Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1250,2,Mod(1,1250)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1250, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1250.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1250.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 50) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of :
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
1.00000 | −2.90211 | 1.00000 | 0 | −2.90211 | 1.07768 | 1.00000 | 5.42226 | 0 | ||||||||||||||||||||||||||||||
1.2 | 1.00000 | −2.17557 | 1.00000 | 0 | −2.17557 | −2.72654 | 1.00000 | 1.73311 | 0 | |||||||||||||||||||||||||||||||
1.3 | 1.00000 | 0.175571 | 1.00000 | 0 | 0.175571 | −1.27346 | 1.00000 | −2.96917 | 0 | |||||||||||||||||||||||||||||||
1.4 | 1.00000 | 0.902113 | 1.00000 | 0 | 0.902113 | −5.07768 | 1.00000 | −2.18619 | 0 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1250.2.a.i | 4 | |
4.b | odd | 2 | 1 | 10000.2.a.bb | 4 | ||
5.b | even | 2 | 1 | 1250.2.a.h | 4 | ||
5.c | odd | 4 | 2 | 1250.2.b.c | 8 | ||
20.d | odd | 2 | 1 | 10000.2.a.o | 4 | ||
25.d | even | 5 | 2 | 250.2.d.b | 8 | ||
25.e | even | 10 | 2 | 250.2.d.c | 8 | ||
25.f | odd | 20 | 2 | 50.2.e.a | ✓ | 8 | |
25.f | odd | 20 | 2 | 250.2.e.a | 8 | ||
75.l | even | 20 | 2 | 450.2.l.b | 8 | ||
100.l | even | 20 | 2 | 400.2.y.a | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
50.2.e.a | ✓ | 8 | 25.f | odd | 20 | 2 | |
250.2.d.b | 8 | 25.d | even | 5 | 2 | ||
250.2.d.c | 8 | 25.e | even | 10 | 2 | ||
250.2.e.a | 8 | 25.f | odd | 20 | 2 | ||
400.2.y.a | 8 | 100.l | even | 20 | 2 | ||
450.2.l.b | 8 | 75.l | even | 20 | 2 | ||
1250.2.a.h | 4 | 5.b | even | 2 | 1 | ||
1250.2.a.i | 4 | 1.a | even | 1 | 1 | trivial | |
1250.2.b.c | 8 | 5.c | odd | 4 | 2 | ||
10000.2.a.o | 4 | 20.d | odd | 2 | 1 | ||
10000.2.a.bb | 4 | 4.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .