018i q^{47} +65.1938 q^{49} -69.4954i q^{51} +308.251i q^{53} -313.354 q^{55} +90.6910i q^{57} -92.9154 q^{59} +538.354i q^{61} -150.008i q^{63} +(-408.169 + 16.0332i) q^{65} -484.925 q^{67} +218.704i q^{69} -447.724i q^{71} +763.242i q^{73} +147.155i q^{75} +599.303i q^{77} -354.543 q^{79} +81.0000 q^{81} +232.957 q^{83} -201.880 q^{85} +359.788 q^{87} +1319.37i q^{89} +(30.6643 + 780.641i) q^{91} -288.936 q^{93} +263.453 q^{95} +1333.11i q^{97} -323.607 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 84 q - 756 q^{9} - 104 q^{17} + 2188 q^{25} - 3396 q^{49} + 1616 q^{55} + 696 q^{65} - 3160 q^{79} + 6804 q^{81} + 2088 q^{87} - 2480 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) −8.71484 −0.779479 −0.389739 0.920925i \(-0.627435\pi\)
−0.389739 + 0.920925i \(0.627435\pi\)
\(6\) 0 0
\(7\) 16.6675i 0.899962i 0.893038 + 0.449981i \(0.148569\pi\)
−0.893038 + 0.449981i \(0.851431\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 35.9563 0.985568 0.492784 0.870152i \(-0.335979\pi\)
0.492784 + 0.870152i \(0.335979\pi\)
\(12\) 0 0
\(13\) 46.8360 1.83976i 0.999229 0.0392506i
\(14\) 0 0
\(15\) 26.1445i 0.450032i
\(16\) 0 0
\(17\) 23.1651 0.330492 0.165246 0.986252i \(-0.447158\pi\)
0.165246 + 0.986252i \(0.447158\pi\)
\(18\) 0 0
\(19\) −30.2303 −0.365017 −0.182508 0.983204i \(-0.558422\pi\)
−0.182508 + 0.983204i \(0.558422\pi\)
\(20\) 0 0
\(21\) 50.0026 0.519593
\(22\) 0 0
\(23\) −72.9013 −0.660912 −0.330456 0.943821i \(-0.607203\pi\)
−0.330456 + 0.943821i \(0.607203\pi\)
\(24\) 0 0
\(25\) −49.0516 −0.392413
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) 119.929i 0.767943i 0.923345 + 0.383971i \(0.125444\pi\)
−0.923345 + 0.383971i \(0.874556\pi\)
\(30\) 0 0
\(31\) 96.3119i 0.558004i −0.960290 0.279002i \(-0.909996\pi\)
0.960290 0.279002i \(-0.0900037\pi\)
\(32\) 0 0
\(33\) 107.869i 0.569018i
\(34\) 0 0
\(35\) 145.255i 0.701501i
\(36\) 0 0
\(37\) −33.6307 −0.149428 −0.0747142 0.997205i \(-0.523804\pi\)
−0.0747142 + 0.997205i \(0.523804\pi\)
\(38\) 0 0
\(39\) −5.51929 140.508i −0.0226614 0.576905i
\(40\) 0 0
\(41\) 60.2958i 0.229674i −0.993384 0.114837i \(-0.963365\pi\)
0.993384 0.114837i \(-0.0366345\pi\)
\(42\) 0 0
\(43\) 6.93666i 0.0246007i 0.999924 + 0.0123004i \(0.00391542\pi\)
−0.999924 + 0.0123004i \(0.996085\pi\)
\(44\) 0 0
\(45\) 78.4335 0.259826
\(46\) 0 0
\(47\) 452.018i 1.40284i −0.712747 0.701421i \(-0.752549\pi\)
0.712747 0.701421i \(-0.247451\pi\)
\(48\) 0 0
\(49\) 65.1938 0.190069
\(50\) 0 0
\(51\) 69.4954i 0.190810i
\(52\) 0 0
\(53\) 308.251i 0.798897i 0.916756 + 0.399449i \(0.130798\pi\)
−0.916756 + 0.399449i \(0.869202\pi\)
\(54\) 0 0
\(55\) −313.354 −0.768229
\(56\) 0 0
\(57\) 90.6910i 0.210742i
\(58\) 0 0
\(59\) −92.9154 −0.205026 −0.102513 0.994732i \(-0.532688\pi\)
−0.102513 + 0.994732i \(0.532688\pi\)
\(60\) 0 0
\(61\) 538.354i 1.12999i 0.825095 + 0.564993i \(0.191121\pi\)
−0.825095 + 0.564993i \(0.808879\pi\)
\(62\) 0 0
\(63\) 150.008i 0.299987i
\(64\) 0 0
\(65\) −408.169 + 16.0332i −0.778878 + 0.0305950i
\(66\) 0 0
\(67\) −484.925 −0.884224 −0.442112 0.896960i \(-0.645771\pi\)
−0.442112 + 0.896960i \(0.645771\pi\)
\(68\) 0 0
\(69\) 218.704i 0.381578i
\(70\) 0 0
\(71\) 447.724i 0.748381i −0.927352 0.374190i \(-0.877921\pi\)
0.927352 0.374190i \(-0.122079\pi\)
\(72\) 0 0
\(73\) 763.242i 1.22371i 0.790971 + 0.611854i \(0.209576\pi\)
−0.790971 + 0.611854i \(0.790424\pi\)
\(74\) 0 0
\(75\) 147.155i 0.226560i
\(76\) 0 0
\(77\) 599.303i 0.886973i
\(78\) 0 0
\(79\) −354.543 −0.504927 −0.252464 0.967606i \(-0.581241\pi\)
−0.252464 + 0.967606i \(0.581241\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 232.957 0.308076 0.154038 0.988065i \(-0.450772\pi\)
0.154038 + 0.988065i \(0.450772\pi\)
\(84\) 0 0
\(85\) −201.880 −0.257612
\(86\) 0 0
\(87\) 359.788 0.443372
\(88\) 0 0
\(89\) 1319.37i 1.57138i 0.618622 + 0.785689i \(0.287691\pi\)
−0.618622 + 0.785689i \(0.712309\pi\)
\(90\) 0 0
\(91\) 30.6643 + 780.641i 0.0353241 + 0.899268i
\(92\) 0 0
\(93\) −288.936 −0.322164
\(94\) 0 0
\(95\) 263.453 0.284523
\(96\) 0 0
\(97\) 1333.11i 1.39543i 0.716374 + 0.697716i \(0.245800\pi\)
−0.716374 + 0.697716i \(0.754200\pi\)
\(98\) 0 0
\(99\) −323.607 −0.328523
\(100\) 0 0
\(101\) 834.686i 0.822321i −0.911563 0.411160i \(-0.865124\pi\)
0.911563 0.411160i \(-0.134876\pi\)
\(102\) 0 0
\(103\) −81.2939 −0.0777682 −0.0388841 0.999244i \(-0.512380\pi\)
−0.0388841 + 0.999244i \(0.512380\pi\)
\(104\) 0 0
\(105\) −435.764 −0.405012
\(106\) 0 0
\(107\) 1329.88i 1.20154i 0.799423 + 0.600769i \(0.205139\pi\)
−0.799423 + 0.600769i \(0.794861\pi\)
\(108\) 0 0
\(109\) −292.074 −0.256657 −0.128329 0.991732i \(-0.540961\pi\)
−0.128329 + 0.991732i \(0.540961\pi\)
\(110\) 0 0
\(111\) 100.892i 0.0862726i
\(112\) 0 0
\(113\) 383.578 0.319328 0.159664 0.987171i \(-0.448959\pi\)
0.159664 + 0.987171i \(0.448959\pi\)
\(114\) 0 0
\(115\) 635.323 0.515167
\(116\) 0 0
\(117\) −421.524 + 16.5579i −0.333076 + 0.0130835i
\(118\) 0 0
\(119\) 386.105i 0.297430i
\(120\) 0 0
\(121\) −38.1413 −0.0286561
\(122\) 0 0
\(123\) −180.887 −0.132602
\(124\) 0 0
\(125\) 1516.83 1.08536
\(126\) 0 0
\(127\) −568.964 −0.397539 −0.198769 0.980046i \(-0.563694\pi\)
−0.198769 + 0.980046i \(0.563694\pi\)
\(128\) 0 0
\(129\) 20.8100 0.0142032
\(130\) 0 0
\(131\) 1759.15i 1.17327i 0.809853 + 0.586633i \(0.199547\pi\)
−0.809853 + 0.586633i \(0.800453\pi\)
\(132\) 0 0
\(133\) 503.865i 0.328501i
\(134\) 0 0
\(135\) 235.301i 0.150011i
\(136\) 0 0
\(137\) 798.340i 0.497860i −0.968521 0.248930i \(-0.919921\pi\)
0.968521 0.248930i \(-0.0800789\pi\)
\(138\) 0 0
\(139\) 2438.56i 1.48803i 0.668162 + 0.744016i \(0.267081\pi\)
−0.668162 + 0.744016i \(0.732919\pi\)
\(140\) 0 0
\(141\) −1356.05 −0.809931
\(142\) 0 0
\(143\) 1684.05 66.1511i 0.984808 0.0386841i
\(144\) 0 0
\(145\) 1045.17i 0.598595i
\(146\) 0 0
\(147\) 195.581i 0.109737i
\(148\) 0 0
\(149\) 1811.39 0.995938 0.497969 0.867195i \(-0.334079\pi\)
0.497969 + 0.867195i \(0.334079\pi\)
\(150\) 0 0
\(151\) 341.374i 0.183978i −0.995760 0.0919888i \(-0.970678\pi\)
0.995760 0.0919888i \(-0.0293224\pi\)
\(152\) 0 0
\(153\) −208.486 −0.110164
\(154\) 0 0
\(155\) 839.343i 0.434953i
\(156\) 0 0
\(157\) 2602.82i 1.32310i 0.749899 + 0.661552i \(0.230102\pi\)
−0.749899 + 0.661552i \(0.769898\pi\)
\(158\) 0 0
\(159\) 924.753 0.461243
\(160\) 0 0
\(161\) 1215.08i 0.594795i
\(162\) 0 0
\(163\) 280.578 0.134825 0.0674127 0.997725i \(-0.478526\pi\)
0.0674127 + 0.997725i \(0.478526\pi\)
\(164\) 0 0
\(165\) 940.061i 0.443537i
\(166\) 0 0
\(167\) 445.106i 0.206248i −0.994669 0.103124i \(-0.967116\pi\)
0.994669 0.103124i \(-0.0328838\pi\)
\(168\) 0 0
\(169\) 2190.23 172.334i 0.996919 0.0784408i
\(170\) 0 0
\(171\) 272.073 0.121672
\(172\) 0 0
\(173\) 4293.12i 1.88670i 0.331796 + 0.943351i \(0.392345\pi\)
−0.331796 + 0.943351i \(0.607655\pi\)
\(174\) 0 0
\(175\) 817.569i 0.353156i
\(176\) 0 0
\(177\) 278.746i 0.118372i
\(178\) 0 0
\(179\) 1254.41i 0.523792i −0.965096 0.261896i \(-0.915652\pi\)
0.965096 0.261896i \(-0.0843478\pi\)
\(180\) 0 0
\(181\) 581.299i 0.238716i −0.992851 0.119358i \(-0.961916\pi\)
0.992851 0.119358i \(-0.0380837\pi\)
\(182\) 0 0
\(183\) 1615.06 0.652398
\(184\) 0 0
\(185\) 293.086 0.116476
\(186\) 0 0
\(187\) 832.933 0.325723
\(188\) 0 0
\(189\) −450.023 −0.173198
\(190\) 0 0
\(191\) 3296.98 1.24901 0.624506 0.781020i \(-0.285300\pi\)
0.624506 + 0.781020i \(0.285300\pi\)
\(192\) 0 0
\(193\) 450.627i 0.168067i 0.996463 + 0.0840333i \(0.0267802\pi\)
−0.996463 + 0.0840333i \(0.973220\pi\)
\(194\) 0 0
\(195\) 48.0997 + 1224.51i 0.0176640 + 0.449685i
\(196\) 0 0
\(197\) 4208.90 1.52219 0.761095 0.648640i \(-0.224662\pi\)
0.761095 + 0.648640i \(0.224662\pi\)
\(198\) 0 0
\(199\) −4910.70 −1.74930 −0.874649 0.484756i \(-0.838908\pi\)
−0.874649 + 0.484756i \(0.838908\pi\)
\(200\) 0 0
\(201\) 1454.77i 0.510507i
\(202\) 0 0
\(203\) −1998.93 −0.691119
\(204\) 0 0
\(205\) 525.468i 0.179026i
\(206\) 0 0
\(207\) 656.112 0.220304
\(208\) 0 0
\(209\) −1086.97 −0.359749
\(210\) 0 0
\(211\) 3970.82i 1.29556i 0.761829 + 0.647778i \(0.224302\pi\)
−0.761829 + 0.647778i \(0.775698\pi\)
\(212\) 0 0
\(213\) −1343.17 −0.432078
\(214\) 0 0
\(215\) 60.4519i 0.0191757i
\(216\) 0 0
\(217\) 1605.28 0.502182
\(218\) 0 0
\(219\) 2289.72 0.706508
\(220\) 0 0
\(221\) 1084.96 42.6183i 0.330238 0.0129720i
\(222\) 0 0
\(223\) 484.716i 0.145556i −0.997348 0.0727780i \(-0.976814\pi\)
0.997348 0.0727780i \(-0.0231864\pi\)
\(224\) 0 0
\(225\) 441.464 0.130804
\(226\) 0 0
\(227\) −6155.05 −1.79967 −0.899835 0.436231i \(-0.856313\pi\)
−0.899835 + 0.436231i \(0.856313\pi\)
\(228\) 0 0
\(229\) −5029.53 −1.45136 −0.725679 0.688034i \(-0.758474\pi\)
−0.725679 + 0.688034i \(0.758474\pi\)
\(230\) 0 0
\(231\) 1797.91 0.512094
\(232\) 0 0
\(233\) −1563.57 −0.439627 −0.219813 0.975542i \(-0.570545\pi\)
−0.219813 + 0.975542i \(0.570545\pi\)
\(234\) 0 0
\(235\) 3939.26i 1.09349i
\(236\) 0 0
\(237\) 1063.63i 0.291520i
\(238\) 0 0
\(239\) 6996.70i 1.89364i 0.321770 + 0.946818i \(0.395722\pi\)
−0.321770 + 0.946818i \(0.604278\pi\)
\(240\) 0 0
\(241\) 3982.68i 1.06451i −0.846584 0.532255i \(-0.821345\pi\)
0.846584 0.532255i \(-0.178655\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) −568.153 −0.148155
\(246\) 0 0
\(247\) −1415.87 + 55.6166i −0.364735 + 0.0143271i
\(248\) 0 0
\(249\) 698.871i 0.177868i
\(250\) 0 0
\(251\) 1286.97i 0.323636i 0.986821 + 0.161818i \(0.0517358\pi\)
−0.986821 + 0.161818i \(0.948264\pi\)
\(252\) 0 0
\(253\) −2621.27 −0.651374
\(254\) 0 0
\(255\) 605.641i 0.148732i
\(256\) 0 0
\(257\) 6235.56 1.51348 0.756738 0.653718i \(-0.226792\pi\)
0.756738 + 0.653718i \(0.226792\pi\)
\(258\) 0 0
\(259\) 560.540i 0.134480i
\(260\) 0 0
\(261\) 1079.36i 0.255981i
\(262\) 0 0
\(263\) −692.393 −0.162337 −0.0811687 0.996700i \(-0.525865\pi\)
−0.0811687 + 0.996700i \(0.525865\pi\)
\(264\) 0 0
\(265\) 2686.36i 0.622723i
\(266\) 0 0
\(267\) 3958.10 0.907235
\(268\) 0 0
\(269\) 7517.66i 1.70394i 0.523591 + 0.851970i \(0.324592\pi\)
−0.523591 + 0.851970i \(0.675408\pi\)
\(270\) 0 0
\(271\) 3416.45i 0.765810i −0.923788 0.382905i \(-0.874924\pi\)
0.923788 0.382905i \(-0.125076\pi\)
\(272\) 0 0
\(273\) 2341.92 91.9928i 0.519193 0.0203943i
\(274\) 0 0
\(275\) −1763.72 −0.386749
\(276\) 0 0
\(277\) 5784.73i 1.25477i 0.778710 + 0.627385i \(0.215875\pi\)
−0.778710 + 0.627385i \(0.784125\pi\)
\(278\) 0 0
\(279\) 866.807i 0.186001i
\(280\) 0 0
\(281\) 3098.96i 0.657895i −0.944348 0.328948i \(-0.893306\pi\)
0.944348 0.328948i \(-0.106694\pi\)
\(282\) 0 0
\(283\) 8198.04i 1.72199i −0.508614 0.860994i \(-0.669842\pi\)
0.508614 0.860994i \(-0.330158\pi\)
\(284\) 0 0
\(285\) 790.358i 0.164269i
\(286\) 0 0
\(287\) 1004.98 0.206698
\(288\) 0 0
\(289\) −4376.38 −0.890775
\(290\) 0 0
\(291\) 3999.33 0.805653
\(292\) 0 0
\(293\) −2594.28 −0.517267 −0.258634 0.965975i \(-0.583272\pi\)
−0.258634 + 0.965975i \(0.583272\pi\)
\(294\) 0 0
\(295\) 809.743 0.159814
\(296\) 0 0
\(297\) 970.821i 0.189673i
\(298\) 0 0
\(299\) −3414.41 + 134.121i −0.660403 + 0.0259412i
\(300\) 0 0
\(301\) −115.617 −0.0221397
\(302\) 0 0
\(303\) −2504.06 −0.474767
\(304\) 0 0
\(305\) 4691.67i 0.880801i
\(306\) 0 0
\(307\) 2227.35 0.414076 0.207038 0.978333i \(-0.433618\pi\)
0.207038 + 0.978333i \(0.433618\pi\)
\(308\) 0 0
\(309\) 243.882i 0.0448995i
\(310\) 0 0
\(311\) −6254.74 −1.14043 −0.570215 0.821496i \(-0.693140\pi\)
−0.570215 + 0.821496i \(0.693140\pi\)
\(312\) 0 0
\(313\) −8081.71 −1.45944 −0.729720 0.683746i \(-0.760350\pi\)
−0.729720 + 0.683746i \(0.760350\pi\)
\(314\) 0 0
\(315\) 1307.29i 0.233834i
\(316\) 0 0
\(317\) −607.880 −0.107703 −0.0538517 0.998549i \(-0.517150\pi\)
−0.0538517 + 0.998549i \(0.517150\pi\)
\(318\) 0 0
\(319\) 4312.22i 0.756859i
\(320\) 0 0
\(321\) 3989.65 0.693708
\(322\) 0 0
\(323\) −700.290 −0.120635
\(324\) 0 0
\(325\) −2297.38 + 90.2433i −0.392110 + 0.0154024i
\(326\) 0 0
\(327\) 876.223i 0.148181i
\(328\) 0 0
\(329\) 7534.02 1.26250
\(330\) 0 0
\(331\) 8021.66 1.33206 0.666028 0.745927i \(-0.267993\pi\)
0.666028 + 0.745927i \(0.267993\pi\)
\(332\) 0 0
\(333\) 302.676 0.0498095
\(334\) 0 0
\(335\) 4226.04 0.689234
\(336\) 0 0
\(337\) −10370.6 −1.67633 −0.838164 0.545419i \(-0.816371\pi\)
−0.838164 + 0.545419i \(0.816371\pi\)
\(338\) 0 0
\(339\) 1150.74i 0.184364i
\(340\) 0 0
\(341\) 3463.02i 0.549951i
\(342\) 0 0
\(343\) 6803.58i 1.07102i
\(344\) 0 0
\(345\) 1905.97i 0.297432i
\(346\) 0 0
\(347\) 2078.35i 0.321532i −0.986993 0.160766i \(-0.948604\pi\)
0.986993 0.160766i \(-0.0513965\pi\)
\(348\) 0 0
\(349\) 5847.40 0.896861 0.448430 0.893818i \(-0.351983\pi\)
0.448430 + 0.893818i \(0.351983\pi\)
\(350\) 0 0
\(351\) 49.6736 + 1264.57i 0.00755379 + 0.192302i
\(352\) 0 0
\(353\) 1046.41i 0.157776i −0.996883 0.0788881i \(-0.974863\pi\)
0.996883 0.0788881i \(-0.0251370\pi\)
\(354\) 0 0
\(355\) 3901.84i 0.583347i
\(356\) 0 0
\(357\) 1158.32 0.171721
\(358\) 0 0
\(359\) 9018.15i 1.32579i 0.748711 + 0.662896i \(0.230673\pi\)
−0.748711 + 0.662896i \(0.769327\pi\)
\(360\) 0 0
\(361\) −5945.13 −0.866763
\(362\) 0 0
\(363\) 114.424i 0.0165446i
\(364\) 0 0
\(365\) 6651.53i 0.953854i
\(366\) 0 0
\(367\) 248.518 0.0353475 0.0176737 0.999844i \(-0.494374\pi\)
0.0176737 + 0.999844i \(0.494374\pi\)
\(368\) 0 0
\(369\) 542.662i 0.0765579i
\(370\) 0 0
\(371\) −5137.78 −0.718977
\(372\) 0 0
\(373\) 5757.08i 0.799170i 0.916696 + 0.399585i \(0.130846\pi\)
−0.916696 + 0.399585i \(0.869154\pi\)
\(374\) 0 0
\(375\) 4550.49i 0.626631i
\(376\) 0 0
\(377\) 220.642 + 5617.02i 0.0301422 + 0.767351i
\(378\) 0 0
\(379\) 6826.63 0.925226 0.462613 0.886560i \(-0.346912\pi\)
0.462613 + 0.886560i \(0.346912\pi\)
\(380\) 0 0
\(381\) 1706.89i 0.229519i
\(382\) 0 0
\(383\) 1577.59i 0.210472i 0.994447 + 0.105236i \(0.0335598\pi\)
−0.994447 + 0.105236i \(0.966440\pi\)
\(384\) 0 0
\(385\) 5222.83i 0.691377i
\(386\) 0 0
\(387\) 62.4299i 0.00820024i
\(388\) 0 0
\(389\) 4906.45i 0.639504i −0.947501 0.319752i \(-0.896400\pi\)
0.947501 0.319752i \(-0.103600\pi\)
\(390\) 0 0
\(391\) −1688.77 −0.218426
\(392\) 0 0
\(393\) 5277.46 0.677386
\(394\) 0 0
\(395\) 3089.79 0.393580
\(396\) 0 0
\(397\) −807.657 −0.102104 −0.0510518 0.998696i \(-0.516257\pi\)
−0.0510518 + 0.998696i \(0.516257\pi\)
\(398\) 0 0
\(399\) −1511.59 −0.189660
\(400\) 0 0
\(401\) 6460.01i 0.804483i 0.915534 + 0.402241i \(0.131769\pi\)
−0.915534 + 0.402241i \(0.868231\pi\)
\(402\) 0 0
\(403\) −177.191 4510.87i −0.0219020 0.557574i
\(404\) 0 0
\(405\) −705.902 −0.0866088
\(406\) 0 0
\(407\) −1209.24 −0.147272
\(408\) 0 0
\(409\) 6999.02i 0.846159i 0.906093 + 0.423079i \(0.139051\pi\)
−0.906093 + 0.423079i \(0.860949\pi\)
\(410\) 0 0
\(411\) −2395.02 −0.287440
\(412\) 0 0
\(413\) 1548.67i 0.184516i
\(414\) 0 0
\(415\) −2030.18 −0.240139
\(416\) 0 0
\(417\) 7315.69 0.859115
\(418\) 0 0
\(419\) 12515.6i 1.45925i 0.683848 + 0.729624i \(0.260305\pi\)
−0.683848 + 0.729624i \(0.739695\pi\)
\(420\) 0 0
\(421\) 12863.5 1.48914 0.744571 0.667543i \(-0.232654\pi\)
0.744571 + 0.667543i \(0.232654\pi\)
\(422\) 0 0
\(423\) 4068.16i 0.467614i
\(424\) 0 0
\(425\) −1136.29 −0.129689
\(426\) 0 0
\(427\) −8973.03 −1.01694
\(428\) 0 0
\(429\) −198.453 5052.16i −0.0223343 0.568579i
\(430\) 0 0
\(431\) 13608.6i 1.52089i −0.649401 0.760446i \(-0.724980\pi\)
0.649401 0.760446i \(-0.275020\pi\)
\(432\) 0 0
\(433\) −12975.4 −1.44009 −0.720043 0.693929i \(-0.755878\pi\)
−0.720043 + 0.693929i \(0.755878\pi\)
\(434\) 0 0
\(435\) −3135.50 −0.345599
\(436\) 0 0
\(437\) 2203.83 0.241244
\(438\) 0 0
\(439\) −10025.0 −1.08991 −0.544953 0.838467i \(-0.683452\pi\)
−0.544953 + 0.838467i \(0.683452\pi\)
\(440\) 0 0
\(441\) −586.744 −0.0633564
\(442\) 0 0
\(443\) 7965.70i 0.854315i −0.904177 0.427158i \(-0.859515\pi\)
0.904177 0.427158i \(-0.140485\pi\)
\(444\) 0 0
\(445\) 11498.1i 1.22486i
\(446\) 0 0
\(447\) 5434.17i 0.575005i
\(448\) 0 0
\(449\) 2522.14i 0.265094i −0.991177 0.132547i \(-0.957684\pi\)
0.991177 0.132547i \(-0.0423155\pi\)
\(450\) 0 0
\(451\) 2168.02i 0.226359i
\(452\) 0 0
\(453\) −1024.12 −0.106219
\(454\) 0 0
\(455\) −267.234 6803.16i −0.0275343 0.700960i
\(456\) 0 0
\(457\) 9207.77i 0.942497i 0.882000 + 0.471249i \(0.156197\pi\)
−0.882000 + 0.471249i \(0.843803\pi\)
\(458\) 0 0
\(459\) 625.458i 0.0636033i
\(460\) 0 0
\(461\) −4470.19 −0.451622 −0.225811 0.974171i \(-0.572503\pi\)
−0.225811 + 0.974171i \(0.572503\pi\)
\(462\) 0 0
\(463\) 8509.64i 0.854161i 0.904214 + 0.427081i \(0.140458\pi\)
−0.904214 + 0.427081i \(0.859542\pi\)
\(464\) 0 0
\(465\) 2518.03 0.251120
\(466\) 0 0
\(467\) 3571.08i 0.353854i −0.984224 0.176927i \(-0.943384\pi\)
0.984224 0.176927i \(-0.0566157\pi\)
\(468\) 0 0
\(469\) 8082.49i 0.795767i
\(470\) 0 0
\(471\) 7808.45 0.763895
\(472\) 0 0
\(473\) 249.417i 0.0242457i
\(474\) 0 0
\(475\) 1482.85 0.143237
\(476\) 0 0
\(477\) 2774.26i 0.266299i
\(478\) 0 0
\(479\) 4738.57i 0.452006i −0.974127 0.226003i \(-0.927434\pi\)
0.974127 0.226003i \(-0.0725659\pi\)
\(480\) 0 0
\(481\) −1575.13 + 61.8725i −0.149313 + 0.00586516i
\(482\) 0 0
\(483\) −3645.25 −0.343405
\(484\) 0 0
\(485\) 11617.8i 1.08771i
\(486\) 0 0
\(487\) 20179.6i 1.87767i −0.344371 0.938834i \(-0.611908\pi\)
0.344371 0.938834i \(-0.388092\pi\)
\(488\) 0 0
\(489\) 841.733i 0.0778415i
\(490\) 0 0
\(491\) 5526.37i 0.507946i −0.967211 0.253973i \(-0.918263\pi\)
0.967211 0.253973i \(-0.0817375\pi\)
\(492\) 0 0
\(493\) 2778.18i 0.253799i
\(494\) 0 0
\(495\) 2820.18 0.256076
\(496\) 0 0
\(497\) 7462.45 0.673514
\(498\) 0 0
\(499\) −11790.6 −1.05776 −0.528878 0.848698i \(-0.677387\pi\)
−0.528878 + 0.848698i \(0.677387\pi\)
\(500\) 0 0
\(501\) −1335.32 −0.119077
\(502\) 0 0
\(503\) 17921.2 1.58860 0.794301 0.607525i \(-0.207837\pi\)
0.794301 + 0.607525i \(0.207837\pi\)
\(504\) 0 0
\(505\) 7274.16i 0.640982i
\(506\) 0 0
\(507\) −517.003 6570.69i −0.0452878 0.575571i
\(508\) 0 0
\(509\) 7918.98 0.689593 0.344796 0.938677i \(-0.387948\pi\)
0.344796 + 0.938677i \(0.387948\pi\)
\(510\) 0 0
\(511\) −12721.3 −1.10129
\(512\) 0 0
\(513\) 816.219i 0.0702475i
\(514\) 0 0
\(515\) 708.463 0.0606187
\(516\) 0 0
\(517\) 16252.9i 1.38260i
\(518\) 0 0
\(519\) 12879.3 1.08929
\(520\) 0 0
\(521\) −9351.85 −0.786395 −0.393198 0.919454i \(-0.628631\pi\)
−0.393198 + 0.919454i \(0.628631\pi\)
\(522\) 0 0
\(523\) 10017.4i 0.837531i 0.908094 + 0.418766i \(0.137537\pi\)
−0.908094 + 0.418766i \(0.862463\pi\)
\(524\) 0 0
\(525\) −2452.71 −0.203895
\(526\) 0 0
\(527\) 2231.08i 0.184416i
\(528\) 0 0
\(529\) −6852.40 −0.563195
\(530\) 0 0
\(531\) 836.239 0.0683421
\(532\) 0 0
\(533\) −110.930 2824.02i −0.00901484 0.229497i
\(534\) 0 0
\(535\) 11589.7i 0.936573i
\(536\) 0 0
\(537\) −3763.22 −0.302412
\(538\) 0 0
\(539\) 2344.13 0.187326
\(540\) 0 0
\(541\) −18747.9 −1.48990 −0.744951 0.667119i \(-0.767527\pi\)
−0.744951 + 0.667119i \(0.767527\pi\)
\(542\) 0 0
\(543\) −1743.90 −0.137823
\(544\) 0 0
\(545\) 2545.38 0.200059
\(546\) 0 0
\(547\) 7024.44i 0.549074i −0.961577 0.274537i \(-0.911475\pi\)
0.961577 0.274537i \(-0.0885246\pi\)
\(548\) 0 0
\(549\) 4845.19i 0.376662i
\(550\) 0 0
\(551\) 3625.51i 0.280312i
\(552\) 0 0
\(553\) 5909.36i 0.454415i
\(554\) 0 0
\(555\) 879.258i 0.0672476i
\(556\) 0 0
\(557\) 11378.9 0.865604 0.432802 0.901489i \(-0.357525\pi\)
0.432802 + 0.901489i \(0.357525\pi\)
\(558\) 0 0
\(559\) 12.7618 + 324.886i 0.000965593 + 0.0245818i
\(560\) 0 0
\(561\) 2498.80i 0.188056i
\(562\) 0 0
\(563\) 15789.5i 1.18197i −0.806683 0.590985i \(-0.798739\pi\)
0.806683 0.590985i \(-0.201261\pi\)
\(564\) 0 0
\(565\) −3342.82 −0.248909
\(566\) 0 0
\(567\) 1350.07i 0.0999957i
\(568\) 0 0
\(569\) 13400.2 0.987284 0.493642 0.869665i \(-0.335665\pi\)
0.493642 + 0.869665i \(0.335665\pi\)
\(570\) 0 0
\(571\) 22295.1i 1.63401i −0.576630 0.817005i \(-0.695633\pi\)
0.576630 0.817005i \(-0.304367\pi\)
\(572\) 0 0
\(573\) 9890.95i 0.721117i
\(574\) 0 0
\(575\) 3575.93 0.259350
\(576\) 0 0
\(577\) 7646.84i 0.551719i 0.961198 + 0.275860i \(0.0889625\pi\)
−0.961198 + 0.275860i \(0.911038\pi\)
\(578\) 0 0
\(579\) 1351.88 0.0970332
\(580\) 0 0
\(581\) 3882.81i 0.277257i
\(582\) 0 0
\(583\) 11083.6i 0.787367i
\(584\) 0 0
\(585\) 3673.52 144.299i 0.259626 0.0101983i
\(586\) 0 0
\(587\) 7365.05 0.517867 0.258934 0.965895i \(-0.416629\pi\)
0.258934 + 0.965895i \(0.416629\pi\)
\(588\) 0 0
\(589\) 2911.54i 0.203681i
\(590\) 0 0
\(591\) 12626.7i 0.878837i
\(592\) 0 0
\(593\) 16147.1i 1.11818i −0.829106 0.559092i \(-0.811150\pi\)
0.829106 0.559092i \(-0.188850\pi\)
\(594\) 0 0
\(595\) 3364.84i 0.231841i
\(596\) 0 0
\(597\) 14732.1i 1.00996i
\(598\) 0 0
\(599\) 6027.18 0.411125 0.205562 0.978644i \(-0.434098\pi\)
0.205562 + 0.978644i \(0.434098\pi\)
\(600\) 0 0
\(601\) −2117.99 −0.143751 −0.0718757 0.997414i \(-0.522899\pi\)
−0.0718757 + 0.997414i \(0.522899\pi\)
\(602\) 0 0
\(603\) 4364.32 0.294741
\(604\) 0 0
\(605\) 332.395 0.0223369
\(606\) 0 0
\(607\) −11132.7 −0.744418 −0.372209 0.928149i \(-0.621399\pi\)
−0.372209 + 0.928149i \(0.621399\pi\)
\(608\) 0 0
\(609\) 5996.78i 0.399018i
\(610\) 0 0
\(611\) −831.605 21170.7i −0.0550624 1.40176i
\(612\) 0 0
\(613\) −17390.2 −1.14581 −0.572906 0.819621i \(-0.694184\pi\)
−0.572906 + 0.819621i \(0.694184\pi\)
\(614\) 0 0
\(615\) 1576.40 0.103361
\(616\) 0 0
\(617\) 17583.9i 1.14733i 0.819090 + 0.573665i \(0.194479\pi\)
−0.819090 + 0.573665i \(0.805521\pi\)
\(618\) 0 0
\(619\) 9088.88 0.590166 0.295083 0.955472i \(-0.404653\pi\)
0.295083 + 0.955472i \(0.404653\pi\)
\(620\) 0 0
\(621\) 1968.34i 0.127193i
\(622\) 0 0
\(623\) −21990.6 −1.41418
\(624\) 0 0
\(625\) −7087.49 −0.453599
\(626\) 0 0
\(627\) 3260.92i 0.207701i
\(628\) 0 0
\(629\) −779.059 −0.0493849
\(630\) 0 0
\(631\) 8004.69i 0.505011i 0.967596 + 0.252505i \(0.0812545\pi\)
−0.967596 + 0.252505i \(0.918745\pi\)
\(632\) 0 0
\(633\) 11912.5 0.747990
\(634\) 0 0
\(635\) 4958.43 0.309873
\(636\) 0 0
\(637\) 3053.42 119.941i 0.189923 0.00746034i
\(638\) 0 0
\(639\) 4029.51i 0.249460i
\(640\) 0 0
\(641\) 31376.8 1.93340 0.966699 0.255917i \(-0.0823775\pi\)
0.966699 + 0.255917i \(0.0823775\pi\)
\(642\) 0 0
\(643\) −24518.9 −1.50378 −0.751891 0.659288i \(-0.770858\pi\)
−0.751891 + 0.659288i \(0.770858\pi\)
\(644\) 0 0
\(645\) −181.356 −0.0110711
\(646\) 0 0
\(647\) 19032.6 1.15649 0.578243 0.815864i \(-0.303738\pi\)
0.578243 + 0.815864i \(0.303738\pi\)
\(648\) 0 0
\(649\) −3340.90 −0.202067
\(650\) 0 0
\(651\) 4815.84i 0.289935i
\(652\) 0 0
\(653\) 1630.31i 0.0977012i −0.998806 0.0488506i \(-0.984444\pi\)
0.998806 0.0488506i \(-0.0155558\pi\)
\(654\) 0 0
\(655\) 15330.7i 0.914536i
\(656\) 0 0
\(657\) 6869.17i 0.407903i
\(658\) 0 0
\(659\) 6216.87i 0.367489i −0.982974 0.183744i \(-0.941178\pi\)
0.982974 0.183744i \(-0.0588218\pi\)
\(660\) 0 0
\(661\) 17029.9 1.00210 0.501050 0.865418i \(-0.332947\pi\)
0.501050 + 0.865418i \(0.332947\pi\)
\(662\) 0 0
\(663\) −127.855 3254.89i −0.00748940 0.190663i
\(664\) 0 0
\(665\) 4391.10i 0.256059i
\(666\) 0 0
\(667\) 8743.01i 0.507542i
\(668\) 0 0
\(669\) −1454.15 −0.0840368
\(670\) 0 0
\(671\) 19357.2i 1.11368i
\(672\) 0 0
\(673\) −8854.72 −0.507168 −0.253584 0.967313i \(-0.581609\pi\)
−0.253584 + 0.967313i \(0.581609\pi\)
\(674\) 0 0
\(675\) 1324.39i 0.0755199i
\(676\) 0 0
\(677\) 25869.2i 1.46859i −0.678830 0.734295i \(-0.737513\pi\)
0.678830 0.734295i \(-0.262487\pi\)
\(678\) 0 0
\(679\) −22219.7 −1.25584
\(680\) 0 0
\(681\) 18465.1i 1.03904i
\(682\) 0 0
\(683\) 14554.1 0.815370 0.407685 0.913123i \(-0.366336\pi\)
0.407685 + 0.913123i \(0.366336\pi\)
\(684\) 0 0
\(685\) 6957.41i 0.388071i
\(686\) 0 0
\(687\) 15088.6i 0.837942i
\(688\) 0 0
\(689\) 567.109 + 14437.3i 0.0313572 + 0.798281i
\(690\) 0 0
\(691\) 31889.4 1.75561 0.877807 0.479015i \(-0.159006\pi\)
0.877807 + 0.479015i \(0.159006\pi\)
\(692\) 0 0
\(693\) 5393.73i 0.295658i
\(694\) 0 0
\(695\) 21251.7i 1.15989i
\(696\) 0 0
\(697\) 1396.76i 0.0759054i
\(698\) 0 0
\(699\) 4690.72i 0.253819i
\(700\) 0 0
\(701\) 24149.2i 1.30115i 0.759443 + 0.650574i \(0.225471\pi\)
−0.759443 + 0.650574i \(0.774529\pi\)
\(702\) 0 0
\(703\) 1016.67 0.0545439
\(704\) 0 0
\(705\) 11817.8 0.631324
\(706\) 0 0
\(707\) 13912.2 0.740057
\(708\) 0 0
\(709\) 10731.6 0.568454 0.284227 0.958757i \(-0.408263\pi\)
0.284227 + 0.958757i \(0.408263\pi\)
\(710\) 0 0
\(711\) 3190.89 0.168309
\(712\) 0 0
\(713\) 7021.27i 0.368792i
\(714\) 0 0
\(715\) −14676.2 + 576.496i −0.767637 + 0.0301535i
\(716\) 0 0
\(717\) 20990.1 1.09329
\(718\) 0 0
\(719\) 21369.6 1.10842 0.554208 0.832378i \(-0.313021\pi\)
0.554208 + 0.832378i \(0.313021\pi\)
\(720\) 0 0
\(721\) 1354.97i 0.0699884i
\(722\) 0 0
\(723\) −11948.0 −0.614596
\(724\) 0 0
\(725\) 5882.73i 0.301351i
\(726\) 0 0
\(727\) −6216.16 −0.317118 −0.158559 0.987350i \(-0.550685\pi\)
−0.158559 + 0.987350i \(0.550685\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 160.689i 0.00813035i
\(732\) 0 0
\(733\) 18224.5 0.918333 0.459166 0.888350i \(-0.348148\pi\)
0.459166 + 0.888350i \(0.348148\pi\)
\(734\) 0 0
\(735\) 1704.46i 0.0855373i
\(736\) 0 0
\(737\) −17436.1 −0.871462
\(738\) 0 0
\(739\) −2355.87 −0.117269 −0.0586346 0.998280i \(-0.518675\pi\)
−0.0586346 + 0.998280i \(0.518675\pi\)
\(740\) 0 0
\(741\) 166.850 + 4247.61i 0.00827177 + 0.210580i
\(742\) 0 0
\(743\) 16897.0i 0.834306i 0.908836 + 0.417153i \(0.136972\pi\)
−0.908836 + 0.417153i \(0.863028\pi\)
\(744\) 0 0
\(745\) −15786.0 −0.776312
\(746\) 0 0
\(747\) −2096.61 −0.102692
\(748\) 0 0
\(749\) −22165.8 −1.08134
\(750\) 0 0
\(751\) −6055.22 −0.294218 −0.147109 0.989120i \(-0.546997\pi\)
−0.147109 + 0.989120i \(0.546997\pi\)
\(752\) 0 0
\(753\) 3860.91 0.186852
\(754\) 0 0
\(755\) 2975.02i 0.143407i
\(756\) 0 0
\(757\) 14120.5i 0.677965i 0.940793 + 0.338982i \(0.110083\pi\)
−0.940793 + 0.338982i \(0.889917\pi\)
\(758\) 0 0
\(759\) 7863.80i 0.376071i
\(760\) 0 0
\(761\) 5880.45i 0.280113i 0.990143 + 0.140057i \(0.0447285\pi\)
−0.990143 + 0.140057i \(0.955272\pi\)
\(762\) 0 0
\(763\) 4868.15i 0.230982i
\(764\) 0 0
\(765\) 1816.92 0.0858706
\(766\) 0 0
\(767\) −4351.79 + 170.942i −0.204868 + 0.00804741i
\(768\) 0 0
\(769\) 36398.3i 1.70683i −0.521229 0.853417i \(-0.674526\pi\)
0.521229 0.853417i \(-0.325474\pi\)
\(770\) 0 0
\(771\) 18706.7i 0.873806i
\(772\) 0 0
\(773\) −7579.44 −0.352669 −0.176335 0.984330i \(-0.556424\pi\)
−0.176335 + 0.984330i \(0.556424\pi\)
\(774\) 0 0
\(775\) 4724.25i 0.218968i
\(776\) 0 0
\(777\) −1681.62 −0.0776420
\(778\) 0 0
\(779\) 1822.76i 0.0838347i
\(780\) 0 0
\(781\) 16098.5i 0.737580i
\(782\) 0 0
\(783\) −3238.09 −0.147791
\(784\) 0 0
\(785\) 22683.1i 1.03133i
\(786\) 0 0
\(787\) −33424.2 −1.51390 −0.756952 0.653470i \(-0.773313\pi\)
−0.756952 + 0.653470i \(0.773313\pi\)
\(788\) 0 0
\(789\) 2077.18i 0.0937256i
\(790\) 0 0
\(791\) 6393.30i 0.287383i
\(792\) 0 0
\(793\) 990.443 + 25214.4i 0.0443527 + 1.12912i
\(794\) 0 0
\(795\) −8059.08 −0.359529
\(796\) 0 0
\(797\) 12915.2i 0.574001i −0.957930 0.287000i \(-0.907342\pi\)
0.957930 0.287000i \(-0.0926581\pi\)
\(798\) 0 0
\(799\) 10471.1i 0.463628i
\(800\) 0 0
\(801\) 11874.3i 0.523793i
\(802\) 0 0
\(803\) 27443.4i 1.20605i
\(804\) 0 0
\(805\) 10589.3i 0.463630i
\(806\) 0 0
\(807\) 22553.0 0.983770
\(808\) 0 0
\(809\) −42970.1 −1.86743 −0.933713 0.358023i \(-0.883451\pi\)
−0.933713 + 0.358023i \(0.883451\pi\)
\(810\) 0 0
\(811\) 23953.2 1.03713 0.518564 0.855039i \(-0.326467\pi\)
0.518564 + 0.855039i \(0.326467\pi\)
\(812\) 0 0
\(813\) −10249.3 −0.442140
\(814\) 0 0
\(815\) −2445.19 −0.105094
\(816\) 0 0
\(817\) 209.698i 0.00897967i
\(818\) 0 0
\(819\) −275.978 7025.77i −0.0117747 0.299756i
\(820\) 0 0
\(821\) 10738.8 0.456501 0.228250 0.973602i \(-0.426700\pi\)
0.228250 + 0.973602i \(0.426700\pi\)
\(822\) 0 0
\(823\) −14437.4 −0.611491 −0.305746 0.952113i \(-0.598906\pi\)
−0.305746 + 0.952113i \(0.598906\pi\)
\(824\) 0 0
\(825\) 5291.15i 0.223290i
\(826\) 0 0
\(827\) −15364.2 −0.646031 −0.323015 0.946394i \(-0.604697\pi\)
−0.323015 + 0.946394i \(0.604697\pi\)
\(828\) 0 0
\(829\) 36608.6i 1.53374i −0.641803 0.766870i \(-0.721813\pi\)
0.641803 0.766870i \(-0.278187\pi\)
\(830\) 0 0
\(831\) 17354.2 0.724441
\(832\) 0 0
\(833\) 1510.22 0.0628164
\(834\) 0 0
\(835\) 3879.03i 0.160766i
\(836\) 0 0
\(837\) 2600.42 0.107388
\(838\) 0 0
\(839\) 9733.80i 0.400534i 0.979741 + 0.200267i \(0.0641810\pi\)
−0.979741 + 0.200267i \(0.935819\pi\)
\(840\) 0 0
\(841\) 10005.9 0.410264
\(842\) 0 0
\(843\) −9296.89 −0.379836
\(844\) 0 0
\(845\) −19087.5 + 1501.87i −0.777077 + 0.0611429i
\(846\) 0 0
\(847\) 635.721i 0.0257894i
\(848\) 0 0
\(849\) −24594.1 −0.994191
\(850\) 0 0
\(851\) 2451.72 0.0987591
\(852\) 0 0
\(853\) −7250.95 −0.291053 −0.145526 0.989354i \(-0.546488\pi\)
−0.145526 + 0.989354i \(0.546488\pi\)
\(854\) 0 0
\(855\) −2371.07 −0.0948409
\(856\) 0 0
\(857\) 39519.2 1.57520 0.787602 0.616185i \(-0.211323\pi\)
0.787602 + 0.616185i \(0.211323\pi\)
\(858\) 0 0
\(859\) 46491.8i 1.84666i 0.384010 + 0.923329i \(0.374543\pi\)
−0.384010 + 0.923329i \(0.625457\pi\)
\(860\) 0 0
\(861\) 3014.95i 0.119337i
\(862\) 0 0
\(863\) 11505.9i 0.453842i 0.973913 + 0.226921i \(0.0728659\pi\)
−0.973913 + 0.226921i \(0.927134\pi\)
\(864\) 0 0
\(865\) 37413.8i 1.47064i
\(866\) 0 0
\(867\) 13129.1i 0.514289i
\(868\) 0 0
\(869\) −12748.1 −0.497640
\(870\) 0 0
\(871\) −22712.0 + 892.146i −0.883542 + 0.0347063i
\(872\) 0 0
\(873\) 11998.0i 0.465144i
\(874\) 0 0
\(875\) 25281.8i 0.976779i
\(876\) 0 0
\(877\) 20615.5 0.793771 0.396886 0.917868i \(-0.370091\pi\)
0.396886 + 0.917868i \(0.370091\pi\)
\(878\) 0 0
\(879\) 7782.84i 0.298645i
\(880\) 0 0
\(881\) −23657.2 −0.904688 −0.452344 0.891844i \(-0.649412\pi\)
−0.452344 + 0.891844i \(0.649412\pi\)
\(882\) 0 0
\(883\) 26112.2i 0.995182i −0.867412 0.497591i \(-0.834218\pi\)
0.867412 0.497591i \(-0.165782\pi\)
\(884\) 0 0
\(885\) 2429.23i 0.0922685i
\(886\) 0 0
\(887\) 32404.5 1.22665 0.613323 0.789832i \(-0.289832\pi\)
0.613323 + 0.789832i \(0.289832\pi\)
\(888\) 0 0
\(889\) 9483.22i 0.357770i
\(890\) 0 0
\(891\) 2912.46 0.109508
\(892\) 0 0
\(893\) 13664.7i 0.512061i
\(894\) 0 0
\(895\) 10932.0i 0.408285i
\(896\) 0 0
\(897\) 402.363 + 10243.2i 0.0149772 + 0.381284i
\(898\) 0 0
\(899\) 11550.6 0.428515
\(900\) 0 0
\(901\) 7140.68i 0.264029i
\(902\) 0 0
\(903\) 346.851i 0.0127824i
\(904\) 0 0
\(905\) 5065.93i 0.186074i
\(906\) 0 0
\(907\) 31753.5i 1.16247i 0.813737 + 0.581233i \(0.197429\pi\)
−0.813737 + 0.581233i \(0.802571\pi\)
\(908\) 0 0
\(909\) 7512.18i 0.274107i
\(910\) 0 0
\(911\) −45254.7 −1.64583 −0.822916 0.568163i \(-0.807654\pi\)
−0.822916 + 0.568163i \(0.807654\pi\)
\(912\) 0 0
\(913\) 8376.28 0.303630
\(914\) 0 0
\(915\) −14075.0 −0.508531
\(916\) 0 0
\(917\) −29320.7 −1.05589
\(918\) 0 0
\(919\) −40149.3 −1.44113 −0.720567 0.693385i \(-0.756118\pi\)
−0.720567 + 0.693385i \(0.756118\pi\)
\(920\) 0 0
\(921\) 6682.04i 0.239067i
\(922\) 0 0
\(923\) −823.705 20969.6i −0.0293744 0.747804i
\(924\) 0 0
\(925\) 1649.64 0.0586376
\(926\) 0 0
\(927\) 731.645 0.0259227
\(928\) 0 0
\(929\) 39873.3i 1.40818i −0.710110 0.704091i \(-0.751355\pi\)
0.710110 0.704091i \(-0.248645\pi\)
\(930\) 0 0
\(931\) −1970.83 −0.0693784
\(932\) 0 0
\(933\) 18764.2i 0.658427i
\(934\) 0 0
\(935\) −7258.88 −0.253894
\(936\) 0 0
\(937\) 9738.57 0.339536 0.169768 0.985484i \(-0.445698\pi\)
0.169768 + 0.985484i \(0.445698\pi\)
\(938\) 0 0
\(939\) 24245.1i 0.842609i
\(940\) 0 0
\(941\) −22634.3 −0.784119 −0.392059 0.919940i \(-0.628237\pi\)
−0.392059 + 0.919940i \(0.628237\pi\)
\(942\) 0 0
\(943\) 4395.64i 0.151794i
\(944\) 0 0
\(945\) 3921.88 0.135004
\(946\) 0 0
\(947\) 27205.9 0.933550 0.466775 0.884376i \(-0.345416\pi\)
0.466775 + 0.884376i \(0.345416\pi\)
\(948\) 0 0
\(949\) 1404.18 + 35747.2i 0.0480313 + 1.22276i
\(950\) 0 0
\(951\) 1823.64i 0.0621826i
\(952\) 0 0
\(953\) 22624.9 0.769038 0.384519 0.923117i \(-0.374367\pi\)
0.384519 + 0.923117i \(0.374367\pi\)
\(954\) 0 0
\(955\) −28732.7 −0.973578
\(956\) 0 0
\(957\) 12936.7 0.436973
\(958\) 0 0
\(959\) 13306.4 0.448055
\(960\) 0 0
\(961\) 20515.0 0.688631
\(962\) 0 0
\(963\) 11968.9i 0.400513i
\(964\) 0 0
\(965\) 3927.14i 0.131004i
\(966\) 0 0
\(967\) 50031.6i 1.66381i 0.554916 + 0.831907i \(0.312751\pi\)
−0.554916 + 0.831907i \(0.687249\pi\)
\(968\) 0 0
\(969\) 2100.87i 0.0696487i
\(970\) 0 0
\(971\) 6575.84i 0.217331i −0.994078 0.108666i \(-0.965342\pi\)
0.994078 0.108666i \(-0.0346578\pi\)
\(972\) 0 0
\(973\) −40644.8 −1.33917
\(974\) 0 0
\(975\) 270.730 + 6892.15i 0.00889261 + 0.226385i
\(976\) 0 0
\(977\) 34070.7i 1.11568i −0.829949 0.557840i \(-0.811630\pi\)
0.829949 0.557840i \(-0.188370\pi\)
\(978\) 0 0
\(979\) 47439.6i 1.54870i
\(980\) 0 0
\(981\) 2628.67 0.0855524
\(982\) 0 0
\(983\) 10931.9i 0.354705i −0.984147 0.177352i \(-0.943247\pi\)
0.984147 0.177352i \(-0.0567532\pi\)
\(984\) 0 0
\(985\) −36679.9 −1.18652
\(986\) 0 0
\(987\) 22602.1i 0.728907i
\(988\) 0 0
\(989\) 505.692i 0.0162589i
\(990\) 0 0
\(991\) 4446.58 0.142533 0.0712666 0.997457i \(-0.477296\pi\)
0.0712666 + 0.997457i \(0.477296\pi\)
\(992\) 0 0
\(993\) 24065.0i 0.769063i
\(994\) 0 0
\(995\) 42796.0 1.36354
\(996\) 0 0
\(997\) 19510.8i 0.619774i 0.950773 + 0.309887i \(0.100291\pi\)
−0.950773 + 0.309887i \(0.899709\pi\)
\(998\) 0 0
\(999\) 908.029i 0.0287575i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.4.m.a.337.21 84
4.3 odd 2 312.4.m.a.181.3 84
8.3 odd 2 312.4.m.a.181.81 yes 84
8.5 even 2 inner 1248.4.m.a.337.24 84
13.12 even 2 inner 1248.4.m.a.337.22 84
52.51 odd 2 312.4.m.a.181.82 yes 84
104.51 odd 2 312.4.m.a.181.4 yes 84
104.77 even 2 inner 1248.4.m.a.337.23 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.m.a.181.3 84 4.3 odd 2
312.4.m.a.181.4 yes 84 104.51 odd 2
312.4.m.a.181.81 yes 84 8.3 odd 2
312.4.m.a.181.82 yes 84 52.51 odd 2
1248.4.m.a.337.21 84 1.1 even 1 trivial
1248.4.m.a.337.22 84 13.12 even 2 inner
1248.4.m.a.337.23 84 104.77 even 2 inner
1248.4.m.a.337.24 84 8.5 even 2 inner