Properties

Label 1254.2.a.j.1.1
Level $1254$
Weight $2$
Character 1254.1
Self dual yes
Analytic conductor $10.013$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1254,2,Mod(1,1254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1254.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1254 = 2 \cdot 3 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.0132404135\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{6} -2.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} +1.00000 q^{10} +1.00000 q^{11} +1.00000 q^{12} +4.00000 q^{13} -2.00000 q^{14} +1.00000 q^{15} +1.00000 q^{16} +3.00000 q^{17} +1.00000 q^{18} -1.00000 q^{19} +1.00000 q^{20} -2.00000 q^{21} +1.00000 q^{22} +4.00000 q^{23} +1.00000 q^{24} -4.00000 q^{25} +4.00000 q^{26} +1.00000 q^{27} -2.00000 q^{28} -5.00000 q^{29} +1.00000 q^{30} +2.00000 q^{31} +1.00000 q^{32} +1.00000 q^{33} +3.00000 q^{34} -2.00000 q^{35} +1.00000 q^{36} +3.00000 q^{37} -1.00000 q^{38} +4.00000 q^{39} +1.00000 q^{40} +2.00000 q^{41} -2.00000 q^{42} +9.00000 q^{43} +1.00000 q^{44} +1.00000 q^{45} +4.00000 q^{46} +8.00000 q^{47} +1.00000 q^{48} -3.00000 q^{49} -4.00000 q^{50} +3.00000 q^{51} +4.00000 q^{52} -6.00000 q^{53} +1.00000 q^{54} +1.00000 q^{55} -2.00000 q^{56} -1.00000 q^{57} -5.00000 q^{58} +1.00000 q^{60} -13.0000 q^{61} +2.00000 q^{62} -2.00000 q^{63} +1.00000 q^{64} +4.00000 q^{65} +1.00000 q^{66} +13.0000 q^{67} +3.00000 q^{68} +4.00000 q^{69} -2.00000 q^{70} -8.00000 q^{71} +1.00000 q^{72} -16.0000 q^{73} +3.00000 q^{74} -4.00000 q^{75} -1.00000 q^{76} -2.00000 q^{77} +4.00000 q^{78} +1.00000 q^{80} +1.00000 q^{81} +2.00000 q^{82} -6.00000 q^{83} -2.00000 q^{84} +3.00000 q^{85} +9.00000 q^{86} -5.00000 q^{87} +1.00000 q^{88} -5.00000 q^{89} +1.00000 q^{90} -8.00000 q^{91} +4.00000 q^{92} +2.00000 q^{93} +8.00000 q^{94} -1.00000 q^{95} +1.00000 q^{96} +8.00000 q^{97} -3.00000 q^{98} +1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 1.00000 0.408248
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 1.00000 0.316228
\(11\) 1.00000 0.301511
\(12\) 1.00000 0.288675
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) −2.00000 −0.534522
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 1.00000 0.235702
\(19\) −1.00000 −0.229416
\(20\) 1.00000 0.223607
\(21\) −2.00000 −0.436436
\(22\) 1.00000 0.213201
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 1.00000 0.204124
\(25\) −4.00000 −0.800000
\(26\) 4.00000 0.784465
\(27\) 1.00000 0.192450
\(28\) −2.00000 −0.377964
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 1.00000 0.182574
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 1.00000 0.176777
\(33\) 1.00000 0.174078
\(34\) 3.00000 0.514496
\(35\) −2.00000 −0.338062
\(36\) 1.00000 0.166667
\(37\) 3.00000 0.493197 0.246598 0.969118i \(-0.420687\pi\)
0.246598 + 0.969118i \(0.420687\pi\)
\(38\) −1.00000 −0.162221
\(39\) 4.00000 0.640513
\(40\) 1.00000 0.158114
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) −2.00000 −0.308607
\(43\) 9.00000 1.37249 0.686244 0.727372i \(-0.259258\pi\)
0.686244 + 0.727372i \(0.259258\pi\)
\(44\) 1.00000 0.150756
\(45\) 1.00000 0.149071
\(46\) 4.00000 0.589768
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 1.00000 0.144338
\(49\) −3.00000 −0.428571
\(50\) −4.00000 −0.565685
\(51\) 3.00000 0.420084
\(52\) 4.00000 0.554700
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 1.00000 0.136083
\(55\) 1.00000 0.134840
\(56\) −2.00000 −0.267261
\(57\) −1.00000 −0.132453
\(58\) −5.00000 −0.656532
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 1.00000 0.129099
\(61\) −13.0000 −1.66448 −0.832240 0.554416i \(-0.812942\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 2.00000 0.254000
\(63\) −2.00000 −0.251976
\(64\) 1.00000 0.125000
\(65\) 4.00000 0.496139
\(66\) 1.00000 0.123091
\(67\) 13.0000 1.58820 0.794101 0.607785i \(-0.207942\pi\)
0.794101 + 0.607785i \(0.207942\pi\)
\(68\) 3.00000 0.363803
\(69\) 4.00000 0.481543
\(70\) −2.00000 −0.239046
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 1.00000 0.117851
\(73\) −16.0000 −1.87266 −0.936329 0.351123i \(-0.885800\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 3.00000 0.348743
\(75\) −4.00000 −0.461880
\(76\) −1.00000 −0.114708
\(77\) −2.00000 −0.227921
\(78\) 4.00000 0.452911
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 1.00000 0.111803
\(81\) 1.00000 0.111111
\(82\) 2.00000 0.220863
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) −2.00000 −0.218218
\(85\) 3.00000 0.325396
\(86\) 9.00000 0.970495
\(87\) −5.00000 −0.536056
\(88\) 1.00000 0.106600
\(89\) −5.00000 −0.529999 −0.264999 0.964249i \(-0.585372\pi\)
−0.264999 + 0.964249i \(0.585372\pi\)
\(90\) 1.00000 0.105409
\(91\) −8.00000 −0.838628
\(92\) 4.00000 0.417029
\(93\) 2.00000 0.207390
\(94\) 8.00000 0.825137
\(95\) −1.00000 −0.102598
\(96\) 1.00000 0.102062
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) −3.00000 −0.303046
\(99\) 1.00000 0.100504
\(100\) −4.00000 −0.400000
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) 3.00000 0.297044
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 4.00000 0.392232
\(105\) −2.00000 −0.195180
\(106\) −6.00000 −0.582772
\(107\) −7.00000 −0.676716 −0.338358 0.941018i \(-0.609871\pi\)
−0.338358 + 0.941018i \(0.609871\pi\)
\(108\) 1.00000 0.0962250
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 1.00000 0.0953463
\(111\) 3.00000 0.284747
\(112\) −2.00000 −0.188982
\(113\) −11.0000 −1.03479 −0.517396 0.855746i \(-0.673099\pi\)
−0.517396 + 0.855746i \(0.673099\pi\)
\(114\) −1.00000 −0.0936586
\(115\) 4.00000 0.373002
\(116\) −5.00000 −0.464238
\(117\) 4.00000 0.369800
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 1.00000 0.0912871
\(121\) 1.00000 0.0909091
\(122\) −13.0000 −1.17696
\(123\) 2.00000 0.180334
\(124\) 2.00000 0.179605
\(125\) −9.00000 −0.804984
\(126\) −2.00000 −0.178174
\(127\) 13.0000 1.15356 0.576782 0.816898i \(-0.304308\pi\)
0.576782 + 0.816898i \(0.304308\pi\)
\(128\) 1.00000 0.0883883
\(129\) 9.00000 0.792406
\(130\) 4.00000 0.350823
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 1.00000 0.0870388
\(133\) 2.00000 0.173422
\(134\) 13.0000 1.12303
\(135\) 1.00000 0.0860663
\(136\) 3.00000 0.257248
\(137\) 8.00000 0.683486 0.341743 0.939793i \(-0.388983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 4.00000 0.340503
\(139\) 15.0000 1.27228 0.636142 0.771572i \(-0.280529\pi\)
0.636142 + 0.771572i \(0.280529\pi\)
\(140\) −2.00000 −0.169031
\(141\) 8.00000 0.673722
\(142\) −8.00000 −0.671345
\(143\) 4.00000 0.334497
\(144\) 1.00000 0.0833333
\(145\) −5.00000 −0.415227
\(146\) −16.0000 −1.32417
\(147\) −3.00000 −0.247436
\(148\) 3.00000 0.246598
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) −4.00000 −0.326599
\(151\) 7.00000 0.569652 0.284826 0.958579i \(-0.408064\pi\)
0.284826 + 0.958579i \(0.408064\pi\)
\(152\) −1.00000 −0.0811107
\(153\) 3.00000 0.242536
\(154\) −2.00000 −0.161165
\(155\) 2.00000 0.160644
\(156\) 4.00000 0.320256
\(157\) 8.00000 0.638470 0.319235 0.947676i \(-0.396574\pi\)
0.319235 + 0.947676i \(0.396574\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 1.00000 0.0790569
\(161\) −8.00000 −0.630488
\(162\) 1.00000 0.0785674
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 2.00000 0.156174
\(165\) 1.00000 0.0778499
\(166\) −6.00000 −0.465690
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) −2.00000 −0.154303
\(169\) 3.00000 0.230769
\(170\) 3.00000 0.230089
\(171\) −1.00000 −0.0764719
\(172\) 9.00000 0.686244
\(173\) −1.00000 −0.0760286 −0.0380143 0.999277i \(-0.512103\pi\)
−0.0380143 + 0.999277i \(0.512103\pi\)
\(174\) −5.00000 −0.379049
\(175\) 8.00000 0.604743
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −5.00000 −0.374766
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 1.00000 0.0745356
\(181\) −3.00000 −0.222988 −0.111494 0.993765i \(-0.535564\pi\)
−0.111494 + 0.993765i \(0.535564\pi\)
\(182\) −8.00000 −0.592999
\(183\) −13.0000 −0.960988
\(184\) 4.00000 0.294884
\(185\) 3.00000 0.220564
\(186\) 2.00000 0.146647
\(187\) 3.00000 0.219382
\(188\) 8.00000 0.583460
\(189\) −2.00000 −0.145479
\(190\) −1.00000 −0.0725476
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 1.00000 0.0721688
\(193\) −11.0000 −0.791797 −0.395899 0.918294i \(-0.629567\pi\)
−0.395899 + 0.918294i \(0.629567\pi\)
\(194\) 8.00000 0.574367
\(195\) 4.00000 0.286446
\(196\) −3.00000 −0.214286
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 1.00000 0.0710669
\(199\) −15.0000 −1.06332 −0.531661 0.846957i \(-0.678432\pi\)
−0.531661 + 0.846957i \(0.678432\pi\)
\(200\) −4.00000 −0.282843
\(201\) 13.0000 0.916949
\(202\) 2.00000 0.140720
\(203\) 10.0000 0.701862
\(204\) 3.00000 0.210042
\(205\) 2.00000 0.139686
\(206\) −6.00000 −0.418040
\(207\) 4.00000 0.278019
\(208\) 4.00000 0.277350
\(209\) −1.00000 −0.0691714
\(210\) −2.00000 −0.138013
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) −6.00000 −0.412082
\(213\) −8.00000 −0.548151
\(214\) −7.00000 −0.478510
\(215\) 9.00000 0.613795
\(216\) 1.00000 0.0680414
\(217\) −4.00000 −0.271538
\(218\) −10.0000 −0.677285
\(219\) −16.0000 −1.08118
\(220\) 1.00000 0.0674200
\(221\) 12.0000 0.807207
\(222\) 3.00000 0.201347
\(223\) −16.0000 −1.07144 −0.535720 0.844396i \(-0.679960\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(224\) −2.00000 −0.133631
\(225\) −4.00000 −0.266667
\(226\) −11.0000 −0.731709
\(227\) −27.0000 −1.79205 −0.896026 0.444001i \(-0.853559\pi\)
−0.896026 + 0.444001i \(0.853559\pi\)
\(228\) −1.00000 −0.0662266
\(229\) 20.0000 1.32164 0.660819 0.750546i \(-0.270209\pi\)
0.660819 + 0.750546i \(0.270209\pi\)
\(230\) 4.00000 0.263752
\(231\) −2.00000 −0.131590
\(232\) −5.00000 −0.328266
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 4.00000 0.261488
\(235\) 8.00000 0.521862
\(236\) 0 0
\(237\) 0 0
\(238\) −6.00000 −0.388922
\(239\) −15.0000 −0.970269 −0.485135 0.874439i \(-0.661229\pi\)
−0.485135 + 0.874439i \(0.661229\pi\)
\(240\) 1.00000 0.0645497
\(241\) −3.00000 −0.193247 −0.0966235 0.995321i \(-0.530804\pi\)
−0.0966235 + 0.995321i \(0.530804\pi\)
\(242\) 1.00000 0.0642824
\(243\) 1.00000 0.0641500
\(244\) −13.0000 −0.832240
\(245\) −3.00000 −0.191663
\(246\) 2.00000 0.127515
\(247\) −4.00000 −0.254514
\(248\) 2.00000 0.127000
\(249\) −6.00000 −0.380235
\(250\) −9.00000 −0.569210
\(251\) 17.0000 1.07303 0.536515 0.843891i \(-0.319740\pi\)
0.536515 + 0.843891i \(0.319740\pi\)
\(252\) −2.00000 −0.125988
\(253\) 4.00000 0.251478
\(254\) 13.0000 0.815693
\(255\) 3.00000 0.187867
\(256\) 1.00000 0.0625000
\(257\) 13.0000 0.810918 0.405459 0.914113i \(-0.367112\pi\)
0.405459 + 0.914113i \(0.367112\pi\)
\(258\) 9.00000 0.560316
\(259\) −6.00000 −0.372822
\(260\) 4.00000 0.248069
\(261\) −5.00000 −0.309492
\(262\) −18.0000 −1.11204
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 1.00000 0.0615457
\(265\) −6.00000 −0.368577
\(266\) 2.00000 0.122628
\(267\) −5.00000 −0.305995
\(268\) 13.0000 0.794101
\(269\) 20.0000 1.21942 0.609711 0.792624i \(-0.291286\pi\)
0.609711 + 0.792624i \(0.291286\pi\)
\(270\) 1.00000 0.0608581
\(271\) −28.0000 −1.70088 −0.850439 0.526073i \(-0.823664\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(272\) 3.00000 0.181902
\(273\) −8.00000 −0.484182
\(274\) 8.00000 0.483298
\(275\) −4.00000 −0.241209
\(276\) 4.00000 0.240772
\(277\) 13.0000 0.781094 0.390547 0.920583i \(-0.372286\pi\)
0.390547 + 0.920583i \(0.372286\pi\)
\(278\) 15.0000 0.899640
\(279\) 2.00000 0.119737
\(280\) −2.00000 −0.119523
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 8.00000 0.476393
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) −8.00000 −0.474713
\(285\) −1.00000 −0.0592349
\(286\) 4.00000 0.236525
\(287\) −4.00000 −0.236113
\(288\) 1.00000 0.0589256
\(289\) −8.00000 −0.470588
\(290\) −5.00000 −0.293610
\(291\) 8.00000 0.468968
\(292\) −16.0000 −0.936329
\(293\) −21.0000 −1.22683 −0.613417 0.789760i \(-0.710205\pi\)
−0.613417 + 0.789760i \(0.710205\pi\)
\(294\) −3.00000 −0.174964
\(295\) 0 0
\(296\) 3.00000 0.174371
\(297\) 1.00000 0.0580259
\(298\) −10.0000 −0.579284
\(299\) 16.0000 0.925304
\(300\) −4.00000 −0.230940
\(301\) −18.0000 −1.03750
\(302\) 7.00000 0.402805
\(303\) 2.00000 0.114897
\(304\) −1.00000 −0.0573539
\(305\) −13.0000 −0.744378
\(306\) 3.00000 0.171499
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) −2.00000 −0.113961
\(309\) −6.00000 −0.341328
\(310\) 2.00000 0.113592
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) 4.00000 0.226455
\(313\) 29.0000 1.63918 0.819588 0.572953i \(-0.194202\pi\)
0.819588 + 0.572953i \(0.194202\pi\)
\(314\) 8.00000 0.451466
\(315\) −2.00000 −0.112687
\(316\) 0 0
\(317\) −22.0000 −1.23564 −0.617822 0.786318i \(-0.711985\pi\)
−0.617822 + 0.786318i \(0.711985\pi\)
\(318\) −6.00000 −0.336463
\(319\) −5.00000 −0.279946
\(320\) 1.00000 0.0559017
\(321\) −7.00000 −0.390702
\(322\) −8.00000 −0.445823
\(323\) −3.00000 −0.166924
\(324\) 1.00000 0.0555556
\(325\) −16.0000 −0.887520
\(326\) 4.00000 0.221540
\(327\) −10.0000 −0.553001
\(328\) 2.00000 0.110432
\(329\) −16.0000 −0.882109
\(330\) 1.00000 0.0550482
\(331\) 27.0000 1.48405 0.742027 0.670370i \(-0.233865\pi\)
0.742027 + 0.670370i \(0.233865\pi\)
\(332\) −6.00000 −0.329293
\(333\) 3.00000 0.164399
\(334\) −12.0000 −0.656611
\(335\) 13.0000 0.710266
\(336\) −2.00000 −0.109109
\(337\) 13.0000 0.708155 0.354078 0.935216i \(-0.384795\pi\)
0.354078 + 0.935216i \(0.384795\pi\)
\(338\) 3.00000 0.163178
\(339\) −11.0000 −0.597438
\(340\) 3.00000 0.162698
\(341\) 2.00000 0.108306
\(342\) −1.00000 −0.0540738
\(343\) 20.0000 1.07990
\(344\) 9.00000 0.485247
\(345\) 4.00000 0.215353
\(346\) −1.00000 −0.0537603
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) −5.00000 −0.268028
\(349\) 15.0000 0.802932 0.401466 0.915874i \(-0.368501\pi\)
0.401466 + 0.915874i \(0.368501\pi\)
\(350\) 8.00000 0.427618
\(351\) 4.00000 0.213504
\(352\) 1.00000 0.0533002
\(353\) 24.0000 1.27739 0.638696 0.769460i \(-0.279474\pi\)
0.638696 + 0.769460i \(0.279474\pi\)
\(354\) 0 0
\(355\) −8.00000 −0.424596
\(356\) −5.00000 −0.264999
\(357\) −6.00000 −0.317554
\(358\) 0 0
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 1.00000 0.0527046
\(361\) 1.00000 0.0526316
\(362\) −3.00000 −0.157676
\(363\) 1.00000 0.0524864
\(364\) −8.00000 −0.419314
\(365\) −16.0000 −0.837478
\(366\) −13.0000 −0.679521
\(367\) 3.00000 0.156599 0.0782994 0.996930i \(-0.475051\pi\)
0.0782994 + 0.996930i \(0.475051\pi\)
\(368\) 4.00000 0.208514
\(369\) 2.00000 0.104116
\(370\) 3.00000 0.155963
\(371\) 12.0000 0.623009
\(372\) 2.00000 0.103695
\(373\) −16.0000 −0.828449 −0.414224 0.910175i \(-0.635947\pi\)
−0.414224 + 0.910175i \(0.635947\pi\)
\(374\) 3.00000 0.155126
\(375\) −9.00000 −0.464758
\(376\) 8.00000 0.412568
\(377\) −20.0000 −1.03005
\(378\) −2.00000 −0.102869
\(379\) 25.0000 1.28416 0.642082 0.766636i \(-0.278071\pi\)
0.642082 + 0.766636i \(0.278071\pi\)
\(380\) −1.00000 −0.0512989
\(381\) 13.0000 0.666010
\(382\) 12.0000 0.613973
\(383\) −21.0000 −1.07305 −0.536525 0.843884i \(-0.680263\pi\)
−0.536525 + 0.843884i \(0.680263\pi\)
\(384\) 1.00000 0.0510310
\(385\) −2.00000 −0.101929
\(386\) −11.0000 −0.559885
\(387\) 9.00000 0.457496
\(388\) 8.00000 0.406138
\(389\) −10.0000 −0.507020 −0.253510 0.967333i \(-0.581585\pi\)
−0.253510 + 0.967333i \(0.581585\pi\)
\(390\) 4.00000 0.202548
\(391\) 12.0000 0.606866
\(392\) −3.00000 −0.151523
\(393\) −18.0000 −0.907980
\(394\) −12.0000 −0.604551
\(395\) 0 0
\(396\) 1.00000 0.0502519
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) −15.0000 −0.751882
\(399\) 2.00000 0.100125
\(400\) −4.00000 −0.200000
\(401\) 27.0000 1.34832 0.674158 0.738587i \(-0.264507\pi\)
0.674158 + 0.738587i \(0.264507\pi\)
\(402\) 13.0000 0.648381
\(403\) 8.00000 0.398508
\(404\) 2.00000 0.0995037
\(405\) 1.00000 0.0496904
\(406\) 10.0000 0.496292
\(407\) 3.00000 0.148704
\(408\) 3.00000 0.148522
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 2.00000 0.0987730
\(411\) 8.00000 0.394611
\(412\) −6.00000 −0.295599
\(413\) 0 0
\(414\) 4.00000 0.196589
\(415\) −6.00000 −0.294528
\(416\) 4.00000 0.196116
\(417\) 15.0000 0.734553
\(418\) −1.00000 −0.0489116
\(419\) 35.0000 1.70986 0.854931 0.518742i \(-0.173599\pi\)
0.854931 + 0.518742i \(0.173599\pi\)
\(420\) −2.00000 −0.0975900
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 12.0000 0.584151
\(423\) 8.00000 0.388973
\(424\) −6.00000 −0.291386
\(425\) −12.0000 −0.582086
\(426\) −8.00000 −0.387601
\(427\) 26.0000 1.25823
\(428\) −7.00000 −0.338358
\(429\) 4.00000 0.193122
\(430\) 9.00000 0.434019
\(431\) −18.0000 −0.867029 −0.433515 0.901146i \(-0.642727\pi\)
−0.433515 + 0.901146i \(0.642727\pi\)
\(432\) 1.00000 0.0481125
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) −4.00000 −0.192006
\(435\) −5.00000 −0.239732
\(436\) −10.0000 −0.478913
\(437\) −4.00000 −0.191346
\(438\) −16.0000 −0.764510
\(439\) 35.0000 1.67046 0.835229 0.549902i \(-0.185335\pi\)
0.835229 + 0.549902i \(0.185335\pi\)
\(440\) 1.00000 0.0476731
\(441\) −3.00000 −0.142857
\(442\) 12.0000 0.570782
\(443\) −41.0000 −1.94797 −0.973984 0.226615i \(-0.927234\pi\)
−0.973984 + 0.226615i \(0.927234\pi\)
\(444\) 3.00000 0.142374
\(445\) −5.00000 −0.237023
\(446\) −16.0000 −0.757622
\(447\) −10.0000 −0.472984
\(448\) −2.00000 −0.0944911
\(449\) −10.0000 −0.471929 −0.235965 0.971762i \(-0.575825\pi\)
−0.235965 + 0.971762i \(0.575825\pi\)
\(450\) −4.00000 −0.188562
\(451\) 2.00000 0.0941763
\(452\) −11.0000 −0.517396
\(453\) 7.00000 0.328889
\(454\) −27.0000 −1.26717
\(455\) −8.00000 −0.375046
\(456\) −1.00000 −0.0468293
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 20.0000 0.934539
\(459\) 3.00000 0.140028
\(460\) 4.00000 0.186501
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) −2.00000 −0.0930484
\(463\) −31.0000 −1.44069 −0.720346 0.693615i \(-0.756017\pi\)
−0.720346 + 0.693615i \(0.756017\pi\)
\(464\) −5.00000 −0.232119
\(465\) 2.00000 0.0927478
\(466\) −6.00000 −0.277945
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 4.00000 0.184900
\(469\) −26.0000 −1.20057
\(470\) 8.00000 0.369012
\(471\) 8.00000 0.368621
\(472\) 0 0
\(473\) 9.00000 0.413820
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) −6.00000 −0.275010
\(477\) −6.00000 −0.274721
\(478\) −15.0000 −0.686084
\(479\) −5.00000 −0.228456 −0.114228 0.993455i \(-0.536439\pi\)
−0.114228 + 0.993455i \(0.536439\pi\)
\(480\) 1.00000 0.0456435
\(481\) 12.0000 0.547153
\(482\) −3.00000 −0.136646
\(483\) −8.00000 −0.364013
\(484\) 1.00000 0.0454545
\(485\) 8.00000 0.363261
\(486\) 1.00000 0.0453609
\(487\) 18.0000 0.815658 0.407829 0.913058i \(-0.366286\pi\)
0.407829 + 0.913058i \(0.366286\pi\)
\(488\) −13.0000 −0.588482
\(489\) 4.00000 0.180886
\(490\) −3.00000 −0.135526
\(491\) 22.0000 0.992846 0.496423 0.868081i \(-0.334646\pi\)
0.496423 + 0.868081i \(0.334646\pi\)
\(492\) 2.00000 0.0901670
\(493\) −15.0000 −0.675566
\(494\) −4.00000 −0.179969
\(495\) 1.00000 0.0449467
\(496\) 2.00000 0.0898027
\(497\) 16.0000 0.717698
\(498\) −6.00000 −0.268866
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) −9.00000 −0.402492
\(501\) −12.0000 −0.536120
\(502\) 17.0000 0.758747
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) −2.00000 −0.0890871
\(505\) 2.00000 0.0889988
\(506\) 4.00000 0.177822
\(507\) 3.00000 0.133235
\(508\) 13.0000 0.576782
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 3.00000 0.132842
\(511\) 32.0000 1.41560
\(512\) 1.00000 0.0441942
\(513\) −1.00000 −0.0441511
\(514\) 13.0000 0.573405
\(515\) −6.00000 −0.264392
\(516\) 9.00000 0.396203
\(517\) 8.00000 0.351840
\(518\) −6.00000 −0.263625
\(519\) −1.00000 −0.0438951
\(520\) 4.00000 0.175412
\(521\) 7.00000 0.306676 0.153338 0.988174i \(-0.450998\pi\)
0.153338 + 0.988174i \(0.450998\pi\)
\(522\) −5.00000 −0.218844
\(523\) 14.0000 0.612177 0.306089 0.952003i \(-0.400980\pi\)
0.306089 + 0.952003i \(0.400980\pi\)
\(524\) −18.0000 −0.786334
\(525\) 8.00000 0.349149
\(526\) −16.0000 −0.697633
\(527\) 6.00000 0.261364
\(528\) 1.00000 0.0435194
\(529\) −7.00000 −0.304348
\(530\) −6.00000 −0.260623
\(531\) 0 0
\(532\) 2.00000 0.0867110
\(533\) 8.00000 0.346518
\(534\) −5.00000 −0.216371
\(535\) −7.00000 −0.302636
\(536\) 13.0000 0.561514
\(537\) 0 0
\(538\) 20.0000 0.862261
\(539\) −3.00000 −0.129219
\(540\) 1.00000 0.0430331
\(541\) 22.0000 0.945854 0.472927 0.881102i \(-0.343197\pi\)
0.472927 + 0.881102i \(0.343197\pi\)
\(542\) −28.0000 −1.20270
\(543\) −3.00000 −0.128742
\(544\) 3.00000 0.128624
\(545\) −10.0000 −0.428353
\(546\) −8.00000 −0.342368
\(547\) −42.0000 −1.79579 −0.897895 0.440209i \(-0.854904\pi\)
−0.897895 + 0.440209i \(0.854904\pi\)
\(548\) 8.00000 0.341743
\(549\) −13.0000 −0.554826
\(550\) −4.00000 −0.170561
\(551\) 5.00000 0.213007
\(552\) 4.00000 0.170251
\(553\) 0 0
\(554\) 13.0000 0.552317
\(555\) 3.00000 0.127343
\(556\) 15.0000 0.636142
\(557\) −12.0000 −0.508456 −0.254228 0.967144i \(-0.581821\pi\)
−0.254228 + 0.967144i \(0.581821\pi\)
\(558\) 2.00000 0.0846668
\(559\) 36.0000 1.52264
\(560\) −2.00000 −0.0845154
\(561\) 3.00000 0.126660
\(562\) −18.0000 −0.759284
\(563\) 19.0000 0.800755 0.400377 0.916350i \(-0.368879\pi\)
0.400377 + 0.916350i \(0.368879\pi\)
\(564\) 8.00000 0.336861
\(565\) −11.0000 −0.462773
\(566\) 4.00000 0.168133
\(567\) −2.00000 −0.0839921
\(568\) −8.00000 −0.335673
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) −1.00000 −0.0418854
\(571\) −23.0000 −0.962520 −0.481260 0.876578i \(-0.659821\pi\)
−0.481260 + 0.876578i \(0.659821\pi\)
\(572\) 4.00000 0.167248
\(573\) 12.0000 0.501307
\(574\) −4.00000 −0.166957
\(575\) −16.0000 −0.667246
\(576\) 1.00000 0.0416667
\(577\) 33.0000 1.37381 0.686904 0.726748i \(-0.258969\pi\)
0.686904 + 0.726748i \(0.258969\pi\)
\(578\) −8.00000 −0.332756
\(579\) −11.0000 −0.457144
\(580\) −5.00000 −0.207614
\(581\) 12.0000 0.497844
\(582\) 8.00000 0.331611
\(583\) −6.00000 −0.248495
\(584\) −16.0000 −0.662085
\(585\) 4.00000 0.165380
\(586\) −21.0000 −0.867502
\(587\) 3.00000 0.123823 0.0619116 0.998082i \(-0.480280\pi\)
0.0619116 + 0.998082i \(0.480280\pi\)
\(588\) −3.00000 −0.123718
\(589\) −2.00000 −0.0824086
\(590\) 0 0
\(591\) −12.0000 −0.493614
\(592\) 3.00000 0.123299
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 1.00000 0.0410305
\(595\) −6.00000 −0.245976
\(596\) −10.0000 −0.409616
\(597\) −15.0000 −0.613909
\(598\) 16.0000 0.654289
\(599\) 15.0000 0.612883 0.306442 0.951889i \(-0.400862\pi\)
0.306442 + 0.951889i \(0.400862\pi\)
\(600\) −4.00000 −0.163299
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) −18.0000 −0.733625
\(603\) 13.0000 0.529401
\(604\) 7.00000 0.284826
\(605\) 1.00000 0.0406558
\(606\) 2.00000 0.0812444
\(607\) 48.0000 1.94826 0.974130 0.225989i \(-0.0725612\pi\)
0.974130 + 0.225989i \(0.0725612\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 10.0000 0.405220
\(610\) −13.0000 −0.526355
\(611\) 32.0000 1.29458
\(612\) 3.00000 0.121268
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) 28.0000 1.12999
\(615\) 2.00000 0.0806478
\(616\) −2.00000 −0.0805823
\(617\) 38.0000 1.52982 0.764911 0.644136i \(-0.222783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) −6.00000 −0.241355
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 2.00000 0.0803219
\(621\) 4.00000 0.160514
\(622\) −18.0000 −0.721734
\(623\) 10.0000 0.400642
\(624\) 4.00000 0.160128
\(625\) 11.0000 0.440000
\(626\) 29.0000 1.15907
\(627\) −1.00000 −0.0399362
\(628\) 8.00000 0.319235
\(629\) 9.00000 0.358854
\(630\) −2.00000 −0.0796819
\(631\) −23.0000 −0.915616 −0.457808 0.889051i \(-0.651365\pi\)
−0.457808 + 0.889051i \(0.651365\pi\)
\(632\) 0 0
\(633\) 12.0000 0.476957
\(634\) −22.0000 −0.873732
\(635\) 13.0000 0.515889
\(636\) −6.00000 −0.237915
\(637\) −12.0000 −0.475457
\(638\) −5.00000 −0.197952
\(639\) −8.00000 −0.316475
\(640\) 1.00000 0.0395285
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) −7.00000 −0.276268
\(643\) −6.00000 −0.236617 −0.118308 0.992977i \(-0.537747\pi\)
−0.118308 + 0.992977i \(0.537747\pi\)
\(644\) −8.00000 −0.315244
\(645\) 9.00000 0.354375
\(646\) −3.00000 −0.118033
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) −16.0000 −0.627572
\(651\) −4.00000 −0.156772
\(652\) 4.00000 0.156652
\(653\) −26.0000 −1.01746 −0.508729 0.860927i \(-0.669885\pi\)
−0.508729 + 0.860927i \(0.669885\pi\)
\(654\) −10.0000 −0.391031
\(655\) −18.0000 −0.703318
\(656\) 2.00000 0.0780869
\(657\) −16.0000 −0.624219
\(658\) −16.0000 −0.623745
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 1.00000 0.0389249
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 27.0000 1.04938
\(663\) 12.0000 0.466041
\(664\) −6.00000 −0.232845
\(665\) 2.00000 0.0775567
\(666\) 3.00000 0.116248
\(667\) −20.0000 −0.774403
\(668\) −12.0000 −0.464294
\(669\) −16.0000 −0.618596
\(670\) 13.0000 0.502234
\(671\) −13.0000 −0.501859
\(672\) −2.00000 −0.0771517
\(673\) 19.0000 0.732396 0.366198 0.930537i \(-0.380659\pi\)
0.366198 + 0.930537i \(0.380659\pi\)
\(674\) 13.0000 0.500741
\(675\) −4.00000 −0.153960
\(676\) 3.00000 0.115385
\(677\) 38.0000 1.46046 0.730229 0.683202i \(-0.239413\pi\)
0.730229 + 0.683202i \(0.239413\pi\)
\(678\) −11.0000 −0.422452
\(679\) −16.0000 −0.614024
\(680\) 3.00000 0.115045
\(681\) −27.0000 −1.03464
\(682\) 2.00000 0.0765840
\(683\) 44.0000 1.68361 0.841807 0.539779i \(-0.181492\pi\)
0.841807 + 0.539779i \(0.181492\pi\)
\(684\) −1.00000 −0.0382360
\(685\) 8.00000 0.305664
\(686\) 20.0000 0.763604
\(687\) 20.0000 0.763048
\(688\) 9.00000 0.343122
\(689\) −24.0000 −0.914327
\(690\) 4.00000 0.152277
\(691\) 2.00000 0.0760836 0.0380418 0.999276i \(-0.487888\pi\)
0.0380418 + 0.999276i \(0.487888\pi\)
\(692\) −1.00000 −0.0380143
\(693\) −2.00000 −0.0759737
\(694\) −12.0000 −0.455514
\(695\) 15.0000 0.568982
\(696\) −5.00000 −0.189525
\(697\) 6.00000 0.227266
\(698\) 15.0000 0.567758
\(699\) −6.00000 −0.226941
\(700\) 8.00000 0.302372
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 4.00000 0.150970
\(703\) −3.00000 −0.113147
\(704\) 1.00000 0.0376889
\(705\) 8.00000 0.301297
\(706\) 24.0000 0.903252
\(707\) −4.00000 −0.150435
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) −8.00000 −0.300235
\(711\) 0 0
\(712\) −5.00000 −0.187383
\(713\) 8.00000 0.299602
\(714\) −6.00000 −0.224544
\(715\) 4.00000 0.149592
\(716\) 0 0
\(717\) −15.0000 −0.560185
\(718\) 20.0000 0.746393
\(719\) 10.0000 0.372937 0.186469 0.982461i \(-0.440296\pi\)
0.186469 + 0.982461i \(0.440296\pi\)
\(720\) 1.00000 0.0372678
\(721\) 12.0000 0.446903
\(722\) 1.00000 0.0372161
\(723\) −3.00000 −0.111571
\(724\) −3.00000 −0.111494
\(725\) 20.0000 0.742781
\(726\) 1.00000 0.0371135
\(727\) −7.00000 −0.259616 −0.129808 0.991539i \(-0.541436\pi\)
−0.129808 + 0.991539i \(0.541436\pi\)
\(728\) −8.00000 −0.296500
\(729\) 1.00000 0.0370370
\(730\) −16.0000 −0.592187
\(731\) 27.0000 0.998631
\(732\) −13.0000 −0.480494
\(733\) 29.0000 1.07114 0.535570 0.844491i \(-0.320097\pi\)
0.535570 + 0.844491i \(0.320097\pi\)
\(734\) 3.00000 0.110732
\(735\) −3.00000 −0.110657
\(736\) 4.00000 0.147442
\(737\) 13.0000 0.478861
\(738\) 2.00000 0.0736210
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 3.00000 0.110282
\(741\) −4.00000 −0.146944
\(742\) 12.0000 0.440534
\(743\) 14.0000 0.513610 0.256805 0.966463i \(-0.417330\pi\)
0.256805 + 0.966463i \(0.417330\pi\)
\(744\) 2.00000 0.0733236
\(745\) −10.0000 −0.366372
\(746\) −16.0000 −0.585802
\(747\) −6.00000 −0.219529
\(748\) 3.00000 0.109691
\(749\) 14.0000 0.511549
\(750\) −9.00000 −0.328634
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 8.00000 0.291730
\(753\) 17.0000 0.619514
\(754\) −20.0000 −0.728357
\(755\) 7.00000 0.254756
\(756\) −2.00000 −0.0727393
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 25.0000 0.908041
\(759\) 4.00000 0.145191
\(760\) −1.00000 −0.0362738
\(761\) 27.0000 0.978749 0.489375 0.872074i \(-0.337225\pi\)
0.489375 + 0.872074i \(0.337225\pi\)
\(762\) 13.0000 0.470940
\(763\) 20.0000 0.724049
\(764\) 12.0000 0.434145
\(765\) 3.00000 0.108465
\(766\) −21.0000 −0.758761
\(767\) 0 0
\(768\) 1.00000 0.0360844
\(769\) −40.0000 −1.44244 −0.721218 0.692708i \(-0.756418\pi\)
−0.721218 + 0.692708i \(0.756418\pi\)
\(770\) −2.00000 −0.0720750
\(771\) 13.0000 0.468184
\(772\) −11.0000 −0.395899
\(773\) 14.0000 0.503545 0.251773 0.967786i \(-0.418987\pi\)
0.251773 + 0.967786i \(0.418987\pi\)
\(774\) 9.00000 0.323498
\(775\) −8.00000 −0.287368
\(776\) 8.00000 0.287183
\(777\) −6.00000 −0.215249
\(778\) −10.0000 −0.358517
\(779\) −2.00000 −0.0716574
\(780\) 4.00000 0.143223
\(781\) −8.00000 −0.286263
\(782\) 12.0000 0.429119
\(783\) −5.00000 −0.178685
\(784\) −3.00000 −0.107143
\(785\) 8.00000 0.285532
\(786\) −18.0000 −0.642039
\(787\) 18.0000 0.641631 0.320815 0.947142i \(-0.396043\pi\)
0.320815 + 0.947142i \(0.396043\pi\)
\(788\) −12.0000 −0.427482
\(789\) −16.0000 −0.569615
\(790\) 0 0
\(791\) 22.0000 0.782230
\(792\) 1.00000 0.0355335
\(793\) −52.0000 −1.84657
\(794\) −22.0000 −0.780751
\(795\) −6.00000 −0.212798
\(796\) −15.0000 −0.531661
\(797\) −42.0000 −1.48772 −0.743858 0.668338i \(-0.767006\pi\)
−0.743858 + 0.668338i \(0.767006\pi\)
\(798\) 2.00000 0.0707992
\(799\) 24.0000 0.849059
\(800\) −4.00000 −0.141421
\(801\) −5.00000 −0.176666
\(802\) 27.0000 0.953403
\(803\) −16.0000 −0.564628
\(804\) 13.0000 0.458475
\(805\) −8.00000 −0.281963
\(806\) 8.00000 0.281788
\(807\) 20.0000 0.704033
\(808\) 2.00000 0.0703598
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 1.00000 0.0351364
\(811\) 12.0000 0.421377 0.210688 0.977553i \(-0.432429\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(812\) 10.0000 0.350931
\(813\) −28.0000 −0.982003
\(814\) 3.00000 0.105150
\(815\) 4.00000 0.140114
\(816\) 3.00000 0.105021
\(817\) −9.00000 −0.314870
\(818\) 10.0000 0.349642
\(819\) −8.00000 −0.279543
\(820\) 2.00000 0.0698430
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) 8.00000 0.279032
\(823\) 19.0000 0.662298 0.331149 0.943578i \(-0.392564\pi\)
0.331149 + 0.943578i \(0.392564\pi\)
\(824\) −6.00000 −0.209020
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) 28.0000 0.973655 0.486828 0.873498i \(-0.338154\pi\)
0.486828 + 0.873498i \(0.338154\pi\)
\(828\) 4.00000 0.139010
\(829\) −45.0000 −1.56291 −0.781457 0.623959i \(-0.785523\pi\)
−0.781457 + 0.623959i \(0.785523\pi\)
\(830\) −6.00000 −0.208263
\(831\) 13.0000 0.450965
\(832\) 4.00000 0.138675
\(833\) −9.00000 −0.311832
\(834\) 15.0000 0.519408
\(835\) −12.0000 −0.415277
\(836\) −1.00000 −0.0345857
\(837\) 2.00000 0.0691301
\(838\) 35.0000 1.20905
\(839\) −15.0000 −0.517858 −0.258929 0.965896i \(-0.583369\pi\)
−0.258929 + 0.965896i \(0.583369\pi\)
\(840\) −2.00000 −0.0690066
\(841\) −4.00000 −0.137931
\(842\) 22.0000 0.758170
\(843\) −18.0000 −0.619953
\(844\) 12.0000 0.413057
\(845\) 3.00000 0.103203
\(846\) 8.00000 0.275046
\(847\) −2.00000 −0.0687208
\(848\) −6.00000 −0.206041
\(849\) 4.00000 0.137280
\(850\) −12.0000 −0.411597
\(851\) 12.0000 0.411355
\(852\) −8.00000 −0.274075
\(853\) 19.0000 0.650548 0.325274 0.945620i \(-0.394544\pi\)
0.325274 + 0.945620i \(0.394544\pi\)
\(854\) 26.0000 0.889702
\(855\) −1.00000 −0.0341993
\(856\) −7.00000 −0.239255
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 4.00000 0.136558
\(859\) −40.0000 −1.36478 −0.682391 0.730987i \(-0.739060\pi\)
−0.682391 + 0.730987i \(0.739060\pi\)
\(860\) 9.00000 0.306897
\(861\) −4.00000 −0.136320
\(862\) −18.0000 −0.613082
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 1.00000 0.0340207
\(865\) −1.00000 −0.0340010
\(866\) −26.0000 −0.883516
\(867\) −8.00000 −0.271694
\(868\) −4.00000 −0.135769
\(869\) 0 0
\(870\) −5.00000 −0.169516
\(871\) 52.0000 1.76195
\(872\) −10.0000 −0.338643
\(873\) 8.00000 0.270759
\(874\) −4.00000 −0.135302
\(875\) 18.0000 0.608511
\(876\) −16.0000 −0.540590
\(877\) −22.0000 −0.742887 −0.371444 0.928456i \(-0.621137\pi\)
−0.371444 + 0.928456i \(0.621137\pi\)
\(878\) 35.0000 1.18119
\(879\) −21.0000 −0.708312
\(880\) 1.00000 0.0337100
\(881\) 12.0000 0.404290 0.202145 0.979356i \(-0.435209\pi\)
0.202145 + 0.979356i \(0.435209\pi\)
\(882\) −3.00000 −0.101015
\(883\) −6.00000 −0.201916 −0.100958 0.994891i \(-0.532191\pi\)
−0.100958 + 0.994891i \(0.532191\pi\)
\(884\) 12.0000 0.403604
\(885\) 0 0
\(886\) −41.0000 −1.37742
\(887\) −52.0000 −1.74599 −0.872995 0.487730i \(-0.837825\pi\)
−0.872995 + 0.487730i \(0.837825\pi\)
\(888\) 3.00000 0.100673
\(889\) −26.0000 −0.872012
\(890\) −5.00000 −0.167600
\(891\) 1.00000 0.0335013
\(892\) −16.0000 −0.535720
\(893\) −8.00000 −0.267710
\(894\) −10.0000 −0.334450
\(895\) 0 0
\(896\) −2.00000 −0.0668153
\(897\) 16.0000 0.534224
\(898\) −10.0000 −0.333704
\(899\) −10.0000 −0.333519
\(900\) −4.00000 −0.133333
\(901\) −18.0000 −0.599667
\(902\) 2.00000 0.0665927
\(903\) −18.0000 −0.599002
\(904\) −11.0000 −0.365855
\(905\) −3.00000 −0.0997234
\(906\) 7.00000 0.232559
\(907\) 23.0000 0.763702 0.381851 0.924224i \(-0.375287\pi\)
0.381851 + 0.924224i \(0.375287\pi\)
\(908\) −27.0000 −0.896026
\(909\) 2.00000 0.0663358
\(910\) −8.00000 −0.265197
\(911\) 57.0000 1.88849 0.944247 0.329238i \(-0.106792\pi\)
0.944247 + 0.329238i \(0.106792\pi\)
\(912\) −1.00000 −0.0331133
\(913\) −6.00000 −0.198571
\(914\) −2.00000 −0.0661541
\(915\) −13.0000 −0.429767
\(916\) 20.0000 0.660819
\(917\) 36.0000 1.18882
\(918\) 3.00000 0.0990148
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 4.00000 0.131876
\(921\) 28.0000 0.922631
\(922\) 12.0000 0.395199
\(923\) −32.0000 −1.05329
\(924\) −2.00000 −0.0657952
\(925\) −12.0000 −0.394558
\(926\) −31.0000 −1.01872
\(927\) −6.00000 −0.197066
\(928\) −5.00000 −0.164133
\(929\) 20.0000 0.656179 0.328089 0.944647i \(-0.393595\pi\)
0.328089 + 0.944647i \(0.393595\pi\)
\(930\) 2.00000 0.0655826
\(931\) 3.00000 0.0983210
\(932\) −6.00000 −0.196537
\(933\) −18.0000 −0.589294
\(934\) 8.00000 0.261768
\(935\) 3.00000 0.0981105
\(936\) 4.00000 0.130744
\(937\) 58.0000 1.89478 0.947389 0.320085i \(-0.103712\pi\)
0.947389 + 0.320085i \(0.103712\pi\)
\(938\) −26.0000 −0.848930
\(939\) 29.0000 0.946379
\(940\) 8.00000 0.260931
\(941\) −33.0000 −1.07577 −0.537885 0.843018i \(-0.680776\pi\)
−0.537885 + 0.843018i \(0.680776\pi\)
\(942\) 8.00000 0.260654
\(943\) 8.00000 0.260516
\(944\) 0 0
\(945\) −2.00000 −0.0650600
\(946\) 9.00000 0.292615
\(947\) −7.00000 −0.227469 −0.113735 0.993511i \(-0.536281\pi\)
−0.113735 + 0.993511i \(0.536281\pi\)
\(948\) 0 0
\(949\) −64.0000 −2.07753
\(950\) 4.00000 0.129777
\(951\) −22.0000 −0.713399
\(952\) −6.00000 −0.194461
\(953\) 44.0000 1.42530 0.712650 0.701520i \(-0.247495\pi\)
0.712650 + 0.701520i \(0.247495\pi\)
\(954\) −6.00000 −0.194257
\(955\) 12.0000 0.388311
\(956\) −15.0000 −0.485135
\(957\) −5.00000 −0.161627
\(958\) −5.00000 −0.161543
\(959\) −16.0000 −0.516667
\(960\) 1.00000 0.0322749
\(961\) −27.0000 −0.870968
\(962\) 12.0000 0.386896
\(963\) −7.00000 −0.225572
\(964\) −3.00000 −0.0966235
\(965\) −11.0000 −0.354103
\(966\) −8.00000 −0.257396
\(967\) 38.0000 1.22200 0.610999 0.791632i \(-0.290768\pi\)
0.610999 + 0.791632i \(0.290768\pi\)
\(968\) 1.00000 0.0321412
\(969\) −3.00000 −0.0963739
\(970\) 8.00000 0.256865
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 1.00000 0.0320750
\(973\) −30.0000 −0.961756
\(974\) 18.0000 0.576757
\(975\) −16.0000 −0.512410
\(976\) −13.0000 −0.416120
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 4.00000 0.127906
\(979\) −5.00000 −0.159801
\(980\) −3.00000 −0.0958315
\(981\) −10.0000 −0.319275
\(982\) 22.0000 0.702048
\(983\) 4.00000 0.127580 0.0637901 0.997963i \(-0.479681\pi\)
0.0637901 + 0.997963i \(0.479681\pi\)
\(984\) 2.00000 0.0637577
\(985\) −12.0000 −0.382352
\(986\) −15.0000 −0.477697
\(987\) −16.0000 −0.509286
\(988\) −4.00000 −0.127257
\(989\) 36.0000 1.14473
\(990\) 1.00000 0.0317821
\(991\) 42.0000 1.33417 0.667087 0.744980i \(-0.267541\pi\)
0.667087 + 0.744980i \(0.267541\pi\)
\(992\) 2.00000 0.0635001
\(993\) 27.0000 0.856819
\(994\) 16.0000 0.507489
\(995\) −15.0000 −0.475532
\(996\) −6.00000 −0.190117
\(997\) 18.0000 0.570066 0.285033 0.958518i \(-0.407995\pi\)
0.285033 + 0.958518i \(0.407995\pi\)
\(998\) 0 0
\(999\) 3.00000 0.0949158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1254.2.a.j.1.1 1
3.2 odd 2 3762.2.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1254.2.a.j.1.1 1 1.1 even 1 trivial
3762.2.a.d.1.1 1 3.2 odd 2