Properties

Label 1250.2.a.i
Level $1250$
Weight $2$
Character orbit 1250.a
Self dual yes
Analytic conductor $9.981$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1250,2,Mod(1,1250)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1250, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1250.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1250 = 2 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1250.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.98130025266\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{20})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 50)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + (\beta_1 - 1) q^{3} + q^{4} + (\beta_1 - 1) q^{6} + ( - \beta_{3} - \beta_1 - 2) q^{7} + q^{8} + (\beta_{2} - 2 \beta_1 + 1) q^{9} + (2 \beta_{3} - \beta_{2} - \beta_1 - 1) q^{11} + (\beta_1 - 1) q^{12}+ \cdots + (\beta_{3} - 7 \beta_{2} + 3 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{3} + 4 q^{4} - 4 q^{6} - 8 q^{7} + 4 q^{8} + 2 q^{9} - 2 q^{11} - 4 q^{12} - 14 q^{13} - 8 q^{14} + 4 q^{16} - 8 q^{17} + 2 q^{18} - 2 q^{21} - 2 q^{22} - 4 q^{23} - 4 q^{24} - 14 q^{26}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{20} + \zeta_{20}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.90211
−1.17557
1.17557
1.90211
1.00000 −2.90211 1.00000 0 −2.90211 1.07768 1.00000 5.42226 0
1.2 1.00000 −2.17557 1.00000 0 −2.17557 −2.72654 1.00000 1.73311 0
1.3 1.00000 0.175571 1.00000 0 0.175571 −1.27346 1.00000 −2.96917 0
1.4 1.00000 0.902113 1.00000 0 0.902113 −5.07768 1.00000 −2.18619 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1250.2.a.i 4
4.b odd 2 1 10000.2.a.bb 4
5.b even 2 1 1250.2.a.h 4
5.c odd 4 2 1250.2.b.c 8
20.d odd 2 1 10000.2.a.o 4
25.d even 5 2 250.2.d.b 8
25.e even 10 2 250.2.d.c 8
25.f odd 20 2 50.2.e.a 8
25.f odd 20 2 250.2.e.a 8
75.l even 20 2 450.2.l.b 8
100.l even 20 2 400.2.y.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.2.e.a 8 25.f odd 20 2
250.2.d.b 8 25.d even 5 2
250.2.d.c 8 25.e even 10 2
250.2.e.a 8 25.f odd 20 2
400.2.y.a 8 100.l even 20 2
450.2.l.b 8 75.l even 20 2
1250.2.a.h 4 5.b even 2 1
1250.2.a.i 4 1.a even 1 1 trivial
1250.2.b.c 8 5.c odd 4 2
10000.2.a.o 4 20.d odd 2 1
10000.2.a.bb 4 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 4T_{3}^{3} + T_{3}^{2} - 6T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1250))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 8 T^{3} + \cdots - 19 \) Copy content Toggle raw display
$11$ \( T^{4} + 2 T^{3} + \cdots - 59 \) Copy content Toggle raw display
$13$ \( T^{4} + 14 T^{3} + \cdots + 41 \) Copy content Toggle raw display
$17$ \( T^{4} + 8 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$19$ \( T^{4} - 15 T^{2} + \cdots + 5 \) Copy content Toggle raw display
$23$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{4} + 10 T^{3} + \cdots - 95 \) Copy content Toggle raw display
$31$ \( T^{4} - 8 T^{3} + \cdots - 19 \) Copy content Toggle raw display
$37$ \( T^{4} + 18 T^{3} + \cdots + 241 \) Copy content Toggle raw display
$41$ \( T^{4} + 12 T^{3} + \cdots - 5339 \) Copy content Toggle raw display
$43$ \( T^{4} + 14 T^{3} + \cdots - 1919 \) Copy content Toggle raw display
$47$ \( T^{4} + 8 T^{3} + \cdots - 2939 \) Copy content Toggle raw display
$53$ \( T^{4} + 4 T^{3} + \cdots - 64 \) Copy content Toggle raw display
$59$ \( T^{4} - 80T^{2} + 1280 \) Copy content Toggle raw display
$61$ \( T^{4} + 2 T^{3} + \cdots + 181 \) Copy content Toggle raw display
$67$ \( T^{4} - 2 T^{3} + \cdots - 59 \) Copy content Toggle raw display
$71$ \( T^{4} - 8 T^{3} + \cdots + 1021 \) Copy content Toggle raw display
$73$ \( T^{4} + 24 T^{3} + \cdots - 304 \) Copy content Toggle raw display
$79$ \( T^{4} - 20 T^{3} + \cdots - 4720 \) Copy content Toggle raw display
$83$ \( T^{4} + 14 T^{3} + \cdots - 4139 \) Copy content Toggle raw display
$89$ \( (T^{2} + 10 T - 20)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 28 T^{3} + \cdots + 361 \) Copy content Toggle raw display
show more
show less