Properties

Label 1250.4.a.j.1.8
Level $1250$
Weight $4$
Character 1250.1
Self dual yes
Analytic conductor $73.752$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1250,4,Mod(1,1250)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1250, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1250.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1250 = 2 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1250.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.7523875072\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 145x^{6} - 180x^{5} + 5585x^{4} + 8550x^{3} - 49600x^{2} - 23400x + 24400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: no (minimal twist has level 50)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-7.69551\) of defining polynomial
Character \(\chi\) \(=\) 1250.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +8.31354 q^{3} +4.00000 q^{4} +16.6271 q^{6} -26.4146 q^{7} +8.00000 q^{8} +42.1150 q^{9} -62.6568 q^{11} +33.2542 q^{12} +0.482265 q^{13} -52.8293 q^{14} +16.0000 q^{16} -105.983 q^{17} +84.2300 q^{18} +76.0259 q^{19} -219.599 q^{21} -125.314 q^{22} -95.6651 q^{23} +66.5084 q^{24} +0.964531 q^{26} +125.659 q^{27} -105.659 q^{28} +3.73342 q^{29} -2.31872 q^{31} +32.0000 q^{32} -520.900 q^{33} -211.967 q^{34} +168.460 q^{36} -11.8767 q^{37} +152.052 q^{38} +4.00934 q^{39} -52.6278 q^{41} -439.199 q^{42} -262.484 q^{43} -250.627 q^{44} -191.330 q^{46} -271.270 q^{47} +133.017 q^{48} +354.734 q^{49} -881.098 q^{51} +1.92906 q^{52} +359.541 q^{53} +251.319 q^{54} -211.317 q^{56} +632.045 q^{57} +7.46684 q^{58} +62.0750 q^{59} -364.767 q^{61} -4.63745 q^{62} -1112.45 q^{63} +64.0000 q^{64} -1041.80 q^{66} -221.351 q^{67} -423.934 q^{68} -795.316 q^{69} +714.680 q^{71} +336.920 q^{72} +128.238 q^{73} -23.7534 q^{74} +304.104 q^{76} +1655.06 q^{77} +8.01867 q^{78} -1116.77 q^{79} -92.4304 q^{81} -105.256 q^{82} +500.570 q^{83} -878.397 q^{84} -524.968 q^{86} +31.0379 q^{87} -501.255 q^{88} -1138.03 q^{89} -12.7389 q^{91} -382.660 q^{92} -19.2768 q^{93} -542.541 q^{94} +266.033 q^{96} -735.557 q^{97} +709.467 q^{98} -2638.79 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{2} - 4 q^{3} + 32 q^{4} - 8 q^{6} - 27 q^{7} + 64 q^{8} + 76 q^{9} - 39 q^{11} - 16 q^{12} - 179 q^{13} - 54 q^{14} + 128 q^{16} - 247 q^{17} + 152 q^{18} - 25 q^{19} - 104 q^{21} - 78 q^{22}+ \cdots - 893 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 8.31354 1.59994 0.799971 0.600038i \(-0.204848\pi\)
0.799971 + 0.600038i \(0.204848\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 16.6271 1.13133
\(7\) −26.4146 −1.42626 −0.713128 0.701033i \(-0.752722\pi\)
−0.713128 + 0.701033i \(0.752722\pi\)
\(8\) 8.00000 0.353553
\(9\) 42.1150 1.55982
\(10\) 0 0
\(11\) −62.6568 −1.71743 −0.858716 0.512452i \(-0.828737\pi\)
−0.858716 + 0.512452i \(0.828737\pi\)
\(12\) 33.2542 0.799971
\(13\) 0.482265 0.0102890 0.00514448 0.999987i \(-0.498362\pi\)
0.00514448 + 0.999987i \(0.498362\pi\)
\(14\) −52.8293 −1.00852
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −105.983 −1.51204 −0.756022 0.654546i \(-0.772860\pi\)
−0.756022 + 0.654546i \(0.772860\pi\)
\(18\) 84.2300 1.10296
\(19\) 76.0259 0.917976 0.458988 0.888442i \(-0.348212\pi\)
0.458988 + 0.888442i \(0.348212\pi\)
\(20\) 0 0
\(21\) −219.599 −2.28193
\(22\) −125.314 −1.21441
\(23\) −95.6651 −0.867285 −0.433642 0.901085i \(-0.642772\pi\)
−0.433642 + 0.901085i \(0.642772\pi\)
\(24\) 66.5084 0.565665
\(25\) 0 0
\(26\) 0.964531 0.00727539
\(27\) 125.659 0.895673
\(28\) −105.659 −0.713128
\(29\) 3.73342 0.0239061 0.0119531 0.999929i \(-0.496195\pi\)
0.0119531 + 0.999929i \(0.496195\pi\)
\(30\) 0 0
\(31\) −2.31872 −0.0134340 −0.00671702 0.999977i \(-0.502138\pi\)
−0.00671702 + 0.999977i \(0.502138\pi\)
\(32\) 32.0000 0.176777
\(33\) −520.900 −2.74779
\(34\) −211.967 −1.06918
\(35\) 0 0
\(36\) 168.460 0.779908
\(37\) −11.8767 −0.0527708 −0.0263854 0.999652i \(-0.508400\pi\)
−0.0263854 + 0.999652i \(0.508400\pi\)
\(38\) 152.052 0.649107
\(39\) 4.00934 0.0164617
\(40\) 0 0
\(41\) −52.6278 −0.200465 −0.100233 0.994964i \(-0.531959\pi\)
−0.100233 + 0.994964i \(0.531959\pi\)
\(42\) −439.199 −1.61357
\(43\) −262.484 −0.930895 −0.465447 0.885076i \(-0.654107\pi\)
−0.465447 + 0.885076i \(0.654107\pi\)
\(44\) −250.627 −0.858716
\(45\) 0 0
\(46\) −191.330 −0.613263
\(47\) −271.270 −0.841891 −0.420945 0.907086i \(-0.638302\pi\)
−0.420945 + 0.907086i \(0.638302\pi\)
\(48\) 133.017 0.399986
\(49\) 354.734 1.03421
\(50\) 0 0
\(51\) −881.098 −2.41918
\(52\) 1.92906 0.00514448
\(53\) 359.541 0.931824 0.465912 0.884831i \(-0.345726\pi\)
0.465912 + 0.884831i \(0.345726\pi\)
\(54\) 251.319 0.633336
\(55\) 0 0
\(56\) −211.317 −0.504258
\(57\) 632.045 1.46871
\(58\) 7.46684 0.0169042
\(59\) 62.0750 0.136974 0.0684871 0.997652i \(-0.478183\pi\)
0.0684871 + 0.997652i \(0.478183\pi\)
\(60\) 0 0
\(61\) −364.767 −0.765634 −0.382817 0.923824i \(-0.625046\pi\)
−0.382817 + 0.923824i \(0.625046\pi\)
\(62\) −4.63745 −0.00949930
\(63\) −1112.45 −2.22470
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −1041.80 −1.94298
\(67\) −221.351 −0.403617 −0.201809 0.979425i \(-0.564682\pi\)
−0.201809 + 0.979425i \(0.564682\pi\)
\(68\) −423.934 −0.756022
\(69\) −795.316 −1.38761
\(70\) 0 0
\(71\) 714.680 1.19460 0.597302 0.802016i \(-0.296239\pi\)
0.597302 + 0.802016i \(0.296239\pi\)
\(72\) 336.920 0.551478
\(73\) 128.238 0.205604 0.102802 0.994702i \(-0.467219\pi\)
0.102802 + 0.994702i \(0.467219\pi\)
\(74\) −23.7534 −0.0373146
\(75\) 0 0
\(76\) 304.104 0.458988
\(77\) 1655.06 2.44950
\(78\) 8.01867 0.0116402
\(79\) −1116.77 −1.59045 −0.795227 0.606311i \(-0.792648\pi\)
−0.795227 + 0.606311i \(0.792648\pi\)
\(80\) 0 0
\(81\) −92.4304 −0.126791
\(82\) −105.256 −0.141750
\(83\) 500.570 0.661985 0.330992 0.943633i \(-0.392617\pi\)
0.330992 + 0.943633i \(0.392617\pi\)
\(84\) −878.397 −1.14096
\(85\) 0 0
\(86\) −524.968 −0.658242
\(87\) 31.0379 0.0382485
\(88\) −501.255 −0.607204
\(89\) −1138.03 −1.35541 −0.677703 0.735336i \(-0.737025\pi\)
−0.677703 + 0.735336i \(0.737025\pi\)
\(90\) 0 0
\(91\) −12.7389 −0.0146747
\(92\) −382.660 −0.433642
\(93\) −19.2768 −0.0214937
\(94\) −542.541 −0.595307
\(95\) 0 0
\(96\) 266.033 0.282833
\(97\) −735.557 −0.769944 −0.384972 0.922928i \(-0.625789\pi\)
−0.384972 + 0.922928i \(0.625789\pi\)
\(98\) 709.467 0.731296
\(99\) −2638.79 −2.67888
\(100\) 0 0
\(101\) −1249.44 −1.23093 −0.615463 0.788166i \(-0.711031\pi\)
−0.615463 + 0.788166i \(0.711031\pi\)
\(102\) −1762.20 −1.71062
\(103\) 332.831 0.318397 0.159198 0.987247i \(-0.449109\pi\)
0.159198 + 0.987247i \(0.449109\pi\)
\(104\) 3.85812 0.00363769
\(105\) 0 0
\(106\) 719.081 0.658899
\(107\) 2079.52 1.87883 0.939414 0.342786i \(-0.111370\pi\)
0.939414 + 0.342786i \(0.111370\pi\)
\(108\) 502.638 0.447836
\(109\) 704.965 0.619481 0.309740 0.950821i \(-0.399758\pi\)
0.309740 + 0.950821i \(0.399758\pi\)
\(110\) 0 0
\(111\) −98.7376 −0.0844303
\(112\) −422.634 −0.356564
\(113\) 379.678 0.316080 0.158040 0.987433i \(-0.449482\pi\)
0.158040 + 0.987433i \(0.449482\pi\)
\(114\) 1264.09 1.03853
\(115\) 0 0
\(116\) 14.9337 0.0119531
\(117\) 20.3106 0.0160489
\(118\) 124.150 0.0968554
\(119\) 2799.51 2.15656
\(120\) 0 0
\(121\) 2594.88 1.94957
\(122\) −729.535 −0.541385
\(123\) −437.524 −0.320733
\(124\) −9.27490 −0.00671702
\(125\) 0 0
\(126\) −2224.91 −1.57310
\(127\) −1403.00 −0.980286 −0.490143 0.871642i \(-0.663055\pi\)
−0.490143 + 0.871642i \(0.663055\pi\)
\(128\) 128.000 0.0883883
\(129\) −2182.17 −1.48938
\(130\) 0 0
\(131\) 1460.80 0.974279 0.487139 0.873324i \(-0.338040\pi\)
0.487139 + 0.873324i \(0.338040\pi\)
\(132\) −2083.60 −1.37390
\(133\) −2008.20 −1.30927
\(134\) −442.702 −0.285401
\(135\) 0 0
\(136\) −847.867 −0.534588
\(137\) −1486.96 −0.927294 −0.463647 0.886020i \(-0.653459\pi\)
−0.463647 + 0.886020i \(0.653459\pi\)
\(138\) −1590.63 −0.981186
\(139\) 129.580 0.0790705 0.0395353 0.999218i \(-0.487412\pi\)
0.0395353 + 0.999218i \(0.487412\pi\)
\(140\) 0 0
\(141\) −2255.22 −1.34698
\(142\) 1429.36 0.844713
\(143\) −30.2172 −0.0176706
\(144\) 673.840 0.389954
\(145\) 0 0
\(146\) 256.476 0.145384
\(147\) 2949.09 1.65467
\(148\) −47.5069 −0.0263854
\(149\) 1055.54 0.580357 0.290179 0.956973i \(-0.406285\pi\)
0.290179 + 0.956973i \(0.406285\pi\)
\(150\) 0 0
\(151\) 2197.85 1.18449 0.592246 0.805757i \(-0.298241\pi\)
0.592246 + 0.805757i \(0.298241\pi\)
\(152\) 608.207 0.324554
\(153\) −4463.49 −2.35851
\(154\) 3310.12 1.73206
\(155\) 0 0
\(156\) 16.0373 0.00823087
\(157\) −1392.21 −0.707712 −0.353856 0.935300i \(-0.615130\pi\)
−0.353856 + 0.935300i \(0.615130\pi\)
\(158\) −2233.53 −1.12462
\(159\) 2989.06 1.49087
\(160\) 0 0
\(161\) 2526.96 1.23697
\(162\) −184.861 −0.0896545
\(163\) −3494.56 −1.67923 −0.839617 0.543178i \(-0.817221\pi\)
−0.839617 + 0.543178i \(0.817221\pi\)
\(164\) −210.511 −0.100233
\(165\) 0 0
\(166\) 1001.14 0.468094
\(167\) 3166.47 1.46724 0.733620 0.679560i \(-0.237829\pi\)
0.733620 + 0.679560i \(0.237829\pi\)
\(168\) −1756.79 −0.806784
\(169\) −2196.77 −0.999894
\(170\) 0 0
\(171\) 3201.83 1.43187
\(172\) −1049.94 −0.465447
\(173\) −309.384 −0.135966 −0.0679828 0.997686i \(-0.521656\pi\)
−0.0679828 + 0.997686i \(0.521656\pi\)
\(174\) 62.0759 0.0270457
\(175\) 0 0
\(176\) −1002.51 −0.429358
\(177\) 516.064 0.219151
\(178\) −2276.06 −0.958417
\(179\) 3711.31 1.54970 0.774850 0.632145i \(-0.217826\pi\)
0.774850 + 0.632145i \(0.217826\pi\)
\(180\) 0 0
\(181\) 943.659 0.387523 0.193761 0.981049i \(-0.437931\pi\)
0.193761 + 0.981049i \(0.437931\pi\)
\(182\) −25.4777 −0.0103766
\(183\) −3032.51 −1.22497
\(184\) −765.321 −0.306632
\(185\) 0 0
\(186\) −38.5536 −0.0151983
\(187\) 6640.59 2.59683
\(188\) −1085.08 −0.420945
\(189\) −3319.25 −1.27746
\(190\) 0 0
\(191\) 2477.22 0.938456 0.469228 0.883077i \(-0.344532\pi\)
0.469228 + 0.883077i \(0.344532\pi\)
\(192\) 532.067 0.199993
\(193\) −2345.06 −0.874616 −0.437308 0.899312i \(-0.644068\pi\)
−0.437308 + 0.899312i \(0.644068\pi\)
\(194\) −1471.11 −0.544432
\(195\) 0 0
\(196\) 1418.93 0.517104
\(197\) 3803.71 1.37565 0.687824 0.725877i \(-0.258566\pi\)
0.687824 + 0.725877i \(0.258566\pi\)
\(198\) −5277.59 −1.89425
\(199\) 2972.61 1.05891 0.529454 0.848339i \(-0.322397\pi\)
0.529454 + 0.848339i \(0.322397\pi\)
\(200\) 0 0
\(201\) −1840.21 −0.645764
\(202\) −2498.87 −0.870396
\(203\) −98.6169 −0.0340963
\(204\) −3524.39 −1.20959
\(205\) 0 0
\(206\) 665.663 0.225140
\(207\) −4028.94 −1.35280
\(208\) 7.71625 0.00257224
\(209\) −4763.55 −1.57656
\(210\) 0 0
\(211\) 2055.82 0.670751 0.335375 0.942085i \(-0.391137\pi\)
0.335375 + 0.942085i \(0.391137\pi\)
\(212\) 1438.16 0.465912
\(213\) 5941.53 1.91130
\(214\) 4159.03 1.32853
\(215\) 0 0
\(216\) 1005.28 0.316668
\(217\) 61.2483 0.0191604
\(218\) 1409.93 0.438039
\(219\) 1066.11 0.328955
\(220\) 0 0
\(221\) −51.1121 −0.0155574
\(222\) −197.475 −0.0597012
\(223\) −3154.19 −0.947175 −0.473588 0.880747i \(-0.657041\pi\)
−0.473588 + 0.880747i \(0.657041\pi\)
\(224\) −845.269 −0.252129
\(225\) 0 0
\(226\) 759.355 0.223502
\(227\) 4452.14 1.30176 0.650879 0.759181i \(-0.274400\pi\)
0.650879 + 0.759181i \(0.274400\pi\)
\(228\) 2528.18 0.734354
\(229\) 813.711 0.234810 0.117405 0.993084i \(-0.462542\pi\)
0.117405 + 0.993084i \(0.462542\pi\)
\(230\) 0 0
\(231\) 13759.4 3.91906
\(232\) 29.8673 0.00845210
\(233\) 5120.62 1.43975 0.719877 0.694101i \(-0.244198\pi\)
0.719877 + 0.694101i \(0.244198\pi\)
\(234\) 40.6212 0.0113483
\(235\) 0 0
\(236\) 248.300 0.0684871
\(237\) −9284.28 −2.54464
\(238\) 5599.03 1.52492
\(239\) −320.787 −0.0868201 −0.0434101 0.999057i \(-0.513822\pi\)
−0.0434101 + 0.999057i \(0.513822\pi\)
\(240\) 0 0
\(241\) −89.5597 −0.0239379 −0.0119690 0.999928i \(-0.503810\pi\)
−0.0119690 + 0.999928i \(0.503810\pi\)
\(242\) 5189.76 1.37856
\(243\) −4161.23 −1.09853
\(244\) −1459.07 −0.382817
\(245\) 0 0
\(246\) −875.047 −0.226793
\(247\) 36.6647 0.00944501
\(248\) −18.5498 −0.00474965
\(249\) 4161.51 1.05914
\(250\) 0 0
\(251\) −7071.96 −1.77840 −0.889199 0.457520i \(-0.848738\pi\)
−0.889199 + 0.457520i \(0.848738\pi\)
\(252\) −4449.81 −1.11235
\(253\) 5994.07 1.48950
\(254\) −2806.00 −0.693167
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −2518.68 −0.611327 −0.305663 0.952140i \(-0.598878\pi\)
−0.305663 + 0.952140i \(0.598878\pi\)
\(258\) −4364.35 −1.05315
\(259\) 313.719 0.0752647
\(260\) 0 0
\(261\) 157.233 0.0372892
\(262\) 2921.60 0.688919
\(263\) −8135.10 −1.90734 −0.953672 0.300847i \(-0.902731\pi\)
−0.953672 + 0.300847i \(0.902731\pi\)
\(264\) −4167.20 −0.971491
\(265\) 0 0
\(266\) −4016.40 −0.925794
\(267\) −9461.08 −2.16857
\(268\) −885.405 −0.201809
\(269\) 649.925 0.147311 0.0736554 0.997284i \(-0.476533\pi\)
0.0736554 + 0.997284i \(0.476533\pi\)
\(270\) 0 0
\(271\) −291.643 −0.0653728 −0.0326864 0.999466i \(-0.510406\pi\)
−0.0326864 + 0.999466i \(0.510406\pi\)
\(272\) −1695.73 −0.378011
\(273\) −105.905 −0.0234787
\(274\) −2973.91 −0.655696
\(275\) 0 0
\(276\) −3181.26 −0.693803
\(277\) −3635.51 −0.788580 −0.394290 0.918986i \(-0.629009\pi\)
−0.394290 + 0.918986i \(0.629009\pi\)
\(278\) 259.159 0.0559113
\(279\) −97.6531 −0.0209546
\(280\) 0 0
\(281\) −8408.24 −1.78503 −0.892516 0.451016i \(-0.851062\pi\)
−0.892516 + 0.451016i \(0.851062\pi\)
\(282\) −4510.44 −0.952456
\(283\) −929.858 −0.195316 −0.0976578 0.995220i \(-0.531135\pi\)
−0.0976578 + 0.995220i \(0.531135\pi\)
\(284\) 2858.72 0.597302
\(285\) 0 0
\(286\) −60.4345 −0.0124950
\(287\) 1390.15 0.285915
\(288\) 1347.68 0.275739
\(289\) 6319.49 1.28628
\(290\) 0 0
\(291\) −6115.09 −1.23187
\(292\) 512.952 0.102802
\(293\) −413.694 −0.0824856 −0.0412428 0.999149i \(-0.513132\pi\)
−0.0412428 + 0.999149i \(0.513132\pi\)
\(294\) 5898.19 1.17003
\(295\) 0 0
\(296\) −95.0137 −0.0186573
\(297\) −7873.42 −1.53826
\(298\) 2111.08 0.410375
\(299\) −46.1360 −0.00892345
\(300\) 0 0
\(301\) 6933.43 1.32769
\(302\) 4395.69 0.837562
\(303\) −10387.2 −1.96941
\(304\) 1216.41 0.229494
\(305\) 0 0
\(306\) −8926.99 −1.66772
\(307\) 5657.76 1.05181 0.525905 0.850544i \(-0.323727\pi\)
0.525905 + 0.850544i \(0.323727\pi\)
\(308\) 6620.23 1.22475
\(309\) 2767.01 0.509416
\(310\) 0 0
\(311\) −1685.09 −0.307244 −0.153622 0.988130i \(-0.549094\pi\)
−0.153622 + 0.988130i \(0.549094\pi\)
\(312\) 32.0747 0.00582010
\(313\) −3655.64 −0.660156 −0.330078 0.943954i \(-0.607075\pi\)
−0.330078 + 0.943954i \(0.607075\pi\)
\(314\) −2784.43 −0.500428
\(315\) 0 0
\(316\) −4467.06 −0.795227
\(317\) −10257.8 −1.81747 −0.908735 0.417374i \(-0.862950\pi\)
−0.908735 + 0.417374i \(0.862950\pi\)
\(318\) 5978.11 1.05420
\(319\) −233.924 −0.0410572
\(320\) 0 0
\(321\) 17288.2 3.00602
\(322\) 5053.92 0.874671
\(323\) −8057.49 −1.38802
\(324\) −369.722 −0.0633953
\(325\) 0 0
\(326\) −6989.13 −1.18740
\(327\) 5860.76 0.991134
\(328\) −421.023 −0.0708752
\(329\) 7165.51 1.20075
\(330\) 0 0
\(331\) 8118.03 1.34806 0.674029 0.738705i \(-0.264562\pi\)
0.674029 + 0.738705i \(0.264562\pi\)
\(332\) 2002.28 0.330992
\(333\) −500.188 −0.0823127
\(334\) 6332.95 1.03750
\(335\) 0 0
\(336\) −3513.59 −0.570482
\(337\) −2334.38 −0.377335 −0.188668 0.982041i \(-0.560417\pi\)
−0.188668 + 0.982041i \(0.560417\pi\)
\(338\) −4393.53 −0.707032
\(339\) 3156.47 0.505710
\(340\) 0 0
\(341\) 145.284 0.0230720
\(342\) 6403.67 1.01249
\(343\) −309.940 −0.0487906
\(344\) −2099.87 −0.329121
\(345\) 0 0
\(346\) −618.769 −0.0961422
\(347\) −7436.64 −1.15049 −0.575244 0.817982i \(-0.695093\pi\)
−0.575244 + 0.817982i \(0.695093\pi\)
\(348\) 124.152 0.0191242
\(349\) −2740.81 −0.420379 −0.210190 0.977661i \(-0.567408\pi\)
−0.210190 + 0.977661i \(0.567408\pi\)
\(350\) 0 0
\(351\) 60.6012 0.00921554
\(352\) −2005.02 −0.303602
\(353\) −8340.03 −1.25749 −0.628747 0.777610i \(-0.716432\pi\)
−0.628747 + 0.777610i \(0.716432\pi\)
\(354\) 1032.13 0.154963
\(355\) 0 0
\(356\) −4552.13 −0.677703
\(357\) 23273.9 3.45038
\(358\) 7422.62 1.09580
\(359\) 2000.28 0.294069 0.147034 0.989131i \(-0.453027\pi\)
0.147034 + 0.989131i \(0.453027\pi\)
\(360\) 0 0
\(361\) −1079.06 −0.157320
\(362\) 1887.32 0.274020
\(363\) 21572.7 3.11920
\(364\) −50.9555 −0.00733734
\(365\) 0 0
\(366\) −6065.02 −0.866185
\(367\) −4855.63 −0.690631 −0.345316 0.938487i \(-0.612228\pi\)
−0.345316 + 0.938487i \(0.612228\pi\)
\(368\) −1530.64 −0.216821
\(369\) −2216.42 −0.312689
\(370\) 0 0
\(371\) −9497.14 −1.32902
\(372\) −77.1073 −0.0107468
\(373\) 10746.2 1.49174 0.745868 0.666094i \(-0.232035\pi\)
0.745868 + 0.666094i \(0.232035\pi\)
\(374\) 13281.2 1.83624
\(375\) 0 0
\(376\) −2170.16 −0.297653
\(377\) 1.80050 0.000245969 0
\(378\) −6638.50 −0.903300
\(379\) −8006.27 −1.08510 −0.542552 0.840022i \(-0.682542\pi\)
−0.542552 + 0.840022i \(0.682542\pi\)
\(380\) 0 0
\(381\) −11663.9 −1.56840
\(382\) 4954.44 0.663589
\(383\) 156.601 0.0208928 0.0104464 0.999945i \(-0.496675\pi\)
0.0104464 + 0.999945i \(0.496675\pi\)
\(384\) 1064.13 0.141416
\(385\) 0 0
\(386\) −4690.11 −0.618447
\(387\) −11054.5 −1.45202
\(388\) −2942.23 −0.384972
\(389\) 11362.5 1.48098 0.740491 0.672066i \(-0.234593\pi\)
0.740491 + 0.672066i \(0.234593\pi\)
\(390\) 0 0
\(391\) 10138.9 1.31137
\(392\) 2837.87 0.365648
\(393\) 12144.4 1.55879
\(394\) 7607.41 0.972731
\(395\) 0 0
\(396\) −10555.2 −1.33944
\(397\) 630.607 0.0797210 0.0398605 0.999205i \(-0.487309\pi\)
0.0398605 + 0.999205i \(0.487309\pi\)
\(398\) 5945.22 0.748761
\(399\) −16695.2 −2.09476
\(400\) 0 0
\(401\) −2493.80 −0.310560 −0.155280 0.987871i \(-0.549628\pi\)
−0.155280 + 0.987871i \(0.549628\pi\)
\(402\) −3680.43 −0.456624
\(403\) −1.11824 −0.000138222 0
\(404\) −4997.74 −0.615463
\(405\) 0 0
\(406\) −197.234 −0.0241097
\(407\) 744.157 0.0906303
\(408\) −7048.78 −0.855311
\(409\) −11742.3 −1.41960 −0.709801 0.704402i \(-0.751215\pi\)
−0.709801 + 0.704402i \(0.751215\pi\)
\(410\) 0 0
\(411\) −12361.9 −1.48362
\(412\) 1331.33 0.159198
\(413\) −1639.69 −0.195361
\(414\) −8057.88 −0.956577
\(415\) 0 0
\(416\) 15.4325 0.00181885
\(417\) 1077.27 0.126508
\(418\) −9527.09 −1.11480
\(419\) −7553.08 −0.880650 −0.440325 0.897839i \(-0.645137\pi\)
−0.440325 + 0.897839i \(0.645137\pi\)
\(420\) 0 0
\(421\) −11542.8 −1.33626 −0.668128 0.744046i \(-0.732904\pi\)
−0.668128 + 0.744046i \(0.732904\pi\)
\(422\) 4111.64 0.474293
\(423\) −11424.6 −1.31319
\(424\) 2876.32 0.329450
\(425\) 0 0
\(426\) 11883.1 1.35149
\(427\) 9635.20 1.09199
\(428\) 8318.07 0.939414
\(429\) −251.212 −0.0282719
\(430\) 0 0
\(431\) −7597.04 −0.849040 −0.424520 0.905418i \(-0.639557\pi\)
−0.424520 + 0.905418i \(0.639557\pi\)
\(432\) 2010.55 0.223918
\(433\) −8689.29 −0.964390 −0.482195 0.876064i \(-0.660160\pi\)
−0.482195 + 0.876064i \(0.660160\pi\)
\(434\) 122.497 0.0135484
\(435\) 0 0
\(436\) 2819.86 0.309740
\(437\) −7273.03 −0.796147
\(438\) 2132.22 0.232606
\(439\) 15366.3 1.67060 0.835300 0.549794i \(-0.185294\pi\)
0.835300 + 0.549794i \(0.185294\pi\)
\(440\) 0 0
\(441\) 14939.6 1.61318
\(442\) −102.224 −0.0110007
\(443\) 2948.65 0.316240 0.158120 0.987420i \(-0.449457\pi\)
0.158120 + 0.987420i \(0.449457\pi\)
\(444\) −394.950 −0.0422151
\(445\) 0 0
\(446\) −6308.38 −0.669754
\(447\) 8775.28 0.928538
\(448\) −1690.54 −0.178282
\(449\) 12471.0 1.31079 0.655394 0.755287i \(-0.272503\pi\)
0.655394 + 0.755287i \(0.272503\pi\)
\(450\) 0 0
\(451\) 3297.49 0.344286
\(452\) 1518.71 0.158040
\(453\) 18271.9 1.89512
\(454\) 8904.29 0.920482
\(455\) 0 0
\(456\) 5056.36 0.519267
\(457\) −13767.5 −1.40922 −0.704612 0.709593i \(-0.748879\pi\)
−0.704612 + 0.709593i \(0.748879\pi\)
\(458\) 1627.42 0.166036
\(459\) −13317.8 −1.35430
\(460\) 0 0
\(461\) 13896.0 1.40390 0.701952 0.712224i \(-0.252312\pi\)
0.701952 + 0.712224i \(0.252312\pi\)
\(462\) 27518.8 2.77119
\(463\) −15358.0 −1.54157 −0.770783 0.637098i \(-0.780135\pi\)
−0.770783 + 0.637098i \(0.780135\pi\)
\(464\) 59.7347 0.00597654
\(465\) 0 0
\(466\) 10241.2 1.01806
\(467\) −11489.4 −1.13847 −0.569236 0.822174i \(-0.692761\pi\)
−0.569236 + 0.822174i \(0.692761\pi\)
\(468\) 81.2425 0.00802443
\(469\) 5846.92 0.575662
\(470\) 0 0
\(471\) −11574.2 −1.13230
\(472\) 496.600 0.0484277
\(473\) 16446.4 1.59875
\(474\) −18568.6 −1.79933
\(475\) 0 0
\(476\) 11198.1 1.07828
\(477\) 15142.1 1.45347
\(478\) −641.575 −0.0613911
\(479\) 11566.2 1.10328 0.551640 0.834082i \(-0.314002\pi\)
0.551640 + 0.834082i \(0.314002\pi\)
\(480\) 0 0
\(481\) −5.72773 −0.000542956 0
\(482\) −179.119 −0.0169267
\(483\) 21008.0 1.97908
\(484\) 10379.5 0.974786
\(485\) 0 0
\(486\) −8322.46 −0.776778
\(487\) −9203.06 −0.856326 −0.428163 0.903702i \(-0.640839\pi\)
−0.428163 + 0.903702i \(0.640839\pi\)
\(488\) −2918.14 −0.270693
\(489\) −29052.2 −2.68668
\(490\) 0 0
\(491\) 2016.76 0.185367 0.0926833 0.995696i \(-0.470456\pi\)
0.0926833 + 0.995696i \(0.470456\pi\)
\(492\) −1750.09 −0.160367
\(493\) −395.680 −0.0361472
\(494\) 73.3294 0.00667863
\(495\) 0 0
\(496\) −37.0996 −0.00335851
\(497\) −18878.0 −1.70381
\(498\) 8323.03 0.748923
\(499\) −1509.37 −0.135408 −0.0677041 0.997705i \(-0.521567\pi\)
−0.0677041 + 0.997705i \(0.521567\pi\)
\(500\) 0 0
\(501\) 26324.6 2.34750
\(502\) −14143.9 −1.25752
\(503\) 16226.0 1.43833 0.719165 0.694839i \(-0.244524\pi\)
0.719165 + 0.694839i \(0.244524\pi\)
\(504\) −8899.63 −0.786550
\(505\) 0 0
\(506\) 11988.1 1.05324
\(507\) −18262.9 −1.59977
\(508\) −5612.01 −0.490143
\(509\) 13391.3 1.16613 0.583063 0.812427i \(-0.301854\pi\)
0.583063 + 0.812427i \(0.301854\pi\)
\(510\) 0 0
\(511\) −3387.36 −0.293245
\(512\) 512.000 0.0441942
\(513\) 9553.38 0.822206
\(514\) −5037.36 −0.432273
\(515\) 0 0
\(516\) −8728.70 −0.744689
\(517\) 16996.9 1.44589
\(518\) 627.438 0.0532202
\(519\) −2572.08 −0.217537
\(520\) 0 0
\(521\) 1311.86 0.110314 0.0551570 0.998478i \(-0.482434\pi\)
0.0551570 + 0.998478i \(0.482434\pi\)
\(522\) 314.466 0.0263674
\(523\) −7029.07 −0.587686 −0.293843 0.955854i \(-0.594934\pi\)
−0.293843 + 0.955854i \(0.594934\pi\)
\(524\) 5843.19 0.487139
\(525\) 0 0
\(526\) −16270.2 −1.34870
\(527\) 245.746 0.0203129
\(528\) −8334.41 −0.686948
\(529\) −3015.19 −0.247817
\(530\) 0 0
\(531\) 2614.29 0.213655
\(532\) −8032.79 −0.654635
\(533\) −25.3806 −0.00206258
\(534\) −18922.2 −1.53341
\(535\) 0 0
\(536\) −1770.81 −0.142700
\(537\) 30854.1 2.47943
\(538\) 1299.85 0.104165
\(539\) −22226.5 −1.77618
\(540\) 0 0
\(541\) −15540.8 −1.23503 −0.617515 0.786559i \(-0.711861\pi\)
−0.617515 + 0.786559i \(0.711861\pi\)
\(542\) −583.286 −0.0462256
\(543\) 7845.15 0.620014
\(544\) −3391.47 −0.267294
\(545\) 0 0
\(546\) −211.810 −0.0166019
\(547\) 12014.1 0.939098 0.469549 0.882906i \(-0.344417\pi\)
0.469549 + 0.882906i \(0.344417\pi\)
\(548\) −5947.83 −0.463647
\(549\) −15362.2 −1.19425
\(550\) 0 0
\(551\) 283.837 0.0219453
\(552\) −6362.53 −0.490593
\(553\) 29499.0 2.26840
\(554\) −7271.02 −0.557610
\(555\) 0 0
\(556\) 518.319 0.0395353
\(557\) −2730.35 −0.207700 −0.103850 0.994593i \(-0.533116\pi\)
−0.103850 + 0.994593i \(0.533116\pi\)
\(558\) −195.306 −0.0148172
\(559\) −126.587 −0.00957793
\(560\) 0 0
\(561\) 55206.8 4.15478
\(562\) −16816.5 −1.26221
\(563\) −14430.0 −1.08020 −0.540098 0.841602i \(-0.681613\pi\)
−0.540098 + 0.841602i \(0.681613\pi\)
\(564\) −9020.87 −0.673488
\(565\) 0 0
\(566\) −1859.72 −0.138109
\(567\) 2441.52 0.180836
\(568\) 5717.44 0.422357
\(569\) −575.994 −0.0424375 −0.0212187 0.999775i \(-0.506755\pi\)
−0.0212187 + 0.999775i \(0.506755\pi\)
\(570\) 0 0
\(571\) 5000.10 0.366458 0.183229 0.983070i \(-0.441345\pi\)
0.183229 + 0.983070i \(0.441345\pi\)
\(572\) −120.869 −0.00883529
\(573\) 20594.5 1.50148
\(574\) 2780.29 0.202173
\(575\) 0 0
\(576\) 2695.36 0.194977
\(577\) −11691.7 −0.843555 −0.421777 0.906699i \(-0.638594\pi\)
−0.421777 + 0.906699i \(0.638594\pi\)
\(578\) 12639.0 0.909536
\(579\) −19495.7 −1.39933
\(580\) 0 0
\(581\) −13222.4 −0.944160
\(582\) −12230.2 −0.871061
\(583\) −22527.7 −1.60034
\(584\) 1025.90 0.0726921
\(585\) 0 0
\(586\) −827.389 −0.0583261
\(587\) −13087.0 −0.920205 −0.460103 0.887866i \(-0.652187\pi\)
−0.460103 + 0.887866i \(0.652187\pi\)
\(588\) 11796.4 0.827337
\(589\) −176.283 −0.0123321
\(590\) 0 0
\(591\) 31622.3 2.20096
\(592\) −190.027 −0.0131927
\(593\) −5702.64 −0.394906 −0.197453 0.980312i \(-0.563267\pi\)
−0.197453 + 0.980312i \(0.563267\pi\)
\(594\) −15746.8 −1.08771
\(595\) 0 0
\(596\) 4222.16 0.290179
\(597\) 24712.9 1.69419
\(598\) −92.2720 −0.00630983
\(599\) 16685.8 1.13817 0.569084 0.822279i \(-0.307298\pi\)
0.569084 + 0.822279i \(0.307298\pi\)
\(600\) 0 0
\(601\) 27123.2 1.84089 0.920446 0.390869i \(-0.127826\pi\)
0.920446 + 0.390869i \(0.127826\pi\)
\(602\) 13866.9 0.938822
\(603\) −9322.21 −0.629569
\(604\) 8791.39 0.592246
\(605\) 0 0
\(606\) −20774.5 −1.39258
\(607\) 1749.87 0.117010 0.0585050 0.998287i \(-0.481367\pi\)
0.0585050 + 0.998287i \(0.481367\pi\)
\(608\) 2432.83 0.162277
\(609\) −819.856 −0.0545521
\(610\) 0 0
\(611\) −130.824 −0.00866217
\(612\) −17854.0 −1.17926
\(613\) 27965.3 1.84259 0.921295 0.388865i \(-0.127133\pi\)
0.921295 + 0.388865i \(0.127133\pi\)
\(614\) 11315.5 0.743741
\(615\) 0 0
\(616\) 13240.5 0.866029
\(617\) 8833.05 0.576346 0.288173 0.957578i \(-0.406952\pi\)
0.288173 + 0.957578i \(0.406952\pi\)
\(618\) 5534.02 0.360212
\(619\) 10011.3 0.650062 0.325031 0.945703i \(-0.394625\pi\)
0.325031 + 0.945703i \(0.394625\pi\)
\(620\) 0 0
\(621\) −12021.2 −0.776804
\(622\) −3370.19 −0.217254
\(623\) 30060.7 1.93316
\(624\) 64.1494 0.00411543
\(625\) 0 0
\(626\) −7311.28 −0.466801
\(627\) −39601.9 −2.52241
\(628\) −5568.85 −0.353856
\(629\) 1258.73 0.0797918
\(630\) 0 0
\(631\) −5847.76 −0.368932 −0.184466 0.982839i \(-0.559055\pi\)
−0.184466 + 0.982839i \(0.559055\pi\)
\(632\) −8934.12 −0.562311
\(633\) 17091.1 1.07316
\(634\) −20515.7 −1.28514
\(635\) 0 0
\(636\) 11956.2 0.745433
\(637\) 171.076 0.0106409
\(638\) −467.848 −0.0290318
\(639\) 30098.8 1.86336
\(640\) 0 0
\(641\) −3414.57 −0.210402 −0.105201 0.994451i \(-0.533549\pi\)
−0.105201 + 0.994451i \(0.533549\pi\)
\(642\) 34576.3 2.12557
\(643\) −31025.3 −1.90283 −0.951413 0.307917i \(-0.900368\pi\)
−0.951413 + 0.307917i \(0.900368\pi\)
\(644\) 10107.8 0.618486
\(645\) 0 0
\(646\) −16115.0 −0.981479
\(647\) −11289.4 −0.685982 −0.342991 0.939339i \(-0.611440\pi\)
−0.342991 + 0.939339i \(0.611440\pi\)
\(648\) −739.443 −0.0448273
\(649\) −3889.43 −0.235244
\(650\) 0 0
\(651\) 509.190 0.0306555
\(652\) −13978.3 −0.839617
\(653\) −1742.21 −0.104407 −0.0522037 0.998636i \(-0.516624\pi\)
−0.0522037 + 0.998636i \(0.516624\pi\)
\(654\) 11721.5 0.700837
\(655\) 0 0
\(656\) −842.045 −0.0501164
\(657\) 5400.75 0.320705
\(658\) 14331.0 0.849060
\(659\) 9358.55 0.553198 0.276599 0.960985i \(-0.410793\pi\)
0.276599 + 0.960985i \(0.410793\pi\)
\(660\) 0 0
\(661\) −16056.7 −0.944834 −0.472417 0.881375i \(-0.656618\pi\)
−0.472417 + 0.881375i \(0.656618\pi\)
\(662\) 16236.1 0.953221
\(663\) −424.923 −0.0248909
\(664\) 4004.56 0.234047
\(665\) 0 0
\(666\) −1000.38 −0.0582039
\(667\) −357.158 −0.0207334
\(668\) 12665.9 0.733620
\(669\) −26222.5 −1.51543
\(670\) 0 0
\(671\) 22855.2 1.31492
\(672\) −7027.18 −0.403392
\(673\) 2727.45 0.156219 0.0781095 0.996945i \(-0.475112\pi\)
0.0781095 + 0.996945i \(0.475112\pi\)
\(674\) −4668.76 −0.266816
\(675\) 0 0
\(676\) −8787.07 −0.499947
\(677\) 13552.5 0.769373 0.384686 0.923047i \(-0.374310\pi\)
0.384686 + 0.923047i \(0.374310\pi\)
\(678\) 6312.93 0.357591
\(679\) 19429.5 1.09814
\(680\) 0 0
\(681\) 37013.1 2.08274
\(682\) 290.568 0.0163144
\(683\) 12869.8 0.721009 0.360504 0.932757i \(-0.382605\pi\)
0.360504 + 0.932757i \(0.382605\pi\)
\(684\) 12807.3 0.715937
\(685\) 0 0
\(686\) −619.879 −0.0345001
\(687\) 6764.83 0.375683
\(688\) −4199.75 −0.232724
\(689\) 173.394 0.00958750
\(690\) 0 0
\(691\) 7750.81 0.426707 0.213354 0.976975i \(-0.431561\pi\)
0.213354 + 0.976975i \(0.431561\pi\)
\(692\) −1237.54 −0.0679828
\(693\) 69702.8 3.82077
\(694\) −14873.3 −0.813518
\(695\) 0 0
\(696\) 248.303 0.0135229
\(697\) 5577.68 0.303113
\(698\) −5481.63 −0.297253
\(699\) 42570.5 2.30352
\(700\) 0 0
\(701\) 18533.5 0.998574 0.499287 0.866437i \(-0.333595\pi\)
0.499287 + 0.866437i \(0.333595\pi\)
\(702\) 121.202 0.00651637
\(703\) −902.938 −0.0484423
\(704\) −4010.04 −0.214679
\(705\) 0 0
\(706\) −16680.1 −0.889182
\(707\) 33003.4 1.75562
\(708\) 2064.25 0.109575
\(709\) −12499.8 −0.662113 −0.331056 0.943611i \(-0.607405\pi\)
−0.331056 + 0.943611i \(0.607405\pi\)
\(710\) 0 0
\(711\) −47032.6 −2.48082
\(712\) −9104.26 −0.479209
\(713\) 221.821 0.0116511
\(714\) 46547.8 2.43979
\(715\) 0 0
\(716\) 14845.2 0.774850
\(717\) −2666.88 −0.138907
\(718\) 4000.55 0.207938
\(719\) 17144.5 0.889266 0.444633 0.895713i \(-0.353334\pi\)
0.444633 + 0.895713i \(0.353334\pi\)
\(720\) 0 0
\(721\) −8791.62 −0.454115
\(722\) −2158.11 −0.111242
\(723\) −744.558 −0.0382993
\(724\) 3774.64 0.193761
\(725\) 0 0
\(726\) 43145.3 2.20561
\(727\) 33920.5 1.73045 0.865227 0.501380i \(-0.167174\pi\)
0.865227 + 0.501380i \(0.167174\pi\)
\(728\) −101.911 −0.00518829
\(729\) −32098.9 −1.63080
\(730\) 0 0
\(731\) 27819.0 1.40755
\(732\) −12130.0 −0.612485
\(733\) 18018.5 0.907954 0.453977 0.891013i \(-0.350005\pi\)
0.453977 + 0.891013i \(0.350005\pi\)
\(734\) −9711.25 −0.488350
\(735\) 0 0
\(736\) −3061.28 −0.153316
\(737\) 13869.2 0.693185
\(738\) −4432.84 −0.221105
\(739\) 5764.33 0.286934 0.143467 0.989655i \(-0.454175\pi\)
0.143467 + 0.989655i \(0.454175\pi\)
\(740\) 0 0
\(741\) 304.813 0.0151115
\(742\) −18994.3 −0.939760
\(743\) −3472.42 −0.171454 −0.0857272 0.996319i \(-0.527321\pi\)
−0.0857272 + 0.996319i \(0.527321\pi\)
\(744\) −154.215 −0.00759917
\(745\) 0 0
\(746\) 21492.4 1.05482
\(747\) 21081.5 1.03257
\(748\) 26562.3 1.29842
\(749\) −54929.7 −2.67969
\(750\) 0 0
\(751\) 14372.4 0.698344 0.349172 0.937059i \(-0.386463\pi\)
0.349172 + 0.937059i \(0.386463\pi\)
\(752\) −4340.33 −0.210473
\(753\) −58793.1 −2.84534
\(754\) 3.60100 0.000173926 0
\(755\) 0 0
\(756\) −13277.0 −0.638730
\(757\) −18932.8 −0.909017 −0.454509 0.890742i \(-0.650185\pi\)
−0.454509 + 0.890742i \(0.650185\pi\)
\(758\) −16012.5 −0.767285
\(759\) 49832.0 2.38312
\(760\) 0 0
\(761\) −30942.4 −1.47393 −0.736965 0.675931i \(-0.763742\pi\)
−0.736965 + 0.675931i \(0.763742\pi\)
\(762\) −23327.8 −1.10903
\(763\) −18621.4 −0.883539
\(764\) 9908.87 0.469228
\(765\) 0 0
\(766\) 313.203 0.0147735
\(767\) 29.9366 0.00140932
\(768\) 2128.27 0.0999964
\(769\) 10199.3 0.478277 0.239139 0.970985i \(-0.423135\pi\)
0.239139 + 0.970985i \(0.423135\pi\)
\(770\) 0 0
\(771\) −20939.2 −0.978087
\(772\) −9380.22 −0.437308
\(773\) −16453.8 −0.765589 −0.382795 0.923833i \(-0.625038\pi\)
−0.382795 + 0.923833i \(0.625038\pi\)
\(774\) −22109.1 −1.02674
\(775\) 0 0
\(776\) −5884.46 −0.272216
\(777\) 2608.12 0.120419
\(778\) 22725.0 1.04721
\(779\) −4001.08 −0.184023
\(780\) 0 0
\(781\) −44779.6 −2.05165
\(782\) 20277.8 0.927281
\(783\) 469.139 0.0214121
\(784\) 5675.74 0.258552
\(785\) 0 0
\(786\) 24288.8 1.10223
\(787\) −7714.34 −0.349411 −0.174706 0.984621i \(-0.555897\pi\)
−0.174706 + 0.984621i \(0.555897\pi\)
\(788\) 15214.8 0.687824
\(789\) −67631.5 −3.05164
\(790\) 0 0
\(791\) −10029.1 −0.450812
\(792\) −21110.4 −0.947126
\(793\) −175.915 −0.00787757
\(794\) 1261.21 0.0563713
\(795\) 0 0
\(796\) 11890.4 0.529454
\(797\) 23818.7 1.05860 0.529299 0.848435i \(-0.322455\pi\)
0.529299 + 0.848435i \(0.322455\pi\)
\(798\) −33390.5 −1.48122
\(799\) 28750.2 1.27298
\(800\) 0 0
\(801\) −47928.3 −2.11418
\(802\) −4987.60 −0.219599
\(803\) −8034.99 −0.353112
\(804\) −7360.85 −0.322882
\(805\) 0 0
\(806\) −2.23648 −9.77378e−5 0
\(807\) 5403.18 0.235689
\(808\) −9995.48 −0.435198
\(809\) 10209.0 0.443670 0.221835 0.975084i \(-0.428795\pi\)
0.221835 + 0.975084i \(0.428795\pi\)
\(810\) 0 0
\(811\) 28815.1 1.24764 0.623819 0.781569i \(-0.285580\pi\)
0.623819 + 0.781569i \(0.285580\pi\)
\(812\) −394.468 −0.0170482
\(813\) −2424.59 −0.104593
\(814\) 1488.31 0.0640853
\(815\) 0 0
\(816\) −14097.6 −0.604796
\(817\) −19955.6 −0.854539
\(818\) −23484.5 −1.00381
\(819\) −536.498 −0.0228898
\(820\) 0 0
\(821\) −38057.4 −1.61780 −0.808900 0.587946i \(-0.799937\pi\)
−0.808900 + 0.587946i \(0.799937\pi\)
\(822\) −24723.8 −1.04908
\(823\) −33325.6 −1.41149 −0.705746 0.708464i \(-0.749388\pi\)
−0.705746 + 0.708464i \(0.749388\pi\)
\(824\) 2662.65 0.112570
\(825\) 0 0
\(826\) −3279.38 −0.138141
\(827\) −17041.4 −0.716551 −0.358275 0.933616i \(-0.616635\pi\)
−0.358275 + 0.933616i \(0.616635\pi\)
\(828\) −16115.8 −0.676402
\(829\) 9485.19 0.397388 0.198694 0.980062i \(-0.436330\pi\)
0.198694 + 0.980062i \(0.436330\pi\)
\(830\) 0 0
\(831\) −30224.0 −1.26168
\(832\) 30.8650 0.00128612
\(833\) −37595.9 −1.56377
\(834\) 2154.53 0.0894549
\(835\) 0 0
\(836\) −19054.2 −0.788281
\(837\) −291.370 −0.0120325
\(838\) −15106.2 −0.622713
\(839\) −14950.4 −0.615192 −0.307596 0.951517i \(-0.599525\pi\)
−0.307596 + 0.951517i \(0.599525\pi\)
\(840\) 0 0
\(841\) −24375.1 −0.999428
\(842\) −23085.7 −0.944876
\(843\) −69902.3 −2.85595
\(844\) 8223.28 0.335375
\(845\) 0 0
\(846\) −22849.1 −0.928568
\(847\) −68542.8 −2.78059
\(848\) 5752.65 0.232956
\(849\) −7730.42 −0.312494
\(850\) 0 0
\(851\) 1136.19 0.0457673
\(852\) 23766.1 0.955650
\(853\) −23751.3 −0.953374 −0.476687 0.879073i \(-0.658162\pi\)
−0.476687 + 0.879073i \(0.658162\pi\)
\(854\) 19270.4 0.772154
\(855\) 0 0
\(856\) 16636.1 0.664266
\(857\) 37144.3 1.48054 0.740272 0.672307i \(-0.234697\pi\)
0.740272 + 0.672307i \(0.234697\pi\)
\(858\) −502.425 −0.0199913
\(859\) −14064.3 −0.558635 −0.279318 0.960199i \(-0.590108\pi\)
−0.279318 + 0.960199i \(0.590108\pi\)
\(860\) 0 0
\(861\) 11557.0 0.457448
\(862\) −15194.1 −0.600362
\(863\) 16051.4 0.633134 0.316567 0.948570i \(-0.397470\pi\)
0.316567 + 0.948570i \(0.397470\pi\)
\(864\) 4021.10 0.158334
\(865\) 0 0
\(866\) −17378.6 −0.681927
\(867\) 52537.3 2.05797
\(868\) 244.993 0.00958019
\(869\) 69973.0 2.73150
\(870\) 0 0
\(871\) −106.750 −0.00415280
\(872\) 5639.72 0.219020
\(873\) −30978.0 −1.20097
\(874\) −14546.1 −0.562961
\(875\) 0 0
\(876\) 4264.45 0.164478
\(877\) 4872.25 0.187599 0.0937995 0.995591i \(-0.470099\pi\)
0.0937995 + 0.995591i \(0.470099\pi\)
\(878\) 30732.6 1.18129
\(879\) −3439.27 −0.131972
\(880\) 0 0
\(881\) −22564.5 −0.862903 −0.431451 0.902136i \(-0.641998\pi\)
−0.431451 + 0.902136i \(0.641998\pi\)
\(882\) 29879.2 1.14069
\(883\) 38276.9 1.45880 0.729400 0.684088i \(-0.239799\pi\)
0.729400 + 0.684088i \(0.239799\pi\)
\(884\) −204.449 −0.00777868
\(885\) 0 0
\(886\) 5897.29 0.223616
\(887\) 20986.8 0.794439 0.397220 0.917724i \(-0.369975\pi\)
0.397220 + 0.917724i \(0.369975\pi\)
\(888\) −789.901 −0.0298506
\(889\) 37059.8 1.39814
\(890\) 0 0
\(891\) 5791.40 0.217754
\(892\) −12616.8 −0.473588
\(893\) −20623.6 −0.772835
\(894\) 17550.6 0.656576
\(895\) 0 0
\(896\) −3381.07 −0.126064
\(897\) −383.554 −0.0142770
\(898\) 24942.0 0.926867
\(899\) −8.65677 −0.000321156 0
\(900\) 0 0
\(901\) −38105.3 −1.40896
\(902\) 6594.99 0.243447
\(903\) 57641.4 2.12424
\(904\) 3037.42 0.111751
\(905\) 0 0
\(906\) 36543.8 1.34005
\(907\) −29670.2 −1.08620 −0.543100 0.839668i \(-0.682749\pi\)
−0.543100 + 0.839668i \(0.682749\pi\)
\(908\) 17808.6 0.650879
\(909\) −52620.0 −1.92002
\(910\) 0 0
\(911\) −3225.70 −0.117313 −0.0586565 0.998278i \(-0.518682\pi\)
−0.0586565 + 0.998278i \(0.518682\pi\)
\(912\) 10112.7 0.367177
\(913\) −31364.2 −1.13691
\(914\) −27534.9 −0.996471
\(915\) 0 0
\(916\) 3254.85 0.117405
\(917\) −38586.5 −1.38957
\(918\) −26635.6 −0.957633
\(919\) −37518.0 −1.34669 −0.673344 0.739330i \(-0.735143\pi\)
−0.673344 + 0.739330i \(0.735143\pi\)
\(920\) 0 0
\(921\) 47036.0 1.68283
\(922\) 27791.9 0.992710
\(923\) 344.666 0.0122912
\(924\) 55037.6 1.95953
\(925\) 0 0
\(926\) −30715.9 −1.09005
\(927\) 14017.2 0.496640
\(928\) 119.469 0.00422605
\(929\) −6931.01 −0.244778 −0.122389 0.992482i \(-0.539056\pi\)
−0.122389 + 0.992482i \(0.539056\pi\)
\(930\) 0 0
\(931\) 26969.0 0.949379
\(932\) 20482.5 0.719877
\(933\) −14009.1 −0.491573
\(934\) −22978.8 −0.805021
\(935\) 0 0
\(936\) 162.485 0.00567413
\(937\) −27841.6 −0.970700 −0.485350 0.874320i \(-0.661308\pi\)
−0.485350 + 0.874320i \(0.661308\pi\)
\(938\) 11693.8 0.407054
\(939\) −30391.3 −1.05621
\(940\) 0 0
\(941\) −19925.2 −0.690268 −0.345134 0.938553i \(-0.612167\pi\)
−0.345134 + 0.938553i \(0.612167\pi\)
\(942\) −23148.5 −0.800655
\(943\) 5034.65 0.173861
\(944\) 993.201 0.0342436
\(945\) 0 0
\(946\) 32892.9 1.13049
\(947\) 14762.2 0.506553 0.253276 0.967394i \(-0.418492\pi\)
0.253276 + 0.967394i \(0.418492\pi\)
\(948\) −37137.1 −1.27232
\(949\) 61.8448 0.00211545
\(950\) 0 0
\(951\) −85279.0 −2.90785
\(952\) 22396.1 0.762460
\(953\) 4072.58 0.138430 0.0692150 0.997602i \(-0.477951\pi\)
0.0692150 + 0.997602i \(0.477951\pi\)
\(954\) 30284.1 1.02776
\(955\) 0 0
\(956\) −1283.15 −0.0434101
\(957\) −1944.74 −0.0656891
\(958\) 23132.3 0.780137
\(959\) 39277.4 1.32256
\(960\) 0 0
\(961\) −29785.6 −0.999820
\(962\) −11.4555 −0.000383928 0
\(963\) 87578.9 2.93062
\(964\) −358.239 −0.0119690
\(965\) 0 0
\(966\) 42016.0 1.39942
\(967\) −25273.5 −0.840477 −0.420239 0.907414i \(-0.638054\pi\)
−0.420239 + 0.907414i \(0.638054\pi\)
\(968\) 20759.0 0.689278
\(969\) −66986.3 −2.22075
\(970\) 0 0
\(971\) −37609.3 −1.24299 −0.621494 0.783419i \(-0.713474\pi\)
−0.621494 + 0.783419i \(0.713474\pi\)
\(972\) −16644.9 −0.549265
\(973\) −3422.80 −0.112775
\(974\) −18406.1 −0.605514
\(975\) 0 0
\(976\) −5836.28 −0.191409
\(977\) −12802.6 −0.419233 −0.209616 0.977784i \(-0.567221\pi\)
−0.209616 + 0.977784i \(0.567221\pi\)
\(978\) −58104.4 −1.89977
\(979\) 71305.5 2.32782
\(980\) 0 0
\(981\) 29689.6 0.966276
\(982\) 4033.52 0.131074
\(983\) −21311.3 −0.691482 −0.345741 0.938330i \(-0.612372\pi\)
−0.345741 + 0.938330i \(0.612372\pi\)
\(984\) −3500.19 −0.113396
\(985\) 0 0
\(986\) −791.361 −0.0255599
\(987\) 59570.8 1.92113
\(988\) 146.659 0.00472251
\(989\) 25110.6 0.807351
\(990\) 0 0
\(991\) −44868.1 −1.43823 −0.719113 0.694893i \(-0.755452\pi\)
−0.719113 + 0.694893i \(0.755452\pi\)
\(992\) −74.1992 −0.00237482
\(993\) 67489.6 2.15681
\(994\) −37756.1 −1.20478
\(995\) 0 0
\(996\) 16646.1 0.529569
\(997\) −8039.98 −0.255395 −0.127697 0.991813i \(-0.540759\pi\)
−0.127697 + 0.991813i \(0.540759\pi\)
\(998\) −3018.74 −0.0957480
\(999\) −1492.42 −0.0472654
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1250.4.a.j.1.8 8
5.4 even 2 1250.4.a.g.1.1 8
25.3 odd 20 250.4.e.c.49.1 32
25.4 even 10 250.4.d.b.201.1 16
25.6 even 5 50.4.d.b.11.4 16
25.8 odd 20 250.4.e.c.199.8 32
25.17 odd 20 250.4.e.c.199.1 32
25.19 even 10 250.4.d.b.51.1 16
25.21 even 5 50.4.d.b.41.4 yes 16
25.22 odd 20 250.4.e.c.49.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
50.4.d.b.11.4 16 25.6 even 5
50.4.d.b.41.4 yes 16 25.21 even 5
250.4.d.b.51.1 16 25.19 even 10
250.4.d.b.201.1 16 25.4 even 10
250.4.e.c.49.1 32 25.3 odd 20
250.4.e.c.49.8 32 25.22 odd 20
250.4.e.c.199.1 32 25.17 odd 20
250.4.e.c.199.8 32 25.8 odd 20
1250.4.a.g.1.1 8 5.4 even 2
1250.4.a.j.1.8 8 1.1 even 1 trivial