Properties

Label 1254.2.a.r.1.3
Level $1254$
Weight $2$
Character 1254.1
Self dual yes
Analytic conductor $10.013$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1254,2,Mod(1,1254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1254.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1254 = 2 \cdot 3 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.0132404135\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.23377.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 7x^{2} + 6x + 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.35438\) of defining polynomial
Character \(\chi\) \(=\) 1254.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +2.27870 q^{5} -1.00000 q^{6} +4.70876 q^{7} -1.00000 q^{8} +1.00000 q^{9} -2.27870 q^{10} +1.00000 q^{11} +1.00000 q^{12} +5.08623 q^{13} -4.70876 q^{14} +2.27870 q^{15} +1.00000 q^{16} -5.36493 q^{17} -1.00000 q^{18} +1.00000 q^{19} +2.27870 q^{20} +4.70876 q^{21} -1.00000 q^{22} +7.64363 q^{23} -1.00000 q^{24} +0.192470 q^{25} -5.08623 q^{26} +1.00000 q^{27} +4.70876 q^{28} -5.36493 q^{29} -2.27870 q^{30} -8.35239 q^{31} -1.00000 q^{32} +1.00000 q^{33} +5.36493 q^{34} +10.7299 q^{35} +1.00000 q^{36} +1.56994 q^{37} -1.00000 q^{38} +5.08623 q^{39} -2.27870 q^{40} -11.4175 q^{41} -4.70876 q^{42} -3.36493 q^{43} +1.00000 q^{44} +2.27870 q^{45} -7.64363 q^{46} -7.64363 q^{47} +1.00000 q^{48} +15.1725 q^{49} -0.192470 q^{50} -5.36493 q^{51} +5.08623 q^{52} -7.26616 q^{53} -1.00000 q^{54} +2.27870 q^{55} -4.70876 q^{56} +1.00000 q^{57} +5.36493 q^{58} +2.27870 q^{60} -10.6311 q^{61} +8.35239 q^{62} +4.70876 q^{63} +1.00000 q^{64} +11.5900 q^{65} -1.00000 q^{66} -7.92233 q^{67} -5.36493 q^{68} +7.64363 q^{69} -10.7299 q^{70} +4.15137 q^{71} -1.00000 q^{72} +6.55740 q^{73} -1.56994 q^{74} +0.192470 q^{75} +1.00000 q^{76} +4.70876 q^{77} -5.08623 q^{78} -17.0612 q^{79} +2.27870 q^{80} +1.00000 q^{81} +11.4175 q^{82} +0.860130 q^{83} +4.70876 q^{84} -12.2251 q^{85} +3.36493 q^{86} -5.36493 q^{87} -1.00000 q^{88} +5.36493 q^{89} -2.27870 q^{90} +23.9499 q^{91} +7.64363 q^{92} -8.35239 q^{93} +7.64363 q^{94} +2.27870 q^{95} -1.00000 q^{96} +18.9023 q^{97} -15.1725 q^{98} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{3} + 4 q^{4} + 3 q^{5} - 4 q^{6} + 2 q^{7} - 4 q^{8} + 4 q^{9} - 3 q^{10} + 4 q^{11} + 4 q^{12} + 6 q^{13} - 2 q^{14} + 3 q^{15} + 4 q^{16} - q^{17} - 4 q^{18} + 4 q^{19} + 3 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 2.27870 1.01907 0.509533 0.860451i \(-0.329818\pi\)
0.509533 + 0.860451i \(0.329818\pi\)
\(6\) −1.00000 −0.408248
\(7\) 4.70876 1.77975 0.889873 0.456209i \(-0.150793\pi\)
0.889873 + 0.456209i \(0.150793\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −2.27870 −0.720588
\(11\) 1.00000 0.301511
\(12\) 1.00000 0.288675
\(13\) 5.08623 1.41067 0.705333 0.708876i \(-0.250797\pi\)
0.705333 + 0.708876i \(0.250797\pi\)
\(14\) −4.70876 −1.25847
\(15\) 2.27870 0.588358
\(16\) 1.00000 0.250000
\(17\) −5.36493 −1.30119 −0.650593 0.759426i \(-0.725480\pi\)
−0.650593 + 0.759426i \(0.725480\pi\)
\(18\) −1.00000 −0.235702
\(19\) 1.00000 0.229416
\(20\) 2.27870 0.509533
\(21\) 4.70876 1.02754
\(22\) −1.00000 −0.213201
\(23\) 7.64363 1.59381 0.796903 0.604107i \(-0.206470\pi\)
0.796903 + 0.604107i \(0.206470\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0.192470 0.0384940
\(26\) −5.08623 −0.997492
\(27\) 1.00000 0.192450
\(28\) 4.70876 0.889873
\(29\) −5.36493 −0.996242 −0.498121 0.867107i \(-0.665977\pi\)
−0.498121 + 0.867107i \(0.665977\pi\)
\(30\) −2.27870 −0.416032
\(31\) −8.35239 −1.50013 −0.750067 0.661362i \(-0.769979\pi\)
−0.750067 + 0.661362i \(0.769979\pi\)
\(32\) −1.00000 −0.176777
\(33\) 1.00000 0.174078
\(34\) 5.36493 0.920078
\(35\) 10.7299 1.81368
\(36\) 1.00000 0.166667
\(37\) 1.56994 0.258096 0.129048 0.991638i \(-0.458808\pi\)
0.129048 + 0.991638i \(0.458808\pi\)
\(38\) −1.00000 −0.162221
\(39\) 5.08623 0.814448
\(40\) −2.27870 −0.360294
\(41\) −11.4175 −1.78312 −0.891559 0.452904i \(-0.850388\pi\)
−0.891559 + 0.452904i \(0.850388\pi\)
\(42\) −4.70876 −0.726578
\(43\) −3.36493 −0.513147 −0.256573 0.966525i \(-0.582594\pi\)
−0.256573 + 0.966525i \(0.582594\pi\)
\(44\) 1.00000 0.150756
\(45\) 2.27870 0.339688
\(46\) −7.64363 −1.12699
\(47\) −7.64363 −1.11494 −0.557469 0.830198i \(-0.688227\pi\)
−0.557469 + 0.830198i \(0.688227\pi\)
\(48\) 1.00000 0.144338
\(49\) 15.1725 2.16749
\(50\) −0.192470 −0.0272194
\(51\) −5.36493 −0.751240
\(52\) 5.08623 0.705333
\(53\) −7.26616 −0.998084 −0.499042 0.866578i \(-0.666315\pi\)
−0.499042 + 0.866578i \(0.666315\pi\)
\(54\) −1.00000 −0.136083
\(55\) 2.27870 0.307260
\(56\) −4.70876 −0.629235
\(57\) 1.00000 0.132453
\(58\) 5.36493 0.704450
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 2.27870 0.294179
\(61\) −10.6311 −1.36117 −0.680586 0.732668i \(-0.738275\pi\)
−0.680586 + 0.732668i \(0.738275\pi\)
\(62\) 8.35239 1.06075
\(63\) 4.70876 0.593249
\(64\) 1.00000 0.125000
\(65\) 11.5900 1.43756
\(66\) −1.00000 −0.123091
\(67\) −7.92233 −0.967866 −0.483933 0.875105i \(-0.660792\pi\)
−0.483933 + 0.875105i \(0.660792\pi\)
\(68\) −5.36493 −0.650593
\(69\) 7.64363 0.920185
\(70\) −10.7299 −1.28246
\(71\) 4.15137 0.492676 0.246338 0.969184i \(-0.420773\pi\)
0.246338 + 0.969184i \(0.420773\pi\)
\(72\) −1.00000 −0.117851
\(73\) 6.55740 0.767485 0.383743 0.923440i \(-0.374635\pi\)
0.383743 + 0.923440i \(0.374635\pi\)
\(74\) −1.56994 −0.182501
\(75\) 0.192470 0.0222245
\(76\) 1.00000 0.114708
\(77\) 4.70876 0.536613
\(78\) −5.08623 −0.575902
\(79\) −17.0612 −1.91953 −0.959765 0.280805i \(-0.909399\pi\)
−0.959765 + 0.280805i \(0.909399\pi\)
\(80\) 2.27870 0.254766
\(81\) 1.00000 0.111111
\(82\) 11.4175 1.26086
\(83\) 0.860130 0.0944115 0.0472057 0.998885i \(-0.484968\pi\)
0.0472057 + 0.998885i \(0.484968\pi\)
\(84\) 4.70876 0.513768
\(85\) −12.2251 −1.32599
\(86\) 3.36493 0.362850
\(87\) −5.36493 −0.575181
\(88\) −1.00000 −0.106600
\(89\) 5.36493 0.568681 0.284341 0.958723i \(-0.408225\pi\)
0.284341 + 0.958723i \(0.408225\pi\)
\(90\) −2.27870 −0.240196
\(91\) 23.9499 2.51063
\(92\) 7.64363 0.796903
\(93\) −8.35239 −0.866103
\(94\) 7.64363 0.788380
\(95\) 2.27870 0.233790
\(96\) −1.00000 −0.102062
\(97\) 18.9023 1.91924 0.959620 0.281301i \(-0.0907659\pi\)
0.959620 + 0.281301i \(0.0907659\pi\)
\(98\) −15.1725 −1.53265
\(99\) 1.00000 0.100504
\(100\) 0.192470 0.0192470
\(101\) −6.54992 −0.651742 −0.325871 0.945414i \(-0.605657\pi\)
−0.325871 + 0.945414i \(0.605657\pi\)
\(102\) 5.36493 0.531207
\(103\) −2.17993 −0.214795 −0.107398 0.994216i \(-0.534252\pi\)
−0.107398 + 0.994216i \(0.534252\pi\)
\(104\) −5.08623 −0.498746
\(105\) 10.7299 1.04713
\(106\) 7.26616 0.705752
\(107\) −5.19247 −0.501975 −0.250988 0.967990i \(-0.580755\pi\)
−0.250988 + 0.967990i \(0.580755\pi\)
\(108\) 1.00000 0.0962250
\(109\) 4.22610 0.404787 0.202393 0.979304i \(-0.435128\pi\)
0.202393 + 0.979304i \(0.435128\pi\)
\(110\) −2.27870 −0.217265
\(111\) 1.56994 0.149012
\(112\) 4.70876 0.444936
\(113\) 9.92233 0.933414 0.466707 0.884412i \(-0.345440\pi\)
0.466707 + 0.884412i \(0.345440\pi\)
\(114\) −1.00000 −0.0936586
\(115\) 17.4175 1.62419
\(116\) −5.36493 −0.498121
\(117\) 5.08623 0.470222
\(118\) 0 0
\(119\) −25.2622 −2.31578
\(120\) −2.27870 −0.208016
\(121\) 1.00000 0.0909091
\(122\) 10.6311 0.962494
\(123\) −11.4175 −1.02948
\(124\) −8.35239 −0.750067
\(125\) −10.9549 −0.979837
\(126\) −4.70876 −0.419490
\(127\) 9.69623 0.860401 0.430201 0.902733i \(-0.358443\pi\)
0.430201 + 0.902733i \(0.358443\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −3.36493 −0.296265
\(130\) −11.5900 −1.01651
\(131\) 0.860130 0.0751499 0.0375749 0.999294i \(-0.488037\pi\)
0.0375749 + 0.999294i \(0.488037\pi\)
\(132\) 1.00000 0.0870388
\(133\) 4.70876 0.408302
\(134\) 7.92233 0.684385
\(135\) 2.27870 0.196119
\(136\) 5.36493 0.460039
\(137\) 0.687671 0.0587517 0.0293759 0.999568i \(-0.490648\pi\)
0.0293759 + 0.999568i \(0.490648\pi\)
\(138\) −7.64363 −0.650669
\(139\) 16.4797 1.39779 0.698896 0.715223i \(-0.253675\pi\)
0.698896 + 0.715223i \(0.253675\pi\)
\(140\) 10.7299 0.906838
\(141\) −7.64363 −0.643710
\(142\) −4.15137 −0.348375
\(143\) 5.08623 0.425332
\(144\) 1.00000 0.0833333
\(145\) −12.2251 −1.01524
\(146\) −6.55740 −0.542694
\(147\) 15.1725 1.25140
\(148\) 1.56994 0.129048
\(149\) −11.2125 −0.918566 −0.459283 0.888290i \(-0.651894\pi\)
−0.459283 + 0.888290i \(0.651894\pi\)
\(150\) −0.192470 −0.0157151
\(151\) −0.278699 −0.0226802 −0.0113401 0.999936i \(-0.503610\pi\)
−0.0113401 + 0.999936i \(0.503610\pi\)
\(152\) −1.00000 −0.0811107
\(153\) −5.36493 −0.433729
\(154\) −4.70876 −0.379443
\(155\) −19.0326 −1.52873
\(156\) 5.08623 0.407224
\(157\) 6.55740 0.523337 0.261669 0.965158i \(-0.415727\pi\)
0.261669 + 0.965158i \(0.415727\pi\)
\(158\) 17.0612 1.35731
\(159\) −7.26616 −0.576244
\(160\) −2.27870 −0.180147
\(161\) 35.9920 2.83657
\(162\) −1.00000 −0.0785674
\(163\) 19.5900 1.53441 0.767203 0.641404i \(-0.221648\pi\)
0.767203 + 0.641404i \(0.221648\pi\)
\(164\) −11.4175 −0.891559
\(165\) 2.27870 0.177396
\(166\) −0.860130 −0.0667590
\(167\) 15.2873 1.18296 0.591482 0.806318i \(-0.298543\pi\)
0.591482 + 0.806318i \(0.298543\pi\)
\(168\) −4.70876 −0.363289
\(169\) 12.8697 0.989979
\(170\) 12.2251 0.937619
\(171\) 1.00000 0.0764719
\(172\) −3.36493 −0.256573
\(173\) 3.33985 0.253924 0.126962 0.991908i \(-0.459477\pi\)
0.126962 + 0.991908i \(0.459477\pi\)
\(174\) 5.36493 0.406714
\(175\) 0.906296 0.0685095
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) −5.36493 −0.402118
\(179\) −23.6471 −1.76747 −0.883734 0.467989i \(-0.844979\pi\)
−0.883734 + 0.467989i \(0.844979\pi\)
\(180\) 2.27870 0.169844
\(181\) 19.8476 1.47526 0.737630 0.675205i \(-0.235945\pi\)
0.737630 + 0.675205i \(0.235945\pi\)
\(182\) −23.9499 −1.77528
\(183\) −10.6311 −0.785873
\(184\) −7.64363 −0.563496
\(185\) 3.57741 0.263016
\(186\) 8.35239 0.612427
\(187\) −5.36493 −0.392322
\(188\) −7.64363 −0.557469
\(189\) 4.70876 0.342512
\(190\) −2.27870 −0.165314
\(191\) 15.9464 1.15384 0.576919 0.816801i \(-0.304255\pi\)
0.576919 + 0.816801i \(0.304255\pi\)
\(192\) 1.00000 0.0721688
\(193\) −13.9223 −1.00215 −0.501076 0.865404i \(-0.667062\pi\)
−0.501076 + 0.865404i \(0.667062\pi\)
\(194\) −18.9023 −1.35711
\(195\) 11.5900 0.829976
\(196\) 15.1725 1.08375
\(197\) 6.65512 0.474158 0.237079 0.971490i \(-0.423810\pi\)
0.237079 + 0.971490i \(0.423810\pi\)
\(198\) −1.00000 −0.0710669
\(199\) 16.0697 1.13915 0.569576 0.821939i \(-0.307107\pi\)
0.569576 + 0.821939i \(0.307107\pi\)
\(200\) −0.192470 −0.0136097
\(201\) −7.92233 −0.558798
\(202\) 6.54992 0.460851
\(203\) −25.2622 −1.77306
\(204\) −5.36493 −0.375620
\(205\) −26.0171 −1.81711
\(206\) 2.17993 0.151883
\(207\) 7.64363 0.531269
\(208\) 5.08623 0.352667
\(209\) 1.00000 0.0691714
\(210\) −10.7299 −0.740430
\(211\) −13.0577 −0.898926 −0.449463 0.893299i \(-0.648385\pi\)
−0.449463 + 0.893299i \(0.648385\pi\)
\(212\) −7.26616 −0.499042
\(213\) 4.15137 0.284447
\(214\) 5.19247 0.354950
\(215\) −7.66766 −0.522930
\(216\) −1.00000 −0.0680414
\(217\) −39.3294 −2.66986
\(218\) −4.22610 −0.286228
\(219\) 6.55740 0.443108
\(220\) 2.27870 0.153630
\(221\) −27.2873 −1.83554
\(222\) −1.56994 −0.105367
\(223\) −21.9675 −1.47105 −0.735525 0.677498i \(-0.763064\pi\)
−0.735525 + 0.677498i \(0.763064\pi\)
\(224\) −4.70876 −0.314618
\(225\) 0.192470 0.0128313
\(226\) −9.92233 −0.660023
\(227\) −22.2000 −1.47346 −0.736732 0.676184i \(-0.763632\pi\)
−0.736732 + 0.676184i \(0.763632\pi\)
\(228\) 1.00000 0.0662266
\(229\) 8.68767 0.574097 0.287049 0.957916i \(-0.407326\pi\)
0.287049 + 0.957916i \(0.407326\pi\)
\(230\) −17.4175 −1.14848
\(231\) 4.70876 0.309814
\(232\) 5.36493 0.352225
\(233\) −5.24507 −0.343616 −0.171808 0.985130i \(-0.554961\pi\)
−0.171808 + 0.985130i \(0.554961\pi\)
\(234\) −5.08623 −0.332497
\(235\) −17.4175 −1.13619
\(236\) 0 0
\(237\) −17.0612 −1.10824
\(238\) 25.2622 1.63750
\(239\) 4.88226 0.315807 0.157904 0.987455i \(-0.449526\pi\)
0.157904 + 0.987455i \(0.449526\pi\)
\(240\) 2.27870 0.147089
\(241\) −4.05260 −0.261051 −0.130525 0.991445i \(-0.541666\pi\)
−0.130525 + 0.991445i \(0.541666\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 1.00000 0.0641500
\(244\) −10.6311 −0.680586
\(245\) 34.5735 2.20882
\(246\) 11.4175 0.727955
\(247\) 5.08623 0.323629
\(248\) 8.35239 0.530377
\(249\) 0.860130 0.0545085
\(250\) 10.9549 0.692850
\(251\) 20.0697 1.26679 0.633394 0.773829i \(-0.281661\pi\)
0.633394 + 0.773829i \(0.281661\pi\)
\(252\) 4.70876 0.296624
\(253\) 7.64363 0.480551
\(254\) −9.69623 −0.608395
\(255\) −12.2251 −0.765563
\(256\) 1.00000 0.0625000
\(257\) 26.5849 1.65832 0.829161 0.559010i \(-0.188819\pi\)
0.829161 + 0.559010i \(0.188819\pi\)
\(258\) 3.36493 0.209491
\(259\) 7.39245 0.459345
\(260\) 11.5900 0.718780
\(261\) −5.36493 −0.332081
\(262\) −0.860130 −0.0531390
\(263\) −15.4923 −0.955294 −0.477647 0.878552i \(-0.658510\pi\)
−0.477647 + 0.878552i \(0.658510\pi\)
\(264\) −1.00000 −0.0615457
\(265\) −16.5574 −1.01711
\(266\) −4.70876 −0.288713
\(267\) 5.36493 0.328328
\(268\) −7.92233 −0.483933
\(269\) 13.3334 0.812953 0.406477 0.913661i \(-0.366757\pi\)
0.406477 + 0.913661i \(0.366757\pi\)
\(270\) −2.27870 −0.138677
\(271\) −16.5112 −1.00299 −0.501493 0.865162i \(-0.667216\pi\)
−0.501493 + 0.865162i \(0.667216\pi\)
\(272\) −5.36493 −0.325297
\(273\) 23.9499 1.44951
\(274\) −0.687671 −0.0415437
\(275\) 0.192470 0.0116064
\(276\) 7.64363 0.460092
\(277\) 13.8190 0.830305 0.415152 0.909752i \(-0.363728\pi\)
0.415152 + 0.909752i \(0.363728\pi\)
\(278\) −16.4797 −0.988388
\(279\) −8.35239 −0.500045
\(280\) −10.7299 −0.641232
\(281\) 16.2146 0.967285 0.483642 0.875266i \(-0.339314\pi\)
0.483642 + 0.875266i \(0.339314\pi\)
\(282\) 7.64363 0.455171
\(283\) −6.88520 −0.409283 −0.204641 0.978837i \(-0.565603\pi\)
−0.204641 + 0.978837i \(0.565603\pi\)
\(284\) 4.15137 0.246338
\(285\) 2.27870 0.134978
\(286\) −5.08623 −0.300755
\(287\) −53.7624 −3.17350
\(288\) −1.00000 −0.0589256
\(289\) 11.7825 0.693086
\(290\) 12.2251 0.717880
\(291\) 18.9023 1.10807
\(292\) 6.55740 0.383743
\(293\) 9.92233 0.579669 0.289834 0.957077i \(-0.406400\pi\)
0.289834 + 0.957077i \(0.406400\pi\)
\(294\) −15.1725 −0.884876
\(295\) 0 0
\(296\) −1.56994 −0.0912506
\(297\) 1.00000 0.0580259
\(298\) 11.2125 0.649524
\(299\) 38.8772 2.24833
\(300\) 0.192470 0.0111123
\(301\) −15.8447 −0.913271
\(302\) 0.278699 0.0160373
\(303\) −6.54992 −0.376283
\(304\) 1.00000 0.0573539
\(305\) −24.2251 −1.38712
\(306\) 5.36493 0.306693
\(307\) −28.3449 −1.61773 −0.808865 0.587995i \(-0.799918\pi\)
−0.808865 + 0.587995i \(0.799918\pi\)
\(308\) 4.70876 0.268307
\(309\) −2.17993 −0.124012
\(310\) 19.0326 1.08098
\(311\) −14.6762 −0.832212 −0.416106 0.909316i \(-0.636605\pi\)
−0.416106 + 0.909316i \(0.636605\pi\)
\(312\) −5.08623 −0.287951
\(313\) −23.0852 −1.30485 −0.652426 0.757852i \(-0.726249\pi\)
−0.652426 + 0.757852i \(0.726249\pi\)
\(314\) −6.55740 −0.370055
\(315\) 10.7299 0.604559
\(316\) −17.0612 −0.959765
\(317\) −1.09370 −0.0614285 −0.0307143 0.999528i \(-0.509778\pi\)
−0.0307143 + 0.999528i \(0.509778\pi\)
\(318\) 7.26616 0.407466
\(319\) −5.36493 −0.300378
\(320\) 2.27870 0.127383
\(321\) −5.19247 −0.289815
\(322\) −35.9920 −2.00576
\(323\) −5.36493 −0.298513
\(324\) 1.00000 0.0555556
\(325\) 0.978947 0.0543022
\(326\) −19.5900 −1.08499
\(327\) 4.22610 0.233704
\(328\) 11.4175 0.630428
\(329\) −35.9920 −1.98431
\(330\) −2.27870 −0.125438
\(331\) −21.1925 −1.16484 −0.582422 0.812887i \(-0.697895\pi\)
−0.582422 + 0.812887i \(0.697895\pi\)
\(332\) 0.860130 0.0472057
\(333\) 1.56994 0.0860319
\(334\) −15.2873 −0.836481
\(335\) −18.0526 −0.986319
\(336\) 4.70876 0.256884
\(337\) 11.2347 0.611991 0.305995 0.952033i \(-0.401011\pi\)
0.305995 + 0.952033i \(0.401011\pi\)
\(338\) −12.8697 −0.700021
\(339\) 9.92233 0.538907
\(340\) −12.2251 −0.662997
\(341\) −8.35239 −0.452307
\(342\) −1.00000 −0.0540738
\(343\) 38.4822 2.07784
\(344\) 3.36493 0.181425
\(345\) 17.4175 0.937728
\(346\) −3.33985 −0.179552
\(347\) 19.9499 1.07096 0.535482 0.844547i \(-0.320130\pi\)
0.535482 + 0.844547i \(0.320130\pi\)
\(348\) −5.36493 −0.287590
\(349\) −4.45863 −0.238665 −0.119333 0.992854i \(-0.538075\pi\)
−0.119333 + 0.992854i \(0.538075\pi\)
\(350\) −0.906296 −0.0484436
\(351\) 5.08623 0.271483
\(352\) −1.00000 −0.0533002
\(353\) 6.86013 0.365128 0.182564 0.983194i \(-0.441560\pi\)
0.182564 + 0.983194i \(0.441560\pi\)
\(354\) 0 0
\(355\) 9.45971 0.502069
\(356\) 5.36493 0.284341
\(357\) −25.2622 −1.33702
\(358\) 23.6471 1.24979
\(359\) −32.4998 −1.71527 −0.857636 0.514257i \(-0.828068\pi\)
−0.857636 + 0.514257i \(0.828068\pi\)
\(360\) −2.27870 −0.120098
\(361\) 1.00000 0.0526316
\(362\) −19.8476 −1.04317
\(363\) 1.00000 0.0524864
\(364\) 23.9499 1.25531
\(365\) 14.9423 0.782118
\(366\) 10.6311 0.555696
\(367\) −10.9127 −0.569640 −0.284820 0.958581i \(-0.591934\pi\)
−0.284820 + 0.958581i \(0.591934\pi\)
\(368\) 7.64363 0.398452
\(369\) −11.4175 −0.594373
\(370\) −3.57741 −0.185981
\(371\) −34.2146 −1.77634
\(372\) −8.35239 −0.433051
\(373\) 14.2010 0.735301 0.367651 0.929964i \(-0.380162\pi\)
0.367651 + 0.929964i \(0.380162\pi\)
\(374\) 5.36493 0.277414
\(375\) −10.9549 −0.565709
\(376\) 7.64363 0.394190
\(377\) −27.2873 −1.40537
\(378\) −4.70876 −0.242193
\(379\) 33.1423 1.70241 0.851203 0.524836i \(-0.175873\pi\)
0.851203 + 0.524836i \(0.175873\pi\)
\(380\) 2.27870 0.116895
\(381\) 9.69623 0.496753
\(382\) −15.9464 −0.815887
\(383\) 30.2883 1.54766 0.773831 0.633392i \(-0.218338\pi\)
0.773831 + 0.633392i \(0.218338\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 10.7299 0.546844
\(386\) 13.9223 0.708628
\(387\) −3.36493 −0.171049
\(388\) 18.9023 0.959620
\(389\) 17.3409 0.879218 0.439609 0.898189i \(-0.355117\pi\)
0.439609 + 0.898189i \(0.355117\pi\)
\(390\) −11.5900 −0.586882
\(391\) −41.0075 −2.07384
\(392\) −15.1725 −0.766325
\(393\) 0.860130 0.0433878
\(394\) −6.65512 −0.335280
\(395\) −38.8772 −1.95613
\(396\) 1.00000 0.0502519
\(397\) −25.2873 −1.26913 −0.634565 0.772869i \(-0.718821\pi\)
−0.634565 + 0.772869i \(0.718821\pi\)
\(398\) −16.0697 −0.805502
\(399\) 4.70876 0.235733
\(400\) 0.192470 0.00962350
\(401\) −21.1103 −1.05420 −0.527098 0.849804i \(-0.676720\pi\)
−0.527098 + 0.849804i \(0.676720\pi\)
\(402\) 7.92233 0.395130
\(403\) −42.4822 −2.11619
\(404\) −6.54992 −0.325871
\(405\) 2.27870 0.113229
\(406\) 25.2622 1.25374
\(407\) 1.56994 0.0778188
\(408\) 5.36493 0.265604
\(409\) −27.4096 −1.35532 −0.677658 0.735377i \(-0.737005\pi\)
−0.677658 + 0.735377i \(0.737005\pi\)
\(410\) 26.0171 1.28489
\(411\) 0.687671 0.0339203
\(412\) −2.17993 −0.107398
\(413\) 0 0
\(414\) −7.64363 −0.375664
\(415\) 1.95998 0.0962115
\(416\) −5.08623 −0.249373
\(417\) 16.4797 0.807016
\(418\) −1.00000 −0.0489116
\(419\) −8.88974 −0.434292 −0.217146 0.976139i \(-0.569675\pi\)
−0.217146 + 0.976139i \(0.569675\pi\)
\(420\) 10.7299 0.523563
\(421\) 7.96745 0.388310 0.194155 0.980971i \(-0.437804\pi\)
0.194155 + 0.980971i \(0.437804\pi\)
\(422\) 13.0577 0.635637
\(423\) −7.64363 −0.371646
\(424\) 7.26616 0.352876
\(425\) −1.03259 −0.0500879
\(426\) −4.15137 −0.201134
\(427\) −50.0593 −2.42254
\(428\) −5.19247 −0.250988
\(429\) 5.08623 0.245565
\(430\) 7.66766 0.369767
\(431\) −22.3198 −1.07511 −0.537555 0.843229i \(-0.680652\pi\)
−0.537555 + 0.843229i \(0.680652\pi\)
\(432\) 1.00000 0.0481125
\(433\) 1.58999 0.0764099 0.0382049 0.999270i \(-0.487836\pi\)
0.0382049 + 0.999270i \(0.487836\pi\)
\(434\) 39.3294 1.88787
\(435\) −12.2251 −0.586147
\(436\) 4.22610 0.202393
\(437\) 7.64363 0.365644
\(438\) −6.55740 −0.313325
\(439\) 1.85157 0.0883708 0.0441854 0.999023i \(-0.485931\pi\)
0.0441854 + 0.999023i \(0.485931\pi\)
\(440\) −2.27870 −0.108633
\(441\) 15.1725 0.722498
\(442\) 27.2873 1.29792
\(443\) 1.73492 0.0824285 0.0412142 0.999150i \(-0.486877\pi\)
0.0412142 + 0.999150i \(0.486877\pi\)
\(444\) 1.56994 0.0745058
\(445\) 12.2251 0.579523
\(446\) 21.9675 1.04019
\(447\) −11.2125 −0.530334
\(448\) 4.70876 0.222468
\(449\) 4.49014 0.211903 0.105951 0.994371i \(-0.466211\pi\)
0.105951 + 0.994371i \(0.466211\pi\)
\(450\) −0.192470 −0.00907312
\(451\) −11.4175 −0.537630
\(452\) 9.92233 0.466707
\(453\) −0.278699 −0.0130944
\(454\) 22.2000 1.04190
\(455\) 54.5745 2.55849
\(456\) −1.00000 −0.0468293
\(457\) 2.81207 0.131543 0.0657714 0.997835i \(-0.479049\pi\)
0.0657714 + 0.997835i \(0.479049\pi\)
\(458\) −8.68767 −0.405948
\(459\) −5.36493 −0.250413
\(460\) 17.4175 0.812096
\(461\) 25.5825 1.19150 0.595748 0.803171i \(-0.296856\pi\)
0.595748 + 0.803171i \(0.296856\pi\)
\(462\) −4.70876 −0.219072
\(463\) −25.3399 −1.17764 −0.588821 0.808263i \(-0.700408\pi\)
−0.588821 + 0.808263i \(0.700408\pi\)
\(464\) −5.36493 −0.249061
\(465\) −19.0326 −0.882615
\(466\) 5.24507 0.242973
\(467\) 24.0000 1.11059 0.555294 0.831654i \(-0.312606\pi\)
0.555294 + 0.831654i \(0.312606\pi\)
\(468\) 5.08623 0.235111
\(469\) −37.3044 −1.72256
\(470\) 17.4175 0.803411
\(471\) 6.55740 0.302149
\(472\) 0 0
\(473\) −3.36493 −0.154720
\(474\) 17.0612 0.783645
\(475\) 0.192470 0.00883113
\(476\) −25.2622 −1.15789
\(477\) −7.26616 −0.332695
\(478\) −4.88226 −0.223310
\(479\) 30.7649 1.40568 0.702841 0.711347i \(-0.251914\pi\)
0.702841 + 0.711347i \(0.251914\pi\)
\(480\) −2.27870 −0.104008
\(481\) 7.98505 0.364087
\(482\) 4.05260 0.184591
\(483\) 35.9920 1.63769
\(484\) 1.00000 0.0454545
\(485\) 43.0727 1.95583
\(486\) −1.00000 −0.0453609
\(487\) −7.95034 −0.360264 −0.180132 0.983642i \(-0.557653\pi\)
−0.180132 + 0.983642i \(0.557653\pi\)
\(488\) 10.6311 0.481247
\(489\) 19.5900 0.885890
\(490\) −34.5735 −1.56187
\(491\) 32.8100 1.48069 0.740347 0.672225i \(-0.234661\pi\)
0.740347 + 0.672225i \(0.234661\pi\)
\(492\) −11.4175 −0.514742
\(493\) 28.7825 1.29630
\(494\) −5.08623 −0.228840
\(495\) 2.27870 0.102420
\(496\) −8.35239 −0.375033
\(497\) 19.5478 0.876839
\(498\) −0.860130 −0.0385433
\(499\) −8.04219 −0.360018 −0.180009 0.983665i \(-0.557613\pi\)
−0.180009 + 0.983665i \(0.557613\pi\)
\(500\) −10.9549 −0.489919
\(501\) 15.2873 0.682984
\(502\) −20.0697 −0.895755
\(503\) −5.56540 −0.248149 −0.124074 0.992273i \(-0.539596\pi\)
−0.124074 + 0.992273i \(0.539596\pi\)
\(504\) −4.70876 −0.209745
\(505\) −14.9253 −0.664167
\(506\) −7.64363 −0.339801
\(507\) 12.8697 0.571565
\(508\) 9.69623 0.430201
\(509\) 5.24905 0.232660 0.116330 0.993211i \(-0.462887\pi\)
0.116330 + 0.993211i \(0.462887\pi\)
\(510\) 12.2251 0.541335
\(511\) 30.8772 1.36593
\(512\) −1.00000 −0.0441942
\(513\) 1.00000 0.0441511
\(514\) −26.5849 −1.17261
\(515\) −4.96741 −0.218890
\(516\) −3.36493 −0.148133
\(517\) −7.64363 −0.336166
\(518\) −7.39245 −0.324806
\(519\) 3.33985 0.146603
\(520\) −11.5900 −0.508255
\(521\) 10.4375 0.457277 0.228638 0.973511i \(-0.426573\pi\)
0.228638 + 0.973511i \(0.426573\pi\)
\(522\) 5.36493 0.234817
\(523\) −19.0475 −0.832891 −0.416445 0.909161i \(-0.636724\pi\)
−0.416445 + 0.909161i \(0.636724\pi\)
\(524\) 0.860130 0.0375749
\(525\) 0.906296 0.0395540
\(526\) 15.4923 0.675495
\(527\) 44.8100 1.95195
\(528\) 1.00000 0.0435194
\(529\) 35.4250 1.54022
\(530\) 16.5574 0.719207
\(531\) 0 0
\(532\) 4.70876 0.204151
\(533\) −58.0722 −2.51538
\(534\) −5.36493 −0.232163
\(535\) −11.8321 −0.511545
\(536\) 7.92233 0.342192
\(537\) −23.6471 −1.02045
\(538\) −13.3334 −0.574845
\(539\) 15.1725 0.653524
\(540\) 2.27870 0.0980596
\(541\) 33.7835 1.45247 0.726234 0.687448i \(-0.241269\pi\)
0.726234 + 0.687448i \(0.241269\pi\)
\(542\) 16.5112 0.709218
\(543\) 19.8476 0.851742
\(544\) 5.36493 0.230019
\(545\) 9.63001 0.412504
\(546\) −23.9499 −1.02496
\(547\) 15.8447 0.677468 0.338734 0.940882i \(-0.390001\pi\)
0.338734 + 0.940882i \(0.390001\pi\)
\(548\) 0.687671 0.0293759
\(549\) −10.6311 −0.453724
\(550\) −0.192470 −0.00820695
\(551\) −5.36493 −0.228554
\(552\) −7.64363 −0.325334
\(553\) −80.3370 −3.41627
\(554\) −13.8190 −0.587114
\(555\) 3.57741 0.151853
\(556\) 16.4797 0.698896
\(557\) 25.5825 1.08397 0.541983 0.840390i \(-0.317674\pi\)
0.541983 + 0.840390i \(0.317674\pi\)
\(558\) 8.35239 0.353585
\(559\) −17.1148 −0.723879
\(560\) 10.7299 0.453419
\(561\) −5.36493 −0.226507
\(562\) −16.2146 −0.683973
\(563\) −11.3169 −0.476949 −0.238474 0.971149i \(-0.576647\pi\)
−0.238474 + 0.971149i \(0.576647\pi\)
\(564\) −7.64363 −0.321855
\(565\) 22.6100 0.951210
\(566\) 6.88520 0.289407
\(567\) 4.70876 0.197750
\(568\) −4.15137 −0.174187
\(569\) 24.5174 1.02782 0.513911 0.857844i \(-0.328196\pi\)
0.513911 + 0.857844i \(0.328196\pi\)
\(570\) −2.27870 −0.0954442
\(571\) 12.3323 0.516092 0.258046 0.966133i \(-0.416921\pi\)
0.258046 + 0.966133i \(0.416921\pi\)
\(572\) 5.08623 0.212666
\(573\) 15.9464 0.666169
\(574\) 53.7624 2.24400
\(575\) 1.47117 0.0613520
\(576\) 1.00000 0.0416667
\(577\) 3.04509 0.126769 0.0633843 0.997989i \(-0.479811\pi\)
0.0633843 + 0.997989i \(0.479811\pi\)
\(578\) −11.7825 −0.490086
\(579\) −13.9223 −0.578592
\(580\) −12.2251 −0.507618
\(581\) 4.05015 0.168028
\(582\) −18.9023 −0.783526
\(583\) −7.26616 −0.300934
\(584\) −6.55740 −0.271347
\(585\) 11.5900 0.479187
\(586\) −9.92233 −0.409888
\(587\) 13.6004 0.561349 0.280674 0.959803i \(-0.409442\pi\)
0.280674 + 0.959803i \(0.409442\pi\)
\(588\) 15.1725 0.625702
\(589\) −8.35239 −0.344154
\(590\) 0 0
\(591\) 6.65512 0.273755
\(592\) 1.56994 0.0645239
\(593\) 35.0075 1.43759 0.718793 0.695224i \(-0.244695\pi\)
0.718793 + 0.695224i \(0.244695\pi\)
\(594\) −1.00000 −0.0410305
\(595\) −57.5649 −2.35993
\(596\) −11.2125 −0.459283
\(597\) 16.0697 0.657690
\(598\) −38.8772 −1.58981
\(599\) 38.3033 1.56503 0.782515 0.622632i \(-0.213937\pi\)
0.782515 + 0.622632i \(0.213937\pi\)
\(600\) −0.192470 −0.00785756
\(601\) 34.3519 1.40124 0.700622 0.713533i \(-0.252906\pi\)
0.700622 + 0.713533i \(0.252906\pi\)
\(602\) 15.8447 0.645780
\(603\) −7.92233 −0.322622
\(604\) −0.278699 −0.0113401
\(605\) 2.27870 0.0926423
\(606\) 6.54992 0.266072
\(607\) 19.2838 0.782704 0.391352 0.920241i \(-0.372008\pi\)
0.391352 + 0.920241i \(0.372008\pi\)
\(608\) −1.00000 −0.0405554
\(609\) −25.2622 −1.02368
\(610\) 24.2251 0.980844
\(611\) −38.8772 −1.57280
\(612\) −5.36493 −0.216864
\(613\) 0.790973 0.0319471 0.0159735 0.999872i \(-0.494915\pi\)
0.0159735 + 0.999872i \(0.494915\pi\)
\(614\) 28.3449 1.14391
\(615\) −26.0171 −1.04911
\(616\) −4.70876 −0.189722
\(617\) 40.4250 1.62745 0.813725 0.581249i \(-0.197436\pi\)
0.813725 + 0.581249i \(0.197436\pi\)
\(618\) 2.17993 0.0876898
\(619\) 37.0075 1.48746 0.743729 0.668481i \(-0.233055\pi\)
0.743729 + 0.668481i \(0.233055\pi\)
\(620\) −19.0326 −0.764367
\(621\) 7.64363 0.306728
\(622\) 14.6762 0.588463
\(623\) 25.2622 1.01211
\(624\) 5.08623 0.203612
\(625\) −25.9253 −1.03701
\(626\) 23.0852 0.922670
\(627\) 1.00000 0.0399362
\(628\) 6.55740 0.261669
\(629\) −8.42259 −0.335831
\(630\) −10.7299 −0.427488
\(631\) −40.6271 −1.61734 −0.808670 0.588263i \(-0.799812\pi\)
−0.808670 + 0.588263i \(0.799812\pi\)
\(632\) 17.0612 0.678656
\(633\) −13.0577 −0.518995
\(634\) 1.09370 0.0434365
\(635\) 22.0948 0.876805
\(636\) −7.26616 −0.288122
\(637\) 77.1706 3.05761
\(638\) 5.36493 0.212400
\(639\) 4.15137 0.164225
\(640\) −2.27870 −0.0900735
\(641\) −22.8543 −0.902689 −0.451344 0.892350i \(-0.649055\pi\)
−0.451344 + 0.892350i \(0.649055\pi\)
\(642\) 5.19247 0.204930
\(643\) −37.5649 −1.48142 −0.740708 0.671827i \(-0.765510\pi\)
−0.740708 + 0.671827i \(0.765510\pi\)
\(644\) 35.9920 1.41828
\(645\) −7.66766 −0.301914
\(646\) 5.36493 0.211080
\(647\) −36.3062 −1.42734 −0.713672 0.700480i \(-0.752970\pi\)
−0.713672 + 0.700480i \(0.752970\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 0 0
\(650\) −0.978947 −0.0383974
\(651\) −39.3294 −1.54144
\(652\) 19.5900 0.767203
\(653\) 21.7931 0.852830 0.426415 0.904528i \(-0.359776\pi\)
0.426415 + 0.904528i \(0.359776\pi\)
\(654\) −4.22610 −0.165254
\(655\) 1.95998 0.0765826
\(656\) −11.4175 −0.445780
\(657\) 6.55740 0.255828
\(658\) 35.9920 1.40312
\(659\) −7.13779 −0.278049 −0.139024 0.990289i \(-0.544397\pi\)
−0.139024 + 0.990289i \(0.544397\pi\)
\(660\) 2.27870 0.0886982
\(661\) 16.2702 0.632837 0.316418 0.948620i \(-0.397520\pi\)
0.316418 + 0.948620i \(0.397520\pi\)
\(662\) 21.1925 0.823669
\(663\) −27.2873 −1.05975
\(664\) −0.860130 −0.0333795
\(665\) 10.7299 0.416086
\(666\) −1.56994 −0.0608338
\(667\) −41.0075 −1.58782
\(668\) 15.2873 0.591482
\(669\) −21.9675 −0.849311
\(670\) 18.0526 0.697433
\(671\) −10.6311 −0.410409
\(672\) −4.70876 −0.181645
\(673\) 8.80753 0.339505 0.169753 0.985487i \(-0.445703\pi\)
0.169753 + 0.985487i \(0.445703\pi\)
\(674\) −11.2347 −0.432743
\(675\) 0.192470 0.00740817
\(676\) 12.8697 0.494990
\(677\) 3.81259 0.146530 0.0732649 0.997313i \(-0.476658\pi\)
0.0732649 + 0.997313i \(0.476658\pi\)
\(678\) −9.92233 −0.381065
\(679\) 89.0065 3.41576
\(680\) 12.2251 0.468810
\(681\) −22.2000 −0.850705
\(682\) 8.35239 0.319830
\(683\) −40.2526 −1.54022 −0.770111 0.637910i \(-0.779799\pi\)
−0.770111 + 0.637910i \(0.779799\pi\)
\(684\) 1.00000 0.0382360
\(685\) 1.56700 0.0598718
\(686\) −38.4822 −1.46926
\(687\) 8.68767 0.331455
\(688\) −3.36493 −0.128287
\(689\) −36.9574 −1.40796
\(690\) −17.4175 −0.663074
\(691\) 39.7875 1.51359 0.756794 0.653653i \(-0.226764\pi\)
0.756794 + 0.653653i \(0.226764\pi\)
\(692\) 3.33985 0.126962
\(693\) 4.70876 0.178871
\(694\) −19.9499 −0.757286
\(695\) 37.5523 1.42444
\(696\) 5.36493 0.203357
\(697\) 61.2542 2.32017
\(698\) 4.45863 0.168762
\(699\) −5.24507 −0.198387
\(700\) 0.906296 0.0342548
\(701\) −33.0822 −1.24950 −0.624750 0.780825i \(-0.714799\pi\)
−0.624750 + 0.780825i \(0.714799\pi\)
\(702\) −5.08623 −0.191967
\(703\) 1.56994 0.0592112
\(704\) 1.00000 0.0376889
\(705\) −17.4175 −0.655982
\(706\) −6.86013 −0.258184
\(707\) −30.8420 −1.15993
\(708\) 0 0
\(709\) −37.2222 −1.39791 −0.698954 0.715167i \(-0.746351\pi\)
−0.698954 + 0.715167i \(0.746351\pi\)
\(710\) −9.45971 −0.355017
\(711\) −17.0612 −0.639843
\(712\) −5.36493 −0.201059
\(713\) −63.8426 −2.39092
\(714\) 25.2622 0.945413
\(715\) 11.5900 0.433441
\(716\) −23.6471 −0.883734
\(717\) 4.88226 0.182331
\(718\) 32.4998 1.21288
\(719\) 26.6191 0.992724 0.496362 0.868116i \(-0.334669\pi\)
0.496362 + 0.868116i \(0.334669\pi\)
\(720\) 2.27870 0.0849221
\(721\) −10.2648 −0.382281
\(722\) −1.00000 −0.0372161
\(723\) −4.05260 −0.150718
\(724\) 19.8476 0.737630
\(725\) −1.03259 −0.0383494
\(726\) −1.00000 −0.0371135
\(727\) −30.7002 −1.13861 −0.569305 0.822127i \(-0.692787\pi\)
−0.569305 + 0.822127i \(0.692787\pi\)
\(728\) −23.9499 −0.887641
\(729\) 1.00000 0.0370370
\(730\) −14.9423 −0.553041
\(731\) 18.0526 0.667700
\(732\) −10.6311 −0.392936
\(733\) 15.2515 0.563327 0.281664 0.959513i \(-0.409114\pi\)
0.281664 + 0.959513i \(0.409114\pi\)
\(734\) 10.9127 0.402796
\(735\) 34.5735 1.27526
\(736\) −7.64363 −0.281748
\(737\) −7.92233 −0.291823
\(738\) 11.4175 0.420285
\(739\) 18.6247 0.685119 0.342560 0.939496i \(-0.388706\pi\)
0.342560 + 0.939496i \(0.388706\pi\)
\(740\) 3.57741 0.131508
\(741\) 5.08623 0.186847
\(742\) 34.2146 1.25606
\(743\) −5.72234 −0.209932 −0.104966 0.994476i \(-0.533473\pi\)
−0.104966 + 0.994476i \(0.533473\pi\)
\(744\) 8.35239 0.306214
\(745\) −25.5500 −0.936078
\(746\) −14.2010 −0.519937
\(747\) 0.860130 0.0314705
\(748\) −5.36493 −0.196161
\(749\) −24.4501 −0.893388
\(750\) 10.9549 0.400017
\(751\) 9.01707 0.329038 0.164519 0.986374i \(-0.447393\pi\)
0.164519 + 0.986374i \(0.447393\pi\)
\(752\) −7.64363 −0.278734
\(753\) 20.0697 0.731381
\(754\) 27.2873 0.993743
\(755\) −0.635072 −0.0231126
\(756\) 4.70876 0.171256
\(757\) 19.4747 0.707819 0.353909 0.935280i \(-0.384852\pi\)
0.353909 + 0.935280i \(0.384852\pi\)
\(758\) −33.1423 −1.20378
\(759\) 7.64363 0.277446
\(760\) −2.27870 −0.0826571
\(761\) 26.7194 0.968579 0.484290 0.874908i \(-0.339078\pi\)
0.484290 + 0.874908i \(0.339078\pi\)
\(762\) −9.69623 −0.351257
\(763\) 19.8997 0.720418
\(764\) 15.9464 0.576919
\(765\) −12.2251 −0.441998
\(766\) −30.2883 −1.09436
\(767\) 0 0
\(768\) 1.00000 0.0360844
\(769\) −17.4346 −0.628709 −0.314355 0.949306i \(-0.601788\pi\)
−0.314355 + 0.949306i \(0.601788\pi\)
\(770\) −10.7299 −0.386677
\(771\) 26.5849 0.957433
\(772\) −13.9223 −0.501076
\(773\) 12.0633 0.433886 0.216943 0.976184i \(-0.430391\pi\)
0.216943 + 0.976184i \(0.430391\pi\)
\(774\) 3.36493 0.120950
\(775\) −1.60759 −0.0577462
\(776\) −18.9023 −0.678554
\(777\) 7.39245 0.265203
\(778\) −17.3409 −0.621701
\(779\) −11.4175 −0.409075
\(780\) 11.5900 0.414988
\(781\) 4.15137 0.148548
\(782\) 41.0075 1.46643
\(783\) −5.36493 −0.191727
\(784\) 15.1725 0.541874
\(785\) 14.9423 0.533315
\(786\) −0.860130 −0.0306798
\(787\) −34.2777 −1.22187 −0.610933 0.791682i \(-0.709206\pi\)
−0.610933 + 0.791682i \(0.709206\pi\)
\(788\) 6.65512 0.237079
\(789\) −15.4923 −0.551539
\(790\) 38.8772 1.38319
\(791\) 46.7219 1.66124
\(792\) −1.00000 −0.0355335
\(793\) −54.0722 −1.92016
\(794\) 25.2873 0.897411
\(795\) −16.5574 −0.587230
\(796\) 16.0697 0.569576
\(797\) −17.4808 −0.619202 −0.309601 0.950867i \(-0.600195\pi\)
−0.309601 + 0.950867i \(0.600195\pi\)
\(798\) −4.70876 −0.166688
\(799\) 41.0075 1.45074
\(800\) −0.192470 −0.00680484
\(801\) 5.36493 0.189560
\(802\) 21.1103 0.745429
\(803\) 6.55740 0.231406
\(804\) −7.92233 −0.279399
\(805\) 82.0150 2.89065
\(806\) 42.4822 1.49637
\(807\) 13.3334 0.469359
\(808\) 6.54992 0.230426
\(809\) 1.73945 0.0611560 0.0305780 0.999532i \(-0.490265\pi\)
0.0305780 + 0.999532i \(0.490265\pi\)
\(810\) −2.27870 −0.0800653
\(811\) −25.0577 −0.879894 −0.439947 0.898024i \(-0.645003\pi\)
−0.439947 + 0.898024i \(0.645003\pi\)
\(812\) −25.2622 −0.886529
\(813\) −16.5112 −0.579074
\(814\) −1.56994 −0.0550262
\(815\) 44.6397 1.56366
\(816\) −5.36493 −0.187810
\(817\) −3.36493 −0.117724
\(818\) 27.4096 0.958353
\(819\) 23.9499 0.836876
\(820\) −26.0171 −0.908557
\(821\) 42.3503 1.47804 0.739018 0.673686i \(-0.235290\pi\)
0.739018 + 0.673686i \(0.235290\pi\)
\(822\) −0.687671 −0.0239853
\(823\) −43.4071 −1.51308 −0.756538 0.653949i \(-0.773111\pi\)
−0.756538 + 0.653949i \(0.773111\pi\)
\(824\) 2.17993 0.0759416
\(825\) 0.192470 0.00670095
\(826\) 0 0
\(827\) −7.54780 −0.262463 −0.131231 0.991352i \(-0.541893\pi\)
−0.131231 + 0.991352i \(0.541893\pi\)
\(828\) 7.64363 0.265634
\(829\) −34.3650 −1.19354 −0.596772 0.802411i \(-0.703550\pi\)
−0.596772 + 0.802411i \(0.703550\pi\)
\(830\) −1.95998 −0.0680318
\(831\) 13.8190 0.479377
\(832\) 5.08623 0.176333
\(833\) −81.3992 −2.82031
\(834\) −16.4797 −0.570646
\(835\) 34.8351 1.20552
\(836\) 1.00000 0.0345857
\(837\) −8.35239 −0.288701
\(838\) 8.88974 0.307091
\(839\) −28.1581 −0.972124 −0.486062 0.873924i \(-0.661567\pi\)
−0.486062 + 0.873924i \(0.661567\pi\)
\(840\) −10.7299 −0.370215
\(841\) −0.217544 −0.00750151
\(842\) −7.96745 −0.274577
\(843\) 16.2146 0.558462
\(844\) −13.0577 −0.449463
\(845\) 29.3262 1.00885
\(846\) 7.64363 0.262793
\(847\) 4.70876 0.161795
\(848\) −7.26616 −0.249521
\(849\) −6.88520 −0.236300
\(850\) 1.03259 0.0354175
\(851\) 12.0000 0.411355
\(852\) 4.15137 0.142223
\(853\) −56.3012 −1.92772 −0.963858 0.266416i \(-0.914161\pi\)
−0.963858 + 0.266416i \(0.914161\pi\)
\(854\) 50.0593 1.71299
\(855\) 2.27870 0.0779299
\(856\) 5.19247 0.177475
\(857\) 21.6893 0.740893 0.370446 0.928854i \(-0.379205\pi\)
0.370446 + 0.928854i \(0.379205\pi\)
\(858\) −5.08623 −0.173641
\(859\) 53.1068 1.81198 0.905991 0.423297i \(-0.139127\pi\)
0.905991 + 0.423297i \(0.139127\pi\)
\(860\) −7.66766 −0.261465
\(861\) −53.7624 −1.83222
\(862\) 22.3198 0.760217
\(863\) 2.83316 0.0964418 0.0482209 0.998837i \(-0.484645\pi\)
0.0482209 + 0.998837i \(0.484645\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 7.61052 0.258766
\(866\) −1.58999 −0.0540299
\(867\) 11.7825 0.400153
\(868\) −39.3294 −1.33493
\(869\) −17.0612 −0.578760
\(870\) 12.2251 0.414468
\(871\) −40.2948 −1.36534
\(872\) −4.22610 −0.143114
\(873\) 18.9023 0.639746
\(874\) −7.64363 −0.258550
\(875\) −51.5841 −1.74386
\(876\) 6.55740 0.221554
\(877\) 3.81609 0.128860 0.0644300 0.997922i \(-0.479477\pi\)
0.0644300 + 0.997922i \(0.479477\pi\)
\(878\) −1.85157 −0.0624876
\(879\) 9.92233 0.334672
\(880\) 2.27870 0.0768149
\(881\) −52.7790 −1.77817 −0.889085 0.457741i \(-0.848659\pi\)
−0.889085 + 0.457741i \(0.848659\pi\)
\(882\) −15.1725 −0.510883
\(883\) −49.6220 −1.66991 −0.834957 0.550315i \(-0.814508\pi\)
−0.834957 + 0.550315i \(0.814508\pi\)
\(884\) −27.2873 −0.917770
\(885\) 0 0
\(886\) −1.73492 −0.0582857
\(887\) 37.7774 1.26844 0.634220 0.773152i \(-0.281321\pi\)
0.634220 + 0.773152i \(0.281321\pi\)
\(888\) −1.56994 −0.0526836
\(889\) 45.6572 1.53129
\(890\) −12.2251 −0.409785
\(891\) 1.00000 0.0335013
\(892\) −21.9675 −0.735525
\(893\) −7.64363 −0.255784
\(894\) 11.2125 0.375003
\(895\) −53.8847 −1.80117
\(896\) −4.70876 −0.157309
\(897\) 38.8772 1.29807
\(898\) −4.49014 −0.149838
\(899\) 44.8100 1.49450
\(900\) 0.192470 0.00641567
\(901\) 38.9824 1.29869
\(902\) 11.4175 0.380162
\(903\) −15.8447 −0.527277
\(904\) −9.92233 −0.330012
\(905\) 45.2267 1.50339
\(906\) 0.278699 0.00925916
\(907\) 24.1327 0.801314 0.400657 0.916228i \(-0.368782\pi\)
0.400657 + 0.916228i \(0.368782\pi\)
\(908\) −22.2000 −0.736732
\(909\) −6.54992 −0.217247
\(910\) −54.5745 −1.80913
\(911\) −26.8666 −0.890129 −0.445064 0.895499i \(-0.646819\pi\)
−0.445064 + 0.895499i \(0.646819\pi\)
\(912\) 1.00000 0.0331133
\(913\) 0.860130 0.0284661
\(914\) −2.81207 −0.0930149
\(915\) −24.2251 −0.800856
\(916\) 8.68767 0.287049
\(917\) 4.05015 0.133748
\(918\) 5.36493 0.177069
\(919\) 7.28915 0.240447 0.120223 0.992747i \(-0.461639\pi\)
0.120223 + 0.992747i \(0.461639\pi\)
\(920\) −17.4175 −0.574239
\(921\) −28.3449 −0.933997
\(922\) −25.5825 −0.842515
\(923\) 21.1148 0.695002
\(924\) 4.70876 0.154907
\(925\) 0.302165 0.00993514
\(926\) 25.3399 0.832719
\(927\) −2.17993 −0.0715984
\(928\) 5.36493 0.176112
\(929\) −58.9515 −1.93414 −0.967068 0.254519i \(-0.918083\pi\)
−0.967068 + 0.254519i \(0.918083\pi\)
\(930\) 19.0326 0.624103
\(931\) 15.1725 0.497257
\(932\) −5.24507 −0.171808
\(933\) −14.6762 −0.480478
\(934\) −24.0000 −0.785304
\(935\) −12.2251 −0.399802
\(936\) −5.08623 −0.166249
\(937\) −12.9423 −0.422808 −0.211404 0.977399i \(-0.567804\pi\)
−0.211404 + 0.977399i \(0.567804\pi\)
\(938\) 37.3044 1.21803
\(939\) −23.0852 −0.753357
\(940\) −17.4175 −0.568097
\(941\) 16.5048 0.538041 0.269021 0.963134i \(-0.413300\pi\)
0.269021 + 0.963134i \(0.413300\pi\)
\(942\) −6.55740 −0.213652
\(943\) −87.2713 −2.84195
\(944\) 0 0
\(945\) 10.7299 0.349042
\(946\) 3.36493 0.109403
\(947\) −39.5123 −1.28398 −0.641989 0.766714i \(-0.721890\pi\)
−0.641989 + 0.766714i \(0.721890\pi\)
\(948\) −17.0612 −0.554121
\(949\) 33.3524 1.08267
\(950\) −0.192470 −0.00624455
\(951\) −1.09370 −0.0354658
\(952\) 25.2622 0.818752
\(953\) −32.4271 −1.05042 −0.525209 0.850973i \(-0.676013\pi\)
−0.525209 + 0.850973i \(0.676013\pi\)
\(954\) 7.26616 0.235251
\(955\) 36.3370 1.17584
\(956\) 4.88226 0.157904
\(957\) −5.36493 −0.173424
\(958\) −30.7649 −0.993967
\(959\) 3.23808 0.104563
\(960\) 2.27870 0.0735447
\(961\) 38.7624 1.25040
\(962\) −7.98505 −0.257448
\(963\) −5.19247 −0.167325
\(964\) −4.05260 −0.130525
\(965\) −31.7248 −1.02126
\(966\) −35.9920 −1.15802
\(967\) 34.4712 1.10852 0.554260 0.832344i \(-0.313001\pi\)
0.554260 + 0.832344i \(0.313001\pi\)
\(968\) −1.00000 −0.0321412
\(969\) −5.36493 −0.172346
\(970\) −43.0727 −1.38298
\(971\) −9.67807 −0.310584 −0.155292 0.987869i \(-0.549632\pi\)
−0.155292 + 0.987869i \(0.549632\pi\)
\(972\) 1.00000 0.0320750
\(973\) 77.5991 2.48771
\(974\) 7.95034 0.254745
\(975\) 0.978947 0.0313514
\(976\) −10.6311 −0.340293
\(977\) 20.1223 0.643770 0.321885 0.946779i \(-0.395684\pi\)
0.321885 + 0.946779i \(0.395684\pi\)
\(978\) −19.5900 −0.626419
\(979\) 5.36493 0.171464
\(980\) 34.5735 1.10441
\(981\) 4.22610 0.134929
\(982\) −32.8100 −1.04701
\(983\) −34.0281 −1.08533 −0.542664 0.839950i \(-0.682584\pi\)
−0.542664 + 0.839950i \(0.682584\pi\)
\(984\) 11.4175 0.363977
\(985\) 15.1650 0.483198
\(986\) −28.7825 −0.916620
\(987\) −35.9920 −1.14564
\(988\) 5.08623 0.161815
\(989\) −25.7203 −0.817857
\(990\) −2.27870 −0.0724218
\(991\) −24.9579 −0.792812 −0.396406 0.918075i \(-0.629743\pi\)
−0.396406 + 0.918075i \(0.629743\pi\)
\(992\) 8.35239 0.265189
\(993\) −21.1925 −0.672523
\(994\) −19.5478 −0.620019
\(995\) 36.6180 1.16087
\(996\) 0.860130 0.0272542
\(997\) 3.41943 0.108294 0.0541471 0.998533i \(-0.482756\pi\)
0.0541471 + 0.998533i \(0.482756\pi\)
\(998\) 8.04219 0.254571
\(999\) 1.56994 0.0496706
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1254.2.a.r.1.3 4
3.2 odd 2 3762.2.a.bh.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1254.2.a.r.1.3 4 1.1 even 1 trivial
3762.2.a.bh.1.2 4 3.2 odd 2