Properties

Label 1250.4.a.c
Level $1250$
Weight $4$
Character orbit 1250.a
Self dual yes
Analytic conductor $73.752$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1250,4,Mod(1,1250)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1250, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1250.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1250 = 2 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1250.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.7523875072\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 145x^{4} + 120x^{3} + 5125x^{2} - 2431x - 1069 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + ( - \beta_{2} - \beta_1 + 1) q^{3} + 4 q^{4} + (2 \beta_{2} + 2 \beta_1 - 2) q^{6} + ( - \beta_{5} - \beta_{3} + \cdots - \beta_1) q^{7} - 8 q^{8} + ( - 2 \beta_{4} + \beta_{3} + \cdots + 27) q^{9}+ \cdots + (13 \beta_{5} - 37 \beta_{4} + \cdots + 633) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} + 8 q^{3} + 24 q^{4} - 16 q^{6} - 6 q^{7} - 48 q^{8} + 142 q^{9} + 107 q^{11} + 32 q^{12} - 42 q^{13} + 12 q^{14} + 96 q^{16} - 156 q^{17} - 284 q^{18} + 50 q^{19} + 122 q^{21} - 214 q^{22}+ \cdots + 2389 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 145x^{4} + 120x^{3} + 5125x^{2} - 2431x - 1069 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -3\nu^{5} + 20\nu^{4} + 495\nu^{3} - 1605\nu^{2} - 19800\nu + 413 ) / 9360 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 17\nu^{5} + 60\nu^{4} - 1245\nu^{3} - 4425\nu^{2} - 6880\nu - 3207 ) / 9360 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -19\nu^{5} + 40\nu^{4} + 2355\nu^{3} - 8085\nu^{2} - 70540\nu + 246409 ) / 9360 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -53\nu^{5} - 80\nu^{4} + 7185\nu^{3} + 5445\nu^{2} - 234620\nu + 16483 ) / 4680 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -2\beta_{4} - \beta_{3} + 7\beta_{2} - \beta _1 + 52 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{5} + 10\beta_{3} - 14\beta_{2} + 78\beta _1 - 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -18\beta_{5} - 156\beta_{4} - 114\beta_{3} + 978\beta_{2} - 93\beta _1 + 4088 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 210\beta_{5} + 30\beta_{4} + 1425\beta_{3} - 2655\beta_{2} + 6185\beta _1 - 924 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.95712
8.28587
−0.278104
0.750910
−9.29705
−7.41875
−2.00000 −8.57516 4.00000 0 17.1503 −1.39161 −8.00000 46.5333 0
1.2 −2.00000 −5.66784 4.00000 0 11.3357 −16.6100 −8.00000 5.12438 0
1.3 −2.00000 0.660070 4.00000 0 −1.32014 −15.8349 −8.00000 −26.5643 0
1.4 −2.00000 1.86712 4.00000 0 −3.73425 30.0531 −8.00000 −23.5138 0
1.5 −2.00000 9.67902 4.00000 0 −19.3580 20.9347 −8.00000 66.6834 0
1.6 −2.00000 10.0368 4.00000 0 −20.0736 −23.1512 −8.00000 73.7370 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1250.4.a.c 6
5.b even 2 1 1250.4.a.f yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1250.4.a.c 6 1.a even 1 1 trivial
1250.4.a.f yes 6 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 8T_{3}^{5} - 120T_{3}^{4} + 760T_{3}^{3} + 3480T_{3}^{2} - 11408T_{3} + 5819 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1250))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 8 T^{5} + \cdots + 5819 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 6 T^{5} + \cdots + 5331276 \) Copy content Toggle raw display
$11$ \( T^{6} - 107 T^{5} + \cdots + 138384 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 7545700404 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 142258923171 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 92597273100 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 252583777296 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 365288720400 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 6475098886576 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 18880670882564 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 5327780215104 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 11\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 34910336855664 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 55\!\cdots\!36 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 64\!\cdots\!25 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 205699969593756 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 23165951433309 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 11933041882644 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 39\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 33\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 21\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 85\!\cdots\!39 \) Copy content Toggle raw display
show more
show less