Properties

Label 1254.2.a.r.1.3
Level 12541254
Weight 22
Character 1254.1
Self dual yes
Analytic conductor 10.01310.013
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1254,2,Mod(1,1254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1254, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1254.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1254=231119 1254 = 2 \cdot 3 \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1254.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 10.013240413510.0132404135
Analytic rank: 00
Dimension: 44
Coefficient field: 4.4.23377.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x37x2+6x+7 x^{4} - x^{3} - 7x^{2} + 6x + 7 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 2.354382.35438 of defining polynomial
Character χ\chi == 1254.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q2+1.00000q3+1.00000q4+2.27870q51.00000q6+4.70876q71.00000q8+1.00000q92.27870q10+1.00000q11+1.00000q12+5.08623q134.70876q14+2.27870q15+1.00000q165.36493q171.00000q18+1.00000q19+2.27870q20+4.70876q211.00000q22+7.64363q231.00000q24+0.192470q255.08623q26+1.00000q27+4.70876q285.36493q292.27870q308.35239q311.00000q32+1.00000q33+5.36493q34+10.7299q35+1.00000q36+1.56994q371.00000q38+5.08623q392.27870q4011.4175q414.70876q423.36493q43+1.00000q44+2.27870q457.64363q467.64363q47+1.00000q48+15.1725q490.192470q505.36493q51+5.08623q527.26616q531.00000q54+2.27870q554.70876q56+1.00000q57+5.36493q58+2.27870q6010.6311q61+8.35239q62+4.70876q63+1.00000q64+11.5900q651.00000q667.92233q675.36493q68+7.64363q6910.7299q70+4.15137q711.00000q72+6.55740q731.56994q74+0.192470q75+1.00000q76+4.70876q775.08623q7817.0612q79+2.27870q80+1.00000q81+11.4175q82+0.860130q83+4.70876q8412.2251q85+3.36493q865.36493q871.00000q88+5.36493q892.27870q90+23.9499q91+7.64363q928.35239q93+7.64363q94+2.27870q951.00000q96+18.9023q9715.1725q98+1.00000q99+O(q100)q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +2.27870 q^{5} -1.00000 q^{6} +4.70876 q^{7} -1.00000 q^{8} +1.00000 q^{9} -2.27870 q^{10} +1.00000 q^{11} +1.00000 q^{12} +5.08623 q^{13} -4.70876 q^{14} +2.27870 q^{15} +1.00000 q^{16} -5.36493 q^{17} -1.00000 q^{18} +1.00000 q^{19} +2.27870 q^{20} +4.70876 q^{21} -1.00000 q^{22} +7.64363 q^{23} -1.00000 q^{24} +0.192470 q^{25} -5.08623 q^{26} +1.00000 q^{27} +4.70876 q^{28} -5.36493 q^{29} -2.27870 q^{30} -8.35239 q^{31} -1.00000 q^{32} +1.00000 q^{33} +5.36493 q^{34} +10.7299 q^{35} +1.00000 q^{36} +1.56994 q^{37} -1.00000 q^{38} +5.08623 q^{39} -2.27870 q^{40} -11.4175 q^{41} -4.70876 q^{42} -3.36493 q^{43} +1.00000 q^{44} +2.27870 q^{45} -7.64363 q^{46} -7.64363 q^{47} +1.00000 q^{48} +15.1725 q^{49} -0.192470 q^{50} -5.36493 q^{51} +5.08623 q^{52} -7.26616 q^{53} -1.00000 q^{54} +2.27870 q^{55} -4.70876 q^{56} +1.00000 q^{57} +5.36493 q^{58} +2.27870 q^{60} -10.6311 q^{61} +8.35239 q^{62} +4.70876 q^{63} +1.00000 q^{64} +11.5900 q^{65} -1.00000 q^{66} -7.92233 q^{67} -5.36493 q^{68} +7.64363 q^{69} -10.7299 q^{70} +4.15137 q^{71} -1.00000 q^{72} +6.55740 q^{73} -1.56994 q^{74} +0.192470 q^{75} +1.00000 q^{76} +4.70876 q^{77} -5.08623 q^{78} -17.0612 q^{79} +2.27870 q^{80} +1.00000 q^{81} +11.4175 q^{82} +0.860130 q^{83} +4.70876 q^{84} -12.2251 q^{85} +3.36493 q^{86} -5.36493 q^{87} -1.00000 q^{88} +5.36493 q^{89} -2.27870 q^{90} +23.9499 q^{91} +7.64363 q^{92} -8.35239 q^{93} +7.64363 q^{94} +2.27870 q^{95} -1.00000 q^{96} +18.9023 q^{97} -15.1725 q^{98} +1.00000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q2+4q3+4q4+3q54q6+2q74q8+4q93q10+4q11+4q12+6q132q14+3q15+4q16q174q18+4q19+3q20++4q99+O(q100) 4 q - 4 q^{2} + 4 q^{3} + 4 q^{4} + 3 q^{5} - 4 q^{6} + 2 q^{7} - 4 q^{8} + 4 q^{9} - 3 q^{10} + 4 q^{11} + 4 q^{12} + 6 q^{13} - 2 q^{14} + 3 q^{15} + 4 q^{16} - q^{17} - 4 q^{18} + 4 q^{19} + 3 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −0.707107
33 1.00000 0.577350
44 1.00000 0.500000
55 2.27870 1.01907 0.509533 0.860451i 0.329818π-0.329818\pi
0.509533 + 0.860451i 0.329818π0.329818\pi
66 −1.00000 −0.408248
77 4.70876 1.77975 0.889873 0.456209i 0.150793π-0.150793\pi
0.889873 + 0.456209i 0.150793π0.150793\pi
88 −1.00000 −0.353553
99 1.00000 0.333333
1010 −2.27870 −0.720588
1111 1.00000 0.301511
1212 1.00000 0.288675
1313 5.08623 1.41067 0.705333 0.708876i 0.250797π-0.250797\pi
0.705333 + 0.708876i 0.250797π0.250797\pi
1414 −4.70876 −1.25847
1515 2.27870 0.588358
1616 1.00000 0.250000
1717 −5.36493 −1.30119 −0.650593 0.759426i 0.725480π-0.725480\pi
−0.650593 + 0.759426i 0.725480π0.725480\pi
1818 −1.00000 −0.235702
1919 1.00000 0.229416
2020 2.27870 0.509533
2121 4.70876 1.02754
2222 −1.00000 −0.213201
2323 7.64363 1.59381 0.796903 0.604107i 0.206470π-0.206470\pi
0.796903 + 0.604107i 0.206470π0.206470\pi
2424 −1.00000 −0.204124
2525 0.192470 0.0384940
2626 −5.08623 −0.997492
2727 1.00000 0.192450
2828 4.70876 0.889873
2929 −5.36493 −0.996242 −0.498121 0.867107i 0.665977π-0.665977\pi
−0.498121 + 0.867107i 0.665977π0.665977\pi
3030 −2.27870 −0.416032
3131 −8.35239 −1.50013 −0.750067 0.661362i 0.769979π-0.769979\pi
−0.750067 + 0.661362i 0.769979π0.769979\pi
3232 −1.00000 −0.176777
3333 1.00000 0.174078
3434 5.36493 0.920078
3535 10.7299 1.81368
3636 1.00000 0.166667
3737 1.56994 0.258096 0.129048 0.991638i 0.458808π-0.458808\pi
0.129048 + 0.991638i 0.458808π0.458808\pi
3838 −1.00000 −0.162221
3939 5.08623 0.814448
4040 −2.27870 −0.360294
4141 −11.4175 −1.78312 −0.891559 0.452904i 0.850388π-0.850388\pi
−0.891559 + 0.452904i 0.850388π0.850388\pi
4242 −4.70876 −0.726578
4343 −3.36493 −0.513147 −0.256573 0.966525i 0.582594π-0.582594\pi
−0.256573 + 0.966525i 0.582594π0.582594\pi
4444 1.00000 0.150756
4545 2.27870 0.339688
4646 −7.64363 −1.12699
4747 −7.64363 −1.11494 −0.557469 0.830198i 0.688227π-0.688227\pi
−0.557469 + 0.830198i 0.688227π0.688227\pi
4848 1.00000 0.144338
4949 15.1725 2.16749
5050 −0.192470 −0.0272194
5151 −5.36493 −0.751240
5252 5.08623 0.705333
5353 −7.26616 −0.998084 −0.499042 0.866578i 0.666315π-0.666315\pi
−0.499042 + 0.866578i 0.666315π0.666315\pi
5454 −1.00000 −0.136083
5555 2.27870 0.307260
5656 −4.70876 −0.629235
5757 1.00000 0.132453
5858 5.36493 0.704450
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 2.27870 0.294179
6161 −10.6311 −1.36117 −0.680586 0.732668i 0.738275π-0.738275\pi
−0.680586 + 0.732668i 0.738275π0.738275\pi
6262 8.35239 1.06075
6363 4.70876 0.593249
6464 1.00000 0.125000
6565 11.5900 1.43756
6666 −1.00000 −0.123091
6767 −7.92233 −0.967866 −0.483933 0.875105i 0.660792π-0.660792\pi
−0.483933 + 0.875105i 0.660792π0.660792\pi
6868 −5.36493 −0.650593
6969 7.64363 0.920185
7070 −10.7299 −1.28246
7171 4.15137 0.492676 0.246338 0.969184i 0.420773π-0.420773\pi
0.246338 + 0.969184i 0.420773π0.420773\pi
7272 −1.00000 −0.117851
7373 6.55740 0.767485 0.383743 0.923440i 0.374635π-0.374635\pi
0.383743 + 0.923440i 0.374635π0.374635\pi
7474 −1.56994 −0.182501
7575 0.192470 0.0222245
7676 1.00000 0.114708
7777 4.70876 0.536613
7878 −5.08623 −0.575902
7979 −17.0612 −1.91953 −0.959765 0.280805i 0.909399π-0.909399\pi
−0.959765 + 0.280805i 0.909399π0.909399\pi
8080 2.27870 0.254766
8181 1.00000 0.111111
8282 11.4175 1.26086
8383 0.860130 0.0944115 0.0472057 0.998885i 0.484968π-0.484968\pi
0.0472057 + 0.998885i 0.484968π0.484968\pi
8484 4.70876 0.513768
8585 −12.2251 −1.32599
8686 3.36493 0.362850
8787 −5.36493 −0.575181
8888 −1.00000 −0.106600
8989 5.36493 0.568681 0.284341 0.958723i 0.408225π-0.408225\pi
0.284341 + 0.958723i 0.408225π0.408225\pi
9090 −2.27870 −0.240196
9191 23.9499 2.51063
9292 7.64363 0.796903
9393 −8.35239 −0.866103
9494 7.64363 0.788380
9595 2.27870 0.233790
9696 −1.00000 −0.102062
9797 18.9023 1.91924 0.959620 0.281301i 0.0907659π-0.0907659\pi
0.959620 + 0.281301i 0.0907659π0.0907659\pi
9898 −15.1725 −1.53265
9999 1.00000 0.100504
100100 0.192470 0.0192470
101101 −6.54992 −0.651742 −0.325871 0.945414i 0.605657π-0.605657\pi
−0.325871 + 0.945414i 0.605657π0.605657\pi
102102 5.36493 0.531207
103103 −2.17993 −0.214795 −0.107398 0.994216i 0.534252π-0.534252\pi
−0.107398 + 0.994216i 0.534252π0.534252\pi
104104 −5.08623 −0.498746
105105 10.7299 1.04713
106106 7.26616 0.705752
107107 −5.19247 −0.501975 −0.250988 0.967990i 0.580755π-0.580755\pi
−0.250988 + 0.967990i 0.580755π0.580755\pi
108108 1.00000 0.0962250
109109 4.22610 0.404787 0.202393 0.979304i 0.435128π-0.435128\pi
0.202393 + 0.979304i 0.435128π0.435128\pi
110110 −2.27870 −0.217265
111111 1.56994 0.149012
112112 4.70876 0.444936
113113 9.92233 0.933414 0.466707 0.884412i 0.345440π-0.345440\pi
0.466707 + 0.884412i 0.345440π0.345440\pi
114114 −1.00000 −0.0936586
115115 17.4175 1.62419
116116 −5.36493 −0.498121
117117 5.08623 0.470222
118118 0 0
119119 −25.2622 −2.31578
120120 −2.27870 −0.208016
121121 1.00000 0.0909091
122122 10.6311 0.962494
123123 −11.4175 −1.02948
124124 −8.35239 −0.750067
125125 −10.9549 −0.979837
126126 −4.70876 −0.419490
127127 9.69623 0.860401 0.430201 0.902733i 0.358443π-0.358443\pi
0.430201 + 0.902733i 0.358443π0.358443\pi
128128 −1.00000 −0.0883883
129129 −3.36493 −0.296265
130130 −11.5900 −1.01651
131131 0.860130 0.0751499 0.0375749 0.999294i 0.488037π-0.488037\pi
0.0375749 + 0.999294i 0.488037π0.488037\pi
132132 1.00000 0.0870388
133133 4.70876 0.408302
134134 7.92233 0.684385
135135 2.27870 0.196119
136136 5.36493 0.460039
137137 0.687671 0.0587517 0.0293759 0.999568i 0.490648π-0.490648\pi
0.0293759 + 0.999568i 0.490648π0.490648\pi
138138 −7.64363 −0.650669
139139 16.4797 1.39779 0.698896 0.715223i 0.253675π-0.253675\pi
0.698896 + 0.715223i 0.253675π0.253675\pi
140140 10.7299 0.906838
141141 −7.64363 −0.643710
142142 −4.15137 −0.348375
143143 5.08623 0.425332
144144 1.00000 0.0833333
145145 −12.2251 −1.01524
146146 −6.55740 −0.542694
147147 15.1725 1.25140
148148 1.56994 0.129048
149149 −11.2125 −0.918566 −0.459283 0.888290i 0.651894π-0.651894\pi
−0.459283 + 0.888290i 0.651894π0.651894\pi
150150 −0.192470 −0.0157151
151151 −0.278699 −0.0226802 −0.0113401 0.999936i 0.503610π-0.503610\pi
−0.0113401 + 0.999936i 0.503610π0.503610\pi
152152 −1.00000 −0.0811107
153153 −5.36493 −0.433729
154154 −4.70876 −0.379443
155155 −19.0326 −1.52873
156156 5.08623 0.407224
157157 6.55740 0.523337 0.261669 0.965158i 0.415727π-0.415727\pi
0.261669 + 0.965158i 0.415727π0.415727\pi
158158 17.0612 1.35731
159159 −7.26616 −0.576244
160160 −2.27870 −0.180147
161161 35.9920 2.83657
162162 −1.00000 −0.0785674
163163 19.5900 1.53441 0.767203 0.641404i 0.221648π-0.221648\pi
0.767203 + 0.641404i 0.221648π0.221648\pi
164164 −11.4175 −0.891559
165165 2.27870 0.177396
166166 −0.860130 −0.0667590
167167 15.2873 1.18296 0.591482 0.806318i 0.298543π-0.298543\pi
0.591482 + 0.806318i 0.298543π0.298543\pi
168168 −4.70876 −0.363289
169169 12.8697 0.989979
170170 12.2251 0.937619
171171 1.00000 0.0764719
172172 −3.36493 −0.256573
173173 3.33985 0.253924 0.126962 0.991908i 0.459477π-0.459477\pi
0.126962 + 0.991908i 0.459477π0.459477\pi
174174 5.36493 0.406714
175175 0.906296 0.0685095
176176 1.00000 0.0753778
177177 0 0
178178 −5.36493 −0.402118
179179 −23.6471 −1.76747 −0.883734 0.467989i 0.844979π-0.844979\pi
−0.883734 + 0.467989i 0.844979π0.844979\pi
180180 2.27870 0.169844
181181 19.8476 1.47526 0.737630 0.675205i 0.235945π-0.235945\pi
0.737630 + 0.675205i 0.235945π0.235945\pi
182182 −23.9499 −1.77528
183183 −10.6311 −0.785873
184184 −7.64363 −0.563496
185185 3.57741 0.263016
186186 8.35239 0.612427
187187 −5.36493 −0.392322
188188 −7.64363 −0.557469
189189 4.70876 0.342512
190190 −2.27870 −0.165314
191191 15.9464 1.15384 0.576919 0.816801i 0.304255π-0.304255\pi
0.576919 + 0.816801i 0.304255π0.304255\pi
192192 1.00000 0.0721688
193193 −13.9223 −1.00215 −0.501076 0.865404i 0.667062π-0.667062\pi
−0.501076 + 0.865404i 0.667062π0.667062\pi
194194 −18.9023 −1.35711
195195 11.5900 0.829976
196196 15.1725 1.08375
197197 6.65512 0.474158 0.237079 0.971490i 0.423810π-0.423810\pi
0.237079 + 0.971490i 0.423810π0.423810\pi
198198 −1.00000 −0.0710669
199199 16.0697 1.13915 0.569576 0.821939i 0.307107π-0.307107\pi
0.569576 + 0.821939i 0.307107π0.307107\pi
200200 −0.192470 −0.0136097
201201 −7.92233 −0.558798
202202 6.54992 0.460851
203203 −25.2622 −1.77306
204204 −5.36493 −0.375620
205205 −26.0171 −1.81711
206206 2.17993 0.151883
207207 7.64363 0.531269
208208 5.08623 0.352667
209209 1.00000 0.0691714
210210 −10.7299 −0.740430
211211 −13.0577 −0.898926 −0.449463 0.893299i 0.648385π-0.648385\pi
−0.449463 + 0.893299i 0.648385π0.648385\pi
212212 −7.26616 −0.499042
213213 4.15137 0.284447
214214 5.19247 0.354950
215215 −7.66766 −0.522930
216216 −1.00000 −0.0680414
217217 −39.3294 −2.66986
218218 −4.22610 −0.286228
219219 6.55740 0.443108
220220 2.27870 0.153630
221221 −27.2873 −1.83554
222222 −1.56994 −0.105367
223223 −21.9675 −1.47105 −0.735525 0.677498i 0.763064π-0.763064\pi
−0.735525 + 0.677498i 0.763064π0.763064\pi
224224 −4.70876 −0.314618
225225 0.192470 0.0128313
226226 −9.92233 −0.660023
227227 −22.2000 −1.47346 −0.736732 0.676184i 0.763632π-0.763632\pi
−0.736732 + 0.676184i 0.763632π0.763632\pi
228228 1.00000 0.0662266
229229 8.68767 0.574097 0.287049 0.957916i 0.407326π-0.407326\pi
0.287049 + 0.957916i 0.407326π0.407326\pi
230230 −17.4175 −1.14848
231231 4.70876 0.309814
232232 5.36493 0.352225
233233 −5.24507 −0.343616 −0.171808 0.985130i 0.554961π-0.554961\pi
−0.171808 + 0.985130i 0.554961π0.554961\pi
234234 −5.08623 −0.332497
235235 −17.4175 −1.13619
236236 0 0
237237 −17.0612 −1.10824
238238 25.2622 1.63750
239239 4.88226 0.315807 0.157904 0.987455i 0.449526π-0.449526\pi
0.157904 + 0.987455i 0.449526π0.449526\pi
240240 2.27870 0.147089
241241 −4.05260 −0.261051 −0.130525 0.991445i 0.541666π-0.541666\pi
−0.130525 + 0.991445i 0.541666π0.541666\pi
242242 −1.00000 −0.0642824
243243 1.00000 0.0641500
244244 −10.6311 −0.680586
245245 34.5735 2.20882
246246 11.4175 0.727955
247247 5.08623 0.323629
248248 8.35239 0.530377
249249 0.860130 0.0545085
250250 10.9549 0.692850
251251 20.0697 1.26679 0.633394 0.773829i 0.281661π-0.281661\pi
0.633394 + 0.773829i 0.281661π0.281661\pi
252252 4.70876 0.296624
253253 7.64363 0.480551
254254 −9.69623 −0.608395
255255 −12.2251 −0.765563
256256 1.00000 0.0625000
257257 26.5849 1.65832 0.829161 0.559010i 0.188819π-0.188819\pi
0.829161 + 0.559010i 0.188819π0.188819\pi
258258 3.36493 0.209491
259259 7.39245 0.459345
260260 11.5900 0.718780
261261 −5.36493 −0.332081
262262 −0.860130 −0.0531390
263263 −15.4923 −0.955294 −0.477647 0.878552i 0.658510π-0.658510\pi
−0.477647 + 0.878552i 0.658510π0.658510\pi
264264 −1.00000 −0.0615457
265265 −16.5574 −1.01711
266266 −4.70876 −0.288713
267267 5.36493 0.328328
268268 −7.92233 −0.483933
269269 13.3334 0.812953 0.406477 0.913661i 0.366757π-0.366757\pi
0.406477 + 0.913661i 0.366757π0.366757\pi
270270 −2.27870 −0.138677
271271 −16.5112 −1.00299 −0.501493 0.865162i 0.667216π-0.667216\pi
−0.501493 + 0.865162i 0.667216π0.667216\pi
272272 −5.36493 −0.325297
273273 23.9499 1.44951
274274 −0.687671 −0.0415437
275275 0.192470 0.0116064
276276 7.64363 0.460092
277277 13.8190 0.830305 0.415152 0.909752i 0.363728π-0.363728\pi
0.415152 + 0.909752i 0.363728π0.363728\pi
278278 −16.4797 −0.988388
279279 −8.35239 −0.500045
280280 −10.7299 −0.641232
281281 16.2146 0.967285 0.483642 0.875266i 0.339314π-0.339314\pi
0.483642 + 0.875266i 0.339314π0.339314\pi
282282 7.64363 0.455171
283283 −6.88520 −0.409283 −0.204641 0.978837i 0.565603π-0.565603\pi
−0.204641 + 0.978837i 0.565603π0.565603\pi
284284 4.15137 0.246338
285285 2.27870 0.134978
286286 −5.08623 −0.300755
287287 −53.7624 −3.17350
288288 −1.00000 −0.0589256
289289 11.7825 0.693086
290290 12.2251 0.717880
291291 18.9023 1.10807
292292 6.55740 0.383743
293293 9.92233 0.579669 0.289834 0.957077i 0.406400π-0.406400\pi
0.289834 + 0.957077i 0.406400π0.406400\pi
294294 −15.1725 −0.884876
295295 0 0
296296 −1.56994 −0.0912506
297297 1.00000 0.0580259
298298 11.2125 0.649524
299299 38.8772 2.24833
300300 0.192470 0.0111123
301301 −15.8447 −0.913271
302302 0.278699 0.0160373
303303 −6.54992 −0.376283
304304 1.00000 0.0573539
305305 −24.2251 −1.38712
306306 5.36493 0.306693
307307 −28.3449 −1.61773 −0.808865 0.587995i 0.799918π-0.799918\pi
−0.808865 + 0.587995i 0.799918π0.799918\pi
308308 4.70876 0.268307
309309 −2.17993 −0.124012
310310 19.0326 1.08098
311311 −14.6762 −0.832212 −0.416106 0.909316i 0.636605π-0.636605\pi
−0.416106 + 0.909316i 0.636605π0.636605\pi
312312 −5.08623 −0.287951
313313 −23.0852 −1.30485 −0.652426 0.757852i 0.726249π-0.726249\pi
−0.652426 + 0.757852i 0.726249π0.726249\pi
314314 −6.55740 −0.370055
315315 10.7299 0.604559
316316 −17.0612 −0.959765
317317 −1.09370 −0.0614285 −0.0307143 0.999528i 0.509778π-0.509778\pi
−0.0307143 + 0.999528i 0.509778π0.509778\pi
318318 7.26616 0.407466
319319 −5.36493 −0.300378
320320 2.27870 0.127383
321321 −5.19247 −0.289815
322322 −35.9920 −2.00576
323323 −5.36493 −0.298513
324324 1.00000 0.0555556
325325 0.978947 0.0543022
326326 −19.5900 −1.08499
327327 4.22610 0.233704
328328 11.4175 0.630428
329329 −35.9920 −1.98431
330330 −2.27870 −0.125438
331331 −21.1925 −1.16484 −0.582422 0.812887i 0.697895π-0.697895\pi
−0.582422 + 0.812887i 0.697895π0.697895\pi
332332 0.860130 0.0472057
333333 1.56994 0.0860319
334334 −15.2873 −0.836481
335335 −18.0526 −0.986319
336336 4.70876 0.256884
337337 11.2347 0.611991 0.305995 0.952033i 0.401011π-0.401011\pi
0.305995 + 0.952033i 0.401011π0.401011\pi
338338 −12.8697 −0.700021
339339 9.92233 0.538907
340340 −12.2251 −0.662997
341341 −8.35239 −0.452307
342342 −1.00000 −0.0540738
343343 38.4822 2.07784
344344 3.36493 0.181425
345345 17.4175 0.937728
346346 −3.33985 −0.179552
347347 19.9499 1.07096 0.535482 0.844547i 0.320130π-0.320130\pi
0.535482 + 0.844547i 0.320130π0.320130\pi
348348 −5.36493 −0.287590
349349 −4.45863 −0.238665 −0.119333 0.992854i 0.538075π-0.538075\pi
−0.119333 + 0.992854i 0.538075π0.538075\pi
350350 −0.906296 −0.0484436
351351 5.08623 0.271483
352352 −1.00000 −0.0533002
353353 6.86013 0.365128 0.182564 0.983194i 0.441560π-0.441560\pi
0.182564 + 0.983194i 0.441560π0.441560\pi
354354 0 0
355355 9.45971 0.502069
356356 5.36493 0.284341
357357 −25.2622 −1.33702
358358 23.6471 1.24979
359359 −32.4998 −1.71527 −0.857636 0.514257i 0.828068π-0.828068\pi
−0.857636 + 0.514257i 0.828068π0.828068\pi
360360 −2.27870 −0.120098
361361 1.00000 0.0526316
362362 −19.8476 −1.04317
363363 1.00000 0.0524864
364364 23.9499 1.25531
365365 14.9423 0.782118
366366 10.6311 0.555696
367367 −10.9127 −0.569640 −0.284820 0.958581i 0.591934π-0.591934\pi
−0.284820 + 0.958581i 0.591934π0.591934\pi
368368 7.64363 0.398452
369369 −11.4175 −0.594373
370370 −3.57741 −0.185981
371371 −34.2146 −1.77634
372372 −8.35239 −0.433051
373373 14.2010 0.735301 0.367651 0.929964i 0.380162π-0.380162\pi
0.367651 + 0.929964i 0.380162π0.380162\pi
374374 5.36493 0.277414
375375 −10.9549 −0.565709
376376 7.64363 0.394190
377377 −27.2873 −1.40537
378378 −4.70876 −0.242193
379379 33.1423 1.70241 0.851203 0.524836i 0.175873π-0.175873\pi
0.851203 + 0.524836i 0.175873π0.175873\pi
380380 2.27870 0.116895
381381 9.69623 0.496753
382382 −15.9464 −0.815887
383383 30.2883 1.54766 0.773831 0.633392i 0.218338π-0.218338\pi
0.773831 + 0.633392i 0.218338π0.218338\pi
384384 −1.00000 −0.0510310
385385 10.7299 0.546844
386386 13.9223 0.708628
387387 −3.36493 −0.171049
388388 18.9023 0.959620
389389 17.3409 0.879218 0.439609 0.898189i 0.355117π-0.355117\pi
0.439609 + 0.898189i 0.355117π0.355117\pi
390390 −11.5900 −0.586882
391391 −41.0075 −2.07384
392392 −15.1725 −0.766325
393393 0.860130 0.0433878
394394 −6.65512 −0.335280
395395 −38.8772 −1.95613
396396 1.00000 0.0502519
397397 −25.2873 −1.26913 −0.634565 0.772869i 0.718821π-0.718821\pi
−0.634565 + 0.772869i 0.718821π0.718821\pi
398398 −16.0697 −0.805502
399399 4.70876 0.235733
400400 0.192470 0.00962350
401401 −21.1103 −1.05420 −0.527098 0.849804i 0.676720π-0.676720\pi
−0.527098 + 0.849804i 0.676720π0.676720\pi
402402 7.92233 0.395130
403403 −42.4822 −2.11619
404404 −6.54992 −0.325871
405405 2.27870 0.113229
406406 25.2622 1.25374
407407 1.56994 0.0778188
408408 5.36493 0.265604
409409 −27.4096 −1.35532 −0.677658 0.735377i 0.737005π-0.737005\pi
−0.677658 + 0.735377i 0.737005π0.737005\pi
410410 26.0171 1.28489
411411 0.687671 0.0339203
412412 −2.17993 −0.107398
413413 0 0
414414 −7.64363 −0.375664
415415 1.95998 0.0962115
416416 −5.08623 −0.249373
417417 16.4797 0.807016
418418 −1.00000 −0.0489116
419419 −8.88974 −0.434292 −0.217146 0.976139i 0.569675π-0.569675\pi
−0.217146 + 0.976139i 0.569675π0.569675\pi
420420 10.7299 0.523563
421421 7.96745 0.388310 0.194155 0.980971i 0.437804π-0.437804\pi
0.194155 + 0.980971i 0.437804π0.437804\pi
422422 13.0577 0.635637
423423 −7.64363 −0.371646
424424 7.26616 0.352876
425425 −1.03259 −0.0500879
426426 −4.15137 −0.201134
427427 −50.0593 −2.42254
428428 −5.19247 −0.250988
429429 5.08623 0.245565
430430 7.66766 0.369767
431431 −22.3198 −1.07511 −0.537555 0.843229i 0.680652π-0.680652\pi
−0.537555 + 0.843229i 0.680652π0.680652\pi
432432 1.00000 0.0481125
433433 1.58999 0.0764099 0.0382049 0.999270i 0.487836π-0.487836\pi
0.0382049 + 0.999270i 0.487836π0.487836\pi
434434 39.3294 1.88787
435435 −12.2251 −0.586147
436436 4.22610 0.202393
437437 7.64363 0.365644
438438 −6.55740 −0.313325
439439 1.85157 0.0883708 0.0441854 0.999023i 0.485931π-0.485931\pi
0.0441854 + 0.999023i 0.485931π0.485931\pi
440440 −2.27870 −0.108633
441441 15.1725 0.722498
442442 27.2873 1.29792
443443 1.73492 0.0824285 0.0412142 0.999150i 0.486877π-0.486877\pi
0.0412142 + 0.999150i 0.486877π0.486877\pi
444444 1.56994 0.0745058
445445 12.2251 0.579523
446446 21.9675 1.04019
447447 −11.2125 −0.530334
448448 4.70876 0.222468
449449 4.49014 0.211903 0.105951 0.994371i 0.466211π-0.466211\pi
0.105951 + 0.994371i 0.466211π0.466211\pi
450450 −0.192470 −0.00907312
451451 −11.4175 −0.537630
452452 9.92233 0.466707
453453 −0.278699 −0.0130944
454454 22.2000 1.04190
455455 54.5745 2.55849
456456 −1.00000 −0.0468293
457457 2.81207 0.131543 0.0657714 0.997835i 0.479049π-0.479049\pi
0.0657714 + 0.997835i 0.479049π0.479049\pi
458458 −8.68767 −0.405948
459459 −5.36493 −0.250413
460460 17.4175 0.812096
461461 25.5825 1.19150 0.595748 0.803171i 0.296856π-0.296856\pi
0.595748 + 0.803171i 0.296856π0.296856\pi
462462 −4.70876 −0.219072
463463 −25.3399 −1.17764 −0.588821 0.808263i 0.700408π-0.700408\pi
−0.588821 + 0.808263i 0.700408π0.700408\pi
464464 −5.36493 −0.249061
465465 −19.0326 −0.882615
466466 5.24507 0.242973
467467 24.0000 1.11059 0.555294 0.831654i 0.312606π-0.312606\pi
0.555294 + 0.831654i 0.312606π0.312606\pi
468468 5.08623 0.235111
469469 −37.3044 −1.72256
470470 17.4175 0.803411
471471 6.55740 0.302149
472472 0 0
473473 −3.36493 −0.154720
474474 17.0612 0.783645
475475 0.192470 0.00883113
476476 −25.2622 −1.15789
477477 −7.26616 −0.332695
478478 −4.88226 −0.223310
479479 30.7649 1.40568 0.702841 0.711347i 0.251914π-0.251914\pi
0.702841 + 0.711347i 0.251914π0.251914\pi
480480 −2.27870 −0.104008
481481 7.98505 0.364087
482482 4.05260 0.184591
483483 35.9920 1.63769
484484 1.00000 0.0454545
485485 43.0727 1.95583
486486 −1.00000 −0.0453609
487487 −7.95034 −0.360264 −0.180132 0.983642i 0.557653π-0.557653\pi
−0.180132 + 0.983642i 0.557653π0.557653\pi
488488 10.6311 0.481247
489489 19.5900 0.885890
490490 −34.5735 −1.56187
491491 32.8100 1.48069 0.740347 0.672225i 0.234661π-0.234661\pi
0.740347 + 0.672225i 0.234661π0.234661\pi
492492 −11.4175 −0.514742
493493 28.7825 1.29630
494494 −5.08623 −0.228840
495495 2.27870 0.102420
496496 −8.35239 −0.375033
497497 19.5478 0.876839
498498 −0.860130 −0.0385433
499499 −8.04219 −0.360018 −0.180009 0.983665i 0.557613π-0.557613\pi
−0.180009 + 0.983665i 0.557613π0.557613\pi
500500 −10.9549 −0.489919
501501 15.2873 0.682984
502502 −20.0697 −0.895755
503503 −5.56540 −0.248149 −0.124074 0.992273i 0.539596π-0.539596\pi
−0.124074 + 0.992273i 0.539596π0.539596\pi
504504 −4.70876 −0.209745
505505 −14.9253 −0.664167
506506 −7.64363 −0.339801
507507 12.8697 0.571565
508508 9.69623 0.430201
509509 5.24905 0.232660 0.116330 0.993211i 0.462887π-0.462887\pi
0.116330 + 0.993211i 0.462887π0.462887\pi
510510 12.2251 0.541335
511511 30.8772 1.36593
512512 −1.00000 −0.0441942
513513 1.00000 0.0441511
514514 −26.5849 −1.17261
515515 −4.96741 −0.218890
516516 −3.36493 −0.148133
517517 −7.64363 −0.336166
518518 −7.39245 −0.324806
519519 3.33985 0.146603
520520 −11.5900 −0.508255
521521 10.4375 0.457277 0.228638 0.973511i 0.426573π-0.426573\pi
0.228638 + 0.973511i 0.426573π0.426573\pi
522522 5.36493 0.234817
523523 −19.0475 −0.832891 −0.416445 0.909161i 0.636724π-0.636724\pi
−0.416445 + 0.909161i 0.636724π0.636724\pi
524524 0.860130 0.0375749
525525 0.906296 0.0395540
526526 15.4923 0.675495
527527 44.8100 1.95195
528528 1.00000 0.0435194
529529 35.4250 1.54022
530530 16.5574 0.719207
531531 0 0
532532 4.70876 0.204151
533533 −58.0722 −2.51538
534534 −5.36493 −0.232163
535535 −11.8321 −0.511545
536536 7.92233 0.342192
537537 −23.6471 −1.02045
538538 −13.3334 −0.574845
539539 15.1725 0.653524
540540 2.27870 0.0980596
541541 33.7835 1.45247 0.726234 0.687448i 0.241269π-0.241269\pi
0.726234 + 0.687448i 0.241269π0.241269\pi
542542 16.5112 0.709218
543543 19.8476 0.851742
544544 5.36493 0.230019
545545 9.63001 0.412504
546546 −23.9499 −1.02496
547547 15.8447 0.677468 0.338734 0.940882i 0.390001π-0.390001\pi
0.338734 + 0.940882i 0.390001π0.390001\pi
548548 0.687671 0.0293759
549549 −10.6311 −0.453724
550550 −0.192470 −0.00820695
551551 −5.36493 −0.228554
552552 −7.64363 −0.325334
553553 −80.3370 −3.41627
554554 −13.8190 −0.587114
555555 3.57741 0.151853
556556 16.4797 0.698896
557557 25.5825 1.08397 0.541983 0.840390i 0.317674π-0.317674\pi
0.541983 + 0.840390i 0.317674π0.317674\pi
558558 8.35239 0.353585
559559 −17.1148 −0.723879
560560 10.7299 0.453419
561561 −5.36493 −0.226507
562562 −16.2146 −0.683973
563563 −11.3169 −0.476949 −0.238474 0.971149i 0.576647π-0.576647\pi
−0.238474 + 0.971149i 0.576647π0.576647\pi
564564 −7.64363 −0.321855
565565 22.6100 0.951210
566566 6.88520 0.289407
567567 4.70876 0.197750
568568 −4.15137 −0.174187
569569 24.5174 1.02782 0.513911 0.857844i 0.328196π-0.328196\pi
0.513911 + 0.857844i 0.328196π0.328196\pi
570570 −2.27870 −0.0954442
571571 12.3323 0.516092 0.258046 0.966133i 0.416921π-0.416921\pi
0.258046 + 0.966133i 0.416921π0.416921\pi
572572 5.08623 0.212666
573573 15.9464 0.666169
574574 53.7624 2.24400
575575 1.47117 0.0613520
576576 1.00000 0.0416667
577577 3.04509 0.126769 0.0633843 0.997989i 0.479811π-0.479811\pi
0.0633843 + 0.997989i 0.479811π0.479811\pi
578578 −11.7825 −0.490086
579579 −13.9223 −0.578592
580580 −12.2251 −0.507618
581581 4.05015 0.168028
582582 −18.9023 −0.783526
583583 −7.26616 −0.300934
584584 −6.55740 −0.271347
585585 11.5900 0.479187
586586 −9.92233 −0.409888
587587 13.6004 0.561349 0.280674 0.959803i 0.409442π-0.409442\pi
0.280674 + 0.959803i 0.409442π0.409442\pi
588588 15.1725 0.625702
589589 −8.35239 −0.344154
590590 0 0
591591 6.65512 0.273755
592592 1.56994 0.0645239
593593 35.0075 1.43759 0.718793 0.695224i 0.244695π-0.244695\pi
0.718793 + 0.695224i 0.244695π0.244695\pi
594594 −1.00000 −0.0410305
595595 −57.5649 −2.35993
596596 −11.2125 −0.459283
597597 16.0697 0.657690
598598 −38.8772 −1.58981
599599 38.3033 1.56503 0.782515 0.622632i 0.213937π-0.213937\pi
0.782515 + 0.622632i 0.213937π0.213937\pi
600600 −0.192470 −0.00785756
601601 34.3519 1.40124 0.700622 0.713533i 0.252906π-0.252906\pi
0.700622 + 0.713533i 0.252906π0.252906\pi
602602 15.8447 0.645780
603603 −7.92233 −0.322622
604604 −0.278699 −0.0113401
605605 2.27870 0.0926423
606606 6.54992 0.266072
607607 19.2838 0.782704 0.391352 0.920241i 0.372008π-0.372008\pi
0.391352 + 0.920241i 0.372008π0.372008\pi
608608 −1.00000 −0.0405554
609609 −25.2622 −1.02368
610610 24.2251 0.980844
611611 −38.8772 −1.57280
612612 −5.36493 −0.216864
613613 0.790973 0.0319471 0.0159735 0.999872i 0.494915π-0.494915\pi
0.0159735 + 0.999872i 0.494915π0.494915\pi
614614 28.3449 1.14391
615615 −26.0171 −1.04911
616616 −4.70876 −0.189722
617617 40.4250 1.62745 0.813725 0.581249i 0.197436π-0.197436\pi
0.813725 + 0.581249i 0.197436π0.197436\pi
618618 2.17993 0.0876898
619619 37.0075 1.48746 0.743729 0.668481i 0.233055π-0.233055\pi
0.743729 + 0.668481i 0.233055π0.233055\pi
620620 −19.0326 −0.764367
621621 7.64363 0.306728
622622 14.6762 0.588463
623623 25.2622 1.01211
624624 5.08623 0.203612
625625 −25.9253 −1.03701
626626 23.0852 0.922670
627627 1.00000 0.0399362
628628 6.55740 0.261669
629629 −8.42259 −0.335831
630630 −10.7299 −0.427488
631631 −40.6271 −1.61734 −0.808670 0.588263i 0.799812π-0.799812\pi
−0.808670 + 0.588263i 0.799812π0.799812\pi
632632 17.0612 0.678656
633633 −13.0577 −0.518995
634634 1.09370 0.0434365
635635 22.0948 0.876805
636636 −7.26616 −0.288122
637637 77.1706 3.05761
638638 5.36493 0.212400
639639 4.15137 0.164225
640640 −2.27870 −0.0900735
641641 −22.8543 −0.902689 −0.451344 0.892350i 0.649055π-0.649055\pi
−0.451344 + 0.892350i 0.649055π0.649055\pi
642642 5.19247 0.204930
643643 −37.5649 −1.48142 −0.740708 0.671827i 0.765510π-0.765510\pi
−0.740708 + 0.671827i 0.765510π0.765510\pi
644644 35.9920 1.41828
645645 −7.66766 −0.301914
646646 5.36493 0.211080
647647 −36.3062 −1.42734 −0.713672 0.700480i 0.752970π-0.752970\pi
−0.713672 + 0.700480i 0.752970π0.752970\pi
648648 −1.00000 −0.0392837
649649 0 0
650650 −0.978947 −0.0383974
651651 −39.3294 −1.54144
652652 19.5900 0.767203
653653 21.7931 0.852830 0.426415 0.904528i 0.359776π-0.359776\pi
0.426415 + 0.904528i 0.359776π0.359776\pi
654654 −4.22610 −0.165254
655655 1.95998 0.0765826
656656 −11.4175 −0.445780
657657 6.55740 0.255828
658658 35.9920 1.40312
659659 −7.13779 −0.278049 −0.139024 0.990289i 0.544397π-0.544397\pi
−0.139024 + 0.990289i 0.544397π0.544397\pi
660660 2.27870 0.0886982
661661 16.2702 0.632837 0.316418 0.948620i 0.397520π-0.397520\pi
0.316418 + 0.948620i 0.397520π0.397520\pi
662662 21.1925 0.823669
663663 −27.2873 −1.05975
664664 −0.860130 −0.0333795
665665 10.7299 0.416086
666666 −1.56994 −0.0608338
667667 −41.0075 −1.58782
668668 15.2873 0.591482
669669 −21.9675 −0.849311
670670 18.0526 0.697433
671671 −10.6311 −0.410409
672672 −4.70876 −0.181645
673673 8.80753 0.339505 0.169753 0.985487i 0.445703π-0.445703\pi
0.169753 + 0.985487i 0.445703π0.445703\pi
674674 −11.2347 −0.432743
675675 0.192470 0.00740817
676676 12.8697 0.494990
677677 3.81259 0.146530 0.0732649 0.997313i 0.476658π-0.476658\pi
0.0732649 + 0.997313i 0.476658π0.476658\pi
678678 −9.92233 −0.381065
679679 89.0065 3.41576
680680 12.2251 0.468810
681681 −22.2000 −0.850705
682682 8.35239 0.319830
683683 −40.2526 −1.54022 −0.770111 0.637910i 0.779799π-0.779799\pi
−0.770111 + 0.637910i 0.779799π0.779799\pi
684684 1.00000 0.0382360
685685 1.56700 0.0598718
686686 −38.4822 −1.46926
687687 8.68767 0.331455
688688 −3.36493 −0.128287
689689 −36.9574 −1.40796
690690 −17.4175 −0.663074
691691 39.7875 1.51359 0.756794 0.653653i 0.226764π-0.226764\pi
0.756794 + 0.653653i 0.226764π0.226764\pi
692692 3.33985 0.126962
693693 4.70876 0.178871
694694 −19.9499 −0.757286
695695 37.5523 1.42444
696696 5.36493 0.203357
697697 61.2542 2.32017
698698 4.45863 0.168762
699699 −5.24507 −0.198387
700700 0.906296 0.0342548
701701 −33.0822 −1.24950 −0.624750 0.780825i 0.714799π-0.714799\pi
−0.624750 + 0.780825i 0.714799π0.714799\pi
702702 −5.08623 −0.191967
703703 1.56994 0.0592112
704704 1.00000 0.0376889
705705 −17.4175 −0.655982
706706 −6.86013 −0.258184
707707 −30.8420 −1.15993
708708 0 0
709709 −37.2222 −1.39791 −0.698954 0.715167i 0.746351π-0.746351\pi
−0.698954 + 0.715167i 0.746351π0.746351\pi
710710 −9.45971 −0.355017
711711 −17.0612 −0.639843
712712 −5.36493 −0.201059
713713 −63.8426 −2.39092
714714 25.2622 0.945413
715715 11.5900 0.433441
716716 −23.6471 −0.883734
717717 4.88226 0.182331
718718 32.4998 1.21288
719719 26.6191 0.992724 0.496362 0.868116i 0.334669π-0.334669\pi
0.496362 + 0.868116i 0.334669π0.334669\pi
720720 2.27870 0.0849221
721721 −10.2648 −0.382281
722722 −1.00000 −0.0372161
723723 −4.05260 −0.150718
724724 19.8476 0.737630
725725 −1.03259 −0.0383494
726726 −1.00000 −0.0371135
727727 −30.7002 −1.13861 −0.569305 0.822127i 0.692787π-0.692787\pi
−0.569305 + 0.822127i 0.692787π0.692787\pi
728728 −23.9499 −0.887641
729729 1.00000 0.0370370
730730 −14.9423 −0.553041
731731 18.0526 0.667700
732732 −10.6311 −0.392936
733733 15.2515 0.563327 0.281664 0.959513i 0.409114π-0.409114\pi
0.281664 + 0.959513i 0.409114π0.409114\pi
734734 10.9127 0.402796
735735 34.5735 1.27526
736736 −7.64363 −0.281748
737737 −7.92233 −0.291823
738738 11.4175 0.420285
739739 18.6247 0.685119 0.342560 0.939496i 0.388706π-0.388706\pi
0.342560 + 0.939496i 0.388706π0.388706\pi
740740 3.57741 0.131508
741741 5.08623 0.186847
742742 34.2146 1.25606
743743 −5.72234 −0.209932 −0.104966 0.994476i 0.533473π-0.533473\pi
−0.104966 + 0.994476i 0.533473π0.533473\pi
744744 8.35239 0.306214
745745 −25.5500 −0.936078
746746 −14.2010 −0.519937
747747 0.860130 0.0314705
748748 −5.36493 −0.196161
749749 −24.4501 −0.893388
750750 10.9549 0.400017
751751 9.01707 0.329038 0.164519 0.986374i 0.447393π-0.447393\pi
0.164519 + 0.986374i 0.447393π0.447393\pi
752752 −7.64363 −0.278734
753753 20.0697 0.731381
754754 27.2873 0.993743
755755 −0.635072 −0.0231126
756756 4.70876 0.171256
757757 19.4747 0.707819 0.353909 0.935280i 0.384852π-0.384852\pi
0.353909 + 0.935280i 0.384852π0.384852\pi
758758 −33.1423 −1.20378
759759 7.64363 0.277446
760760 −2.27870 −0.0826571
761761 26.7194 0.968579 0.484290 0.874908i 0.339078π-0.339078\pi
0.484290 + 0.874908i 0.339078π0.339078\pi
762762 −9.69623 −0.351257
763763 19.8997 0.720418
764764 15.9464 0.576919
765765 −12.2251 −0.441998
766766 −30.2883 −1.09436
767767 0 0
768768 1.00000 0.0360844
769769 −17.4346 −0.628709 −0.314355 0.949306i 0.601788π-0.601788\pi
−0.314355 + 0.949306i 0.601788π0.601788\pi
770770 −10.7299 −0.386677
771771 26.5849 0.957433
772772 −13.9223 −0.501076
773773 12.0633 0.433886 0.216943 0.976184i 0.430391π-0.430391\pi
0.216943 + 0.976184i 0.430391π0.430391\pi
774774 3.36493 0.120950
775775 −1.60759 −0.0577462
776776 −18.9023 −0.678554
777777 7.39245 0.265203
778778 −17.3409 −0.621701
779779 −11.4175 −0.409075
780780 11.5900 0.414988
781781 4.15137 0.148548
782782 41.0075 1.46643
783783 −5.36493 −0.191727
784784 15.1725 0.541874
785785 14.9423 0.533315
786786 −0.860130 −0.0306798
787787 −34.2777 −1.22187 −0.610933 0.791682i 0.709206π-0.709206\pi
−0.610933 + 0.791682i 0.709206π0.709206\pi
788788 6.65512 0.237079
789789 −15.4923 −0.551539
790790 38.8772 1.38319
791791 46.7219 1.66124
792792 −1.00000 −0.0355335
793793 −54.0722 −1.92016
794794 25.2873 0.897411
795795 −16.5574 −0.587230
796796 16.0697 0.569576
797797 −17.4808 −0.619202 −0.309601 0.950867i 0.600195π-0.600195\pi
−0.309601 + 0.950867i 0.600195π0.600195\pi
798798 −4.70876 −0.166688
799799 41.0075 1.45074
800800 −0.192470 −0.00680484
801801 5.36493 0.189560
802802 21.1103 0.745429
803803 6.55740 0.231406
804804 −7.92233 −0.279399
805805 82.0150 2.89065
806806 42.4822 1.49637
807807 13.3334 0.469359
808808 6.54992 0.230426
809809 1.73945 0.0611560 0.0305780 0.999532i 0.490265π-0.490265\pi
0.0305780 + 0.999532i 0.490265π0.490265\pi
810810 −2.27870 −0.0800653
811811 −25.0577 −0.879894 −0.439947 0.898024i 0.645003π-0.645003\pi
−0.439947 + 0.898024i 0.645003π0.645003\pi
812812 −25.2622 −0.886529
813813 −16.5112 −0.579074
814814 −1.56994 −0.0550262
815815 44.6397 1.56366
816816 −5.36493 −0.187810
817817 −3.36493 −0.117724
818818 27.4096 0.958353
819819 23.9499 0.836876
820820 −26.0171 −0.908557
821821 42.3503 1.47804 0.739018 0.673686i 0.235290π-0.235290\pi
0.739018 + 0.673686i 0.235290π0.235290\pi
822822 −0.687671 −0.0239853
823823 −43.4071 −1.51308 −0.756538 0.653949i 0.773111π-0.773111\pi
−0.756538 + 0.653949i 0.773111π0.773111\pi
824824 2.17993 0.0759416
825825 0.192470 0.00670095
826826 0 0
827827 −7.54780 −0.262463 −0.131231 0.991352i 0.541893π-0.541893\pi
−0.131231 + 0.991352i 0.541893π0.541893\pi
828828 7.64363 0.265634
829829 −34.3650 −1.19354 −0.596772 0.802411i 0.703550π-0.703550\pi
−0.596772 + 0.802411i 0.703550π0.703550\pi
830830 −1.95998 −0.0680318
831831 13.8190 0.479377
832832 5.08623 0.176333
833833 −81.3992 −2.82031
834834 −16.4797 −0.570646
835835 34.8351 1.20552
836836 1.00000 0.0345857
837837 −8.35239 −0.288701
838838 8.88974 0.307091
839839 −28.1581 −0.972124 −0.486062 0.873924i 0.661567π-0.661567\pi
−0.486062 + 0.873924i 0.661567π0.661567\pi
840840 −10.7299 −0.370215
841841 −0.217544 −0.00750151
842842 −7.96745 −0.274577
843843 16.2146 0.558462
844844 −13.0577 −0.449463
845845 29.3262 1.00885
846846 7.64363 0.262793
847847 4.70876 0.161795
848848 −7.26616 −0.249521
849849 −6.88520 −0.236300
850850 1.03259 0.0354175
851851 12.0000 0.411355
852852 4.15137 0.142223
853853 −56.3012 −1.92772 −0.963858 0.266416i 0.914161π-0.914161\pi
−0.963858 + 0.266416i 0.914161π0.914161\pi
854854 50.0593 1.71299
855855 2.27870 0.0779299
856856 5.19247 0.177475
857857 21.6893 0.740893 0.370446 0.928854i 0.379205π-0.379205\pi
0.370446 + 0.928854i 0.379205π0.379205\pi
858858 −5.08623 −0.173641
859859 53.1068 1.81198 0.905991 0.423297i 0.139127π-0.139127\pi
0.905991 + 0.423297i 0.139127π0.139127\pi
860860 −7.66766 −0.261465
861861 −53.7624 −1.83222
862862 22.3198 0.760217
863863 2.83316 0.0964418 0.0482209 0.998837i 0.484645π-0.484645\pi
0.0482209 + 0.998837i 0.484645π0.484645\pi
864864 −1.00000 −0.0340207
865865 7.61052 0.258766
866866 −1.58999 −0.0540299
867867 11.7825 0.400153
868868 −39.3294 −1.33493
869869 −17.0612 −0.578760
870870 12.2251 0.414468
871871 −40.2948 −1.36534
872872 −4.22610 −0.143114
873873 18.9023 0.639746
874874 −7.64363 −0.258550
875875 −51.5841 −1.74386
876876 6.55740 0.221554
877877 3.81609 0.128860 0.0644300 0.997922i 0.479477π-0.479477\pi
0.0644300 + 0.997922i 0.479477π0.479477\pi
878878 −1.85157 −0.0624876
879879 9.92233 0.334672
880880 2.27870 0.0768149
881881 −52.7790 −1.77817 −0.889085 0.457741i 0.848659π-0.848659\pi
−0.889085 + 0.457741i 0.848659π0.848659\pi
882882 −15.1725 −0.510883
883883 −49.6220 −1.66991 −0.834957 0.550315i 0.814508π-0.814508\pi
−0.834957 + 0.550315i 0.814508π0.814508\pi
884884 −27.2873 −0.917770
885885 0 0
886886 −1.73492 −0.0582857
887887 37.7774 1.26844 0.634220 0.773152i 0.281321π-0.281321\pi
0.634220 + 0.773152i 0.281321π0.281321\pi
888888 −1.56994 −0.0526836
889889 45.6572 1.53129
890890 −12.2251 −0.409785
891891 1.00000 0.0335013
892892 −21.9675 −0.735525
893893 −7.64363 −0.255784
894894 11.2125 0.375003
895895 −53.8847 −1.80117
896896 −4.70876 −0.157309
897897 38.8772 1.29807
898898 −4.49014 −0.149838
899899 44.8100 1.49450
900900 0.192470 0.00641567
901901 38.9824 1.29869
902902 11.4175 0.380162
903903 −15.8447 −0.527277
904904 −9.92233 −0.330012
905905 45.2267 1.50339
906906 0.278699 0.00925916
907907 24.1327 0.801314 0.400657 0.916228i 0.368782π-0.368782\pi
0.400657 + 0.916228i 0.368782π0.368782\pi
908908 −22.2000 −0.736732
909909 −6.54992 −0.217247
910910 −54.5745 −1.80913
911911 −26.8666 −0.890129 −0.445064 0.895499i 0.646819π-0.646819\pi
−0.445064 + 0.895499i 0.646819π0.646819\pi
912912 1.00000 0.0331133
913913 0.860130 0.0284661
914914 −2.81207 −0.0930149
915915 −24.2251 −0.800856
916916 8.68767 0.287049
917917 4.05015 0.133748
918918 5.36493 0.177069
919919 7.28915 0.240447 0.120223 0.992747i 0.461639π-0.461639\pi
0.120223 + 0.992747i 0.461639π0.461639\pi
920920 −17.4175 −0.574239
921921 −28.3449 −0.933997
922922 −25.5825 −0.842515
923923 21.1148 0.695002
924924 4.70876 0.154907
925925 0.302165 0.00993514
926926 25.3399 0.832719
927927 −2.17993 −0.0715984
928928 5.36493 0.176112
929929 −58.9515 −1.93414 −0.967068 0.254519i 0.918083π-0.918083\pi
−0.967068 + 0.254519i 0.918083π0.918083\pi
930930 19.0326 0.624103
931931 15.1725 0.497257
932932 −5.24507 −0.171808
933933 −14.6762 −0.480478
934934 −24.0000 −0.785304
935935 −12.2251 −0.399802
936936 −5.08623 −0.166249
937937 −12.9423 −0.422808 −0.211404 0.977399i 0.567804π-0.567804\pi
−0.211404 + 0.977399i 0.567804π0.567804\pi
938938 37.3044 1.21803
939939 −23.0852 −0.753357
940940 −17.4175 −0.568097
941941 16.5048 0.538041 0.269021 0.963134i 0.413300π-0.413300\pi
0.269021 + 0.963134i 0.413300π0.413300\pi
942942 −6.55740 −0.213652
943943 −87.2713 −2.84195
944944 0 0
945945 10.7299 0.349042
946946 3.36493 0.109403
947947 −39.5123 −1.28398 −0.641989 0.766714i 0.721890π-0.721890\pi
−0.641989 + 0.766714i 0.721890π0.721890\pi
948948 −17.0612 −0.554121
949949 33.3524 1.08267
950950 −0.192470 −0.00624455
951951 −1.09370 −0.0354658
952952 25.2622 0.818752
953953 −32.4271 −1.05042 −0.525209 0.850973i 0.676013π-0.676013\pi
−0.525209 + 0.850973i 0.676013π0.676013\pi
954954 7.26616 0.235251
955955 36.3370 1.17584
956956 4.88226 0.157904
957957 −5.36493 −0.173424
958958 −30.7649 −0.993967
959959 3.23808 0.104563
960960 2.27870 0.0735447
961961 38.7624 1.25040
962962 −7.98505 −0.257448
963963 −5.19247 −0.167325
964964 −4.05260 −0.130525
965965 −31.7248 −1.02126
966966 −35.9920 −1.15802
967967 34.4712 1.10852 0.554260 0.832344i 0.313001π-0.313001\pi
0.554260 + 0.832344i 0.313001π0.313001\pi
968968 −1.00000 −0.0321412
969969 −5.36493 −0.172346
970970 −43.0727 −1.38298
971971 −9.67807 −0.310584 −0.155292 0.987869i 0.549632π-0.549632\pi
−0.155292 + 0.987869i 0.549632π0.549632\pi
972972 1.00000 0.0320750
973973 77.5991 2.48771
974974 7.95034 0.254745
975975 0.978947 0.0313514
976976 −10.6311 −0.340293
977977 20.1223 0.643770 0.321885 0.946779i 0.395684π-0.395684\pi
0.321885 + 0.946779i 0.395684π0.395684\pi
978978 −19.5900 −0.626419
979979 5.36493 0.171464
980980 34.5735 1.10441
981981 4.22610 0.134929
982982 −32.8100 −1.04701
983983 −34.0281 −1.08533 −0.542664 0.839950i 0.682584π-0.682584\pi
−0.542664 + 0.839950i 0.682584π0.682584\pi
984984 11.4175 0.363977
985985 15.1650 0.483198
986986 −28.7825 −0.916620
987987 −35.9920 −1.14564
988988 5.08623 0.161815
989989 −25.7203 −0.817857
990990 −2.27870 −0.0724218
991991 −24.9579 −0.792812 −0.396406 0.918075i 0.629743π-0.629743\pi
−0.396406 + 0.918075i 0.629743π0.629743\pi
992992 8.35239 0.265189
993993 −21.1925 −0.672523
994994 −19.5478 −0.620019
995995 36.6180 1.16087
996996 0.860130 0.0272542
997997 3.41943 0.108294 0.0541471 0.998533i 0.482756π-0.482756\pi
0.0541471 + 0.998533i 0.482756π0.482756\pi
998998 8.04219 0.254571
999999 1.56994 0.0496706
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1254.2.a.r.1.3 4
3.2 odd 2 3762.2.a.bh.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1254.2.a.r.1.3 4 1.1 even 1 trivial
3762.2.a.bh.1.2 4 3.2 odd 2