Learn more

Refine search


Results (32 matches)

  displayed columns for results
Label Char Prim Dim $A$ Field CM Minimal twist Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1250.2.a.a 1250.a 1.a $2$ $9.981$ \(\Q(\sqrt{5}) \) None 50.2.d.a \(-2\) \(-3\) \(0\) \(-6\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}+(-1-\beta )q^{3}+q^{4}+(1+\beta )q^{6}+\cdots\)
1250.2.a.b 1250.a 1.a $2$ $9.981$ \(\Q(\sqrt{5}) \) None 1250.2.a.b \(-2\) \(2\) \(0\) \(-1\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}-\beta q^{7}-q^{8}+\cdots\)
1250.2.a.c 1250.a 1.a $2$ $9.981$ \(\Q(\sqrt{5}) \) None 1250.2.a.b \(2\) \(-2\) \(0\) \(1\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}+\beta q^{7}+q^{8}+\cdots\)
1250.2.a.d 1250.a 1.a $2$ $9.981$ \(\Q(\sqrt{5}) \) None 50.2.d.a \(2\) \(3\) \(0\) \(6\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(1+\beta )q^{3}+q^{4}+(1+\beta )q^{6}+\cdots\)
1250.2.a.e 1250.a 1.a $4$ $9.981$ \(\Q(\zeta_{15})^+\) None 1250.2.a.e \(-4\) \(-1\) \(0\) \(-2\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(\beta _{2}+\beta _{3})q^{3}+q^{4}+(-\beta _{2}-\beta _{3})q^{6}+\cdots\)
1250.2.a.f 1250.a 1.a $4$ $9.981$ 4.4.7625.1 None 50.2.d.b \(-4\) \(-1\) \(0\) \(-2\) $+$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}+\beta _{1}q^{6}+(-1+\cdots)q^{7}+\cdots\)
1250.2.a.g 1250.a 1.a $4$ $9.981$ 4.4.18625.1 None 1250.2.a.g \(-4\) \(-1\) \(0\) \(3\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(\beta _{1}-\beta _{2})q^{3}+q^{4}+(-\beta _{1}+\beta _{2}+\cdots)q^{6}+\cdots\)
1250.2.a.h 1250.a 1.a $4$ $9.981$ \(\Q(\zeta_{20})^+\) None 50.2.e.a \(-4\) \(4\) \(0\) \(8\) $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(1+\beta _{1})q^{3}+q^{4}+(-1-\beta _{1}+\cdots)q^{6}+\cdots\)
1250.2.a.i 1250.a 1.a $4$ $9.981$ \(\Q(\zeta_{20})^+\) None 50.2.e.a \(4\) \(-4\) \(0\) \(-8\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1+\beta _{1})q^{3}+q^{4}+(-1+\beta _{1}+\cdots)q^{6}+\cdots\)
1250.2.a.j 1250.a 1.a $4$ $9.981$ 4.4.18625.1 None 1250.2.a.g \(4\) \(1\) \(0\) \(-3\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(-\beta _{1}+\beta _{2})q^{3}+q^{4}+(-\beta _{1}+\cdots)q^{6}+\cdots\)
1250.2.a.k 1250.a 1.a $4$ $9.981$ \(\Q(\zeta_{15})^+\) None 1250.2.a.e \(4\) \(1\) \(0\) \(2\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(-\beta _{2}-\beta _{3})q^{3}+q^{4}+(-\beta _{2}+\cdots)q^{6}+\cdots\)
1250.2.a.l 1250.a 1.a $4$ $9.981$ 4.4.7625.1 None 50.2.d.b \(4\) \(1\) \(0\) \(2\) $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta _{1}q^{3}+q^{4}+\beta _{1}q^{6}+(1+\beta _{3})q^{7}+\cdots\)
1250.2.b.a 1250.b 5.b $4$ $9.981$ \(\Q(i, \sqrt{5})\) None 1250.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}-\beta _{3}q^{3}-q^{4}-q^{6}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
1250.2.b.b 1250.b 5.b $4$ $9.981$ \(\Q(i, \sqrt{5})\) None 50.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{2}+(\beta _{1}-\beta _{3})q^{3}-q^{4}+(1-\beta _{2}+\cdots)q^{6}+\cdots\)
1250.2.b.c 1250.b 5.b $8$ $9.981$ \(\Q(\zeta_{20})\) None 50.2.e.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_1 q^{2}+(-\beta_{2}-\beta_1)q^{3}-q^{4}+\cdots\)
1250.2.b.d 1250.b 5.b $8$ $9.981$ 8.0.\(\cdots\).2 None 1250.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{7}q^{2}+\beta _{1}q^{3}-q^{4}-\beta _{6}q^{6}+(2\beta _{4}+\cdots)q^{7}+\cdots\)
1250.2.b.e 1250.b 5.b $8$ $9.981$ 8.0.\(\cdots\).15 None 50.2.d.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}+\beta _{1}q^{3}-q^{4}+(1+\beta _{4}-\beta _{7})q^{6}+\cdots\)
1250.2.b.f 1250.b 5.b $8$ $9.981$ 8.0.324000000.1 None 1250.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{2}+(-\beta _{3}-\beta _{7})q^{3}-q^{4}-\beta _{2}q^{6}+\cdots\)
1250.4.a.a 1250.a 1.a $4$ $73.752$ 4.4.33625.1 None 1250.4.a.a \(-8\) \(-3\) \(0\) \(-4\) $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(2\beta _{2}+\beta _{3})q^{3}+4q^{4}+(-4\beta _{2}+\cdots)q^{6}+\cdots\)
1250.4.a.b 1250.a 1.a $4$ $73.752$ 4.4.33625.1 None 1250.4.a.a \(8\) \(3\) \(0\) \(4\) $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-2\beta _{2}-\beta _{3})q^{3}+4q^{4}+(-4\beta _{2}+\cdots)q^{6}+\cdots\)
1250.4.a.c 1250.a 1.a $6$ $73.752$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 1250.4.a.c \(-12\) \(8\) \(0\) \(-6\) $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1-\beta _{1}-\beta _{2})q^{3}+4q^{4}+(-2+\cdots)q^{6}+\cdots\)
1250.4.a.d 1250.a 1.a $6$ $73.752$ 6.6.2140313125.1 None 50.4.d.a \(-12\) \(8\) \(0\) \(29\) $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1-\beta _{1}+\beta _{2})q^{3}+4q^{4}+(-2+\cdots)q^{6}+\cdots\)
1250.4.a.e 1250.a 1.a $6$ $73.752$ 6.6.2140313125.1 None 50.4.d.a \(12\) \(-8\) \(0\) \(-29\) $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1+\beta _{1}-\beta _{2})q^{3}+4q^{4}+\cdots\)
1250.4.a.f 1250.a 1.a $6$ $73.752$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 1250.4.a.c \(12\) \(-8\) \(0\) \(6\) $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1+\beta _{1}+\beta _{2})q^{3}+4q^{4}+\cdots\)
1250.4.a.g 1250.a 1.a $8$ $73.752$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 50.4.d.b \(-16\) \(4\) \(0\) \(27\) $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1+\beta _{1}+\beta _{3})q^{3}+4q^{4}+(-2+\cdots)q^{6}+\cdots\)
1250.4.a.h 1250.a 1.a $8$ $73.752$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1250.4.a.h \(-16\) \(9\) \(0\) \(22\) $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1-\beta _{1})q^{3}+4q^{4}+(-2+2\beta _{1}+\cdots)q^{6}+\cdots\)
1250.4.a.i 1250.a 1.a $8$ $73.752$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1250.4.a.h \(16\) \(-9\) \(0\) \(-22\) $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1+\beta _{1})q^{3}+4q^{4}+(-2+\cdots)q^{6}+\cdots\)
1250.4.a.j 1250.a 1.a $8$ $73.752$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 50.4.d.b \(16\) \(-4\) \(0\) \(-27\) $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1-\beta _{1}-\beta _{3})q^{3}+4q^{4}+\cdots\)
1250.4.a.k 1250.a 1.a $12$ $73.752$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1250.4.a.k \(-24\) \(-14\) \(0\) \(-12\) $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1+\beta _{5})q^{3}+4q^{4}+(2-2\beta _{5}+\cdots)q^{6}+\cdots\)
1250.4.a.l 1250.a 1.a $12$ $73.752$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1250.4.a.k \(24\) \(14\) \(0\) \(12\) $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(1-\beta _{5})q^{3}+4q^{4}+(2-2\beta _{5}+\cdots)q^{6}+\cdots\)
1250.4.a.m 1250.a 1.a $16$ $73.752$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 50.4.e.a \(-32\) \(-12\) \(0\) \(-56\) $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1+\beta _{3})q^{3}+4q^{4}+(2-2\beta _{3}+\cdots)q^{6}+\cdots\)
1250.4.a.n 1250.a 1.a $16$ $73.752$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 50.4.e.a \(32\) \(12\) \(0\) \(56\) $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(1-\beta _{3})q^{3}+4q^{4}+(2-2\beta _{3}+\cdots)q^{6}+\cdots\)
  displayed columns for results