Properties

Label 1254.2.k.b.373.1
Level $1254$
Weight $2$
Character 1254.373
Analytic conductor $10.013$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1254,2,Mod(373,1254)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1254, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1254.373");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1254 = 2 \cdot 3 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1254.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0132404135\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 373.1
Character \(\chi\) \(=\) 1254.373
Dual form 1254.2.k.b.901.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.72386 + 2.98582i) q^{5} +(-0.866025 - 0.500000i) q^{6} +1.24837i q^{7} -1.00000 q^{8} +(0.500000 - 0.866025i) q^{9} +(-1.72386 + 2.98582i) q^{10} +(1.18259 + 3.09863i) q^{11} -1.00000i q^{12} +(-0.821877 + 1.42353i) q^{13} +(-1.08112 + 0.624183i) q^{14} +(-2.98582 - 1.72386i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.951116 + 0.549127i) q^{17} +1.00000 q^{18} +(2.90459 + 3.25014i) q^{19} -3.44773 q^{20} +(-0.624183 - 1.08112i) q^{21} +(-2.09220 + 2.57346i) q^{22} +(3.42976 - 5.94051i) q^{23} +(0.866025 - 0.500000i) q^{24} +(-3.44340 + 5.96415i) q^{25} -1.64375 q^{26} +1.00000i q^{27} +(-1.08112 - 0.624183i) q^{28} +(-0.766066 + 1.32687i) q^{29} -3.44773i q^{30} -2.62142i q^{31} +(0.500000 - 0.866025i) q^{32} +(-2.57346 - 2.09220i) q^{33} +(-0.951116 - 0.549127i) q^{34} +(-3.72739 + 2.15201i) q^{35} +(0.500000 + 0.866025i) q^{36} +2.80047i q^{37} +(-1.36241 + 4.14051i) q^{38} -1.64375i q^{39} +(-1.72386 - 2.98582i) q^{40} +(-2.04813 - 3.54746i) q^{41} +(0.624183 - 1.08112i) q^{42} +(-1.73718 + 1.00296i) q^{43} +(-3.27478 - 0.525163i) q^{44} +3.44773 q^{45} +6.85951 q^{46} +(0.386049 - 0.668656i) q^{47} +(0.866025 + 0.500000i) q^{48} +5.44158 q^{49} -6.88681 q^{50} +(0.549127 - 0.951116i) q^{51} +(-0.821877 - 1.42353i) q^{52} +(-7.64033 - 4.41114i) q^{53} +(-0.866025 + 0.500000i) q^{54} +(-7.21332 + 8.87260i) q^{55} -1.24837i q^{56} +(-4.14051 - 1.36241i) q^{57} -1.53213 q^{58} +(7.93429 - 4.58086i) q^{59} +(2.98582 - 1.72386i) q^{60} +(-4.04837 - 2.33733i) q^{61} +(2.27022 - 1.31071i) q^{62} +(1.08112 + 0.624183i) q^{63} +1.00000 q^{64} -5.66721 q^{65} +(0.525163 - 3.27478i) q^{66} +(9.86074 + 5.69310i) q^{67} -1.09825i q^{68} +6.85951i q^{69} +(-3.72739 - 2.15201i) q^{70} +(-1.61897 + 0.934712i) q^{71} +(-0.500000 + 0.866025i) q^{72} +(-4.66802 + 2.69509i) q^{73} +(-2.42528 + 1.40024i) q^{74} -6.88681i q^{75} +(-4.26699 + 0.890378i) q^{76} +(-3.86822 + 1.47630i) q^{77} +(1.42353 - 0.821877i) q^{78} +(-5.22027 - 9.04178i) q^{79} +(1.72386 - 2.98582i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(2.04813 - 3.54746i) q^{82} +4.26934i q^{83} +1.24837 q^{84} +(-3.27919 - 1.89324i) q^{85} +(-1.73718 - 1.00296i) q^{86} -1.53213i q^{87} +(-1.18259 - 3.09863i) q^{88} +(-9.98398 - 5.76425i) q^{89} +(1.72386 + 2.98582i) q^{90} +(-1.77709 - 1.02600i) q^{91} +(3.42976 + 5.94051i) q^{92} +(1.31071 + 2.27022i) q^{93} +0.772098 q^{94} +(-4.69720 + 14.2754i) q^{95} +1.00000i q^{96} +(-3.47315 + 2.00523i) q^{97} +(2.72079 + 4.71255i) q^{98} +(3.27478 + 0.525163i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 20 q^{2} - 20 q^{4} - 4 q^{5} - 40 q^{8} + 20 q^{9} + 4 q^{10} - 10 q^{13} + 12 q^{14} - 12 q^{15} - 20 q^{16} - 6 q^{17} + 40 q^{18} + 10 q^{19} + 8 q^{20} - 2 q^{21} + 8 q^{23} - 8 q^{25} - 20 q^{26}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1254\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(419\) \(1123\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.72386 + 2.98582i 0.770935 + 1.33530i 0.937051 + 0.349192i \(0.113544\pi\)
−0.166116 + 0.986106i \(0.553123\pi\)
\(6\) −0.866025 0.500000i −0.353553 0.204124i
\(7\) 1.24837i 0.471838i 0.971773 + 0.235919i \(0.0758100\pi\)
−0.971773 + 0.235919i \(0.924190\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −1.72386 + 2.98582i −0.545133 + 0.944198i
\(11\) 1.18259 + 3.09863i 0.356563 + 0.934271i
\(12\) 1.00000i 0.288675i
\(13\) −0.821877 + 1.42353i −0.227948 + 0.394817i −0.957200 0.289428i \(-0.906535\pi\)
0.729252 + 0.684245i \(0.239868\pi\)
\(14\) −1.08112 + 0.624183i −0.288941 + 0.166820i
\(15\) −2.98582 1.72386i −0.770935 0.445099i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.951116 + 0.549127i −0.230679 + 0.133183i −0.610885 0.791719i \(-0.709186\pi\)
0.380206 + 0.924902i \(0.375853\pi\)
\(18\) 1.00000 0.235702
\(19\) 2.90459 + 3.25014i 0.666358 + 0.745632i
\(20\) −3.44773 −0.770935
\(21\) −0.624183 1.08112i −0.136208 0.235919i
\(22\) −2.09220 + 2.57346i −0.446058 + 0.548664i
\(23\) 3.42976 5.94051i 0.715154 1.23868i −0.247746 0.968825i \(-0.579690\pi\)
0.962900 0.269858i \(-0.0869767\pi\)
\(24\) 0.866025 0.500000i 0.176777 0.102062i
\(25\) −3.44340 + 5.96415i −0.688681 + 1.19283i
\(26\) −1.64375 −0.322367
\(27\) 1.00000i 0.192450i
\(28\) −1.08112 0.624183i −0.204312 0.117960i
\(29\) −0.766066 + 1.32687i −0.142255 + 0.246393i −0.928345 0.371719i \(-0.878769\pi\)
0.786091 + 0.618111i \(0.212102\pi\)
\(30\) 3.44773i 0.629466i
\(31\) 2.62142i 0.470821i −0.971896 0.235411i \(-0.924357\pi\)
0.971896 0.235411i \(-0.0756435\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −2.57346 2.09220i −0.447983 0.364205i
\(34\) −0.951116 0.549127i −0.163115 0.0941745i
\(35\) −3.72739 + 2.15201i −0.630045 + 0.363756i
\(36\) 0.500000 + 0.866025i 0.0833333 + 0.144338i
\(37\) 2.80047i 0.460395i 0.973144 + 0.230197i \(0.0739372\pi\)
−0.973144 + 0.230197i \(0.926063\pi\)
\(38\) −1.36241 + 4.14051i −0.221012 + 0.671680i
\(39\) 1.64375i 0.263211i
\(40\) −1.72386 2.98582i −0.272567 0.472099i
\(41\) −2.04813 3.54746i −0.319864 0.554020i 0.660596 0.750742i \(-0.270304\pi\)
−0.980459 + 0.196722i \(0.936970\pi\)
\(42\) 0.624183 1.08112i 0.0963135 0.166820i
\(43\) −1.73718 + 1.00296i −0.264917 + 0.152950i −0.626575 0.779361i \(-0.715544\pi\)
0.361659 + 0.932311i \(0.382211\pi\)
\(44\) −3.27478 0.525163i −0.493692 0.0791713i
\(45\) 3.44773 0.513957
\(46\) 6.85951 1.01138
\(47\) 0.386049 0.668656i 0.0563110 0.0975335i −0.836496 0.547973i \(-0.815399\pi\)
0.892807 + 0.450440i \(0.148733\pi\)
\(48\) 0.866025 + 0.500000i 0.125000 + 0.0721688i
\(49\) 5.44158 0.777369
\(50\) −6.88681 −0.973942
\(51\) 0.549127 0.951116i 0.0768932 0.133183i
\(52\) −0.821877 1.42353i −0.113974 0.197409i
\(53\) −7.64033 4.41114i −1.04948 0.605917i −0.126976 0.991906i \(-0.540527\pi\)
−0.922504 + 0.385989i \(0.873860\pi\)
\(54\) −0.866025 + 0.500000i −0.117851 + 0.0680414i
\(55\) −7.21332 + 8.87260i −0.972643 + 1.19638i
\(56\) 1.24837i 0.166820i
\(57\) −4.14051 1.36241i −0.548424 0.180455i
\(58\) −1.53213 −0.201179
\(59\) 7.93429 4.58086i 1.03296 0.596378i 0.115126 0.993351i \(-0.463273\pi\)
0.917830 + 0.396973i \(0.129939\pi\)
\(60\) 2.98582 1.72386i 0.385467 0.222550i
\(61\) −4.04837 2.33733i −0.518341 0.299264i 0.217915 0.975968i \(-0.430075\pi\)
−0.736256 + 0.676704i \(0.763408\pi\)
\(62\) 2.27022 1.31071i 0.288318 0.166460i
\(63\) 1.08112 + 0.624183i 0.136208 + 0.0786397i
\(64\) 1.00000 0.125000
\(65\) −5.66721 −0.702931
\(66\) 0.525163 3.27478i 0.0646431 0.403098i
\(67\) 9.86074 + 5.69310i 1.20468 + 0.695523i 0.961592 0.274481i \(-0.0885061\pi\)
0.243089 + 0.970004i \(0.421839\pi\)
\(68\) 1.09825i 0.133183i
\(69\) 6.85951i 0.825788i
\(70\) −3.72739 2.15201i −0.445509 0.257215i
\(71\) −1.61897 + 0.934712i −0.192136 + 0.110930i −0.592982 0.805216i \(-0.702050\pi\)
0.400846 + 0.916145i \(0.368716\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) −4.66802 + 2.69509i −0.546351 + 0.315436i −0.747649 0.664094i \(-0.768817\pi\)
0.201298 + 0.979530i \(0.435484\pi\)
\(74\) −2.42528 + 1.40024i −0.281933 + 0.162774i
\(75\) 6.88681i 0.795220i
\(76\) −4.26699 + 0.890378i −0.489458 + 0.102133i
\(77\) −3.86822 + 1.47630i −0.440825 + 0.168240i
\(78\) 1.42353 0.821877i 0.161183 0.0930593i
\(79\) −5.22027 9.04178i −0.587327 1.01728i −0.994581 0.103965i \(-0.966847\pi\)
0.407254 0.913315i \(-0.366486\pi\)
\(80\) 1.72386 2.98582i 0.192734 0.333825i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.04813 3.54746i 0.226178 0.391751i
\(83\) 4.26934i 0.468621i 0.972162 + 0.234310i \(0.0752832\pi\)
−0.972162 + 0.234310i \(0.924717\pi\)
\(84\) 1.24837 0.136208
\(85\) −3.27919 1.89324i −0.355678 0.205351i
\(86\) −1.73718 1.00296i −0.187324 0.108152i
\(87\) 1.53213i 0.164262i
\(88\) −1.18259 3.09863i −0.126064 0.330315i
\(89\) −9.98398 5.76425i −1.05830 0.611010i −0.133338 0.991071i \(-0.542570\pi\)
−0.924961 + 0.380061i \(0.875903\pi\)
\(90\) 1.72386 + 2.98582i 0.181711 + 0.314733i
\(91\) −1.77709 1.02600i −0.186290 0.107554i
\(92\) 3.42976 + 5.94051i 0.357577 + 0.619341i
\(93\) 1.31071 + 2.27022i 0.135914 + 0.235411i
\(94\) 0.772098 0.0796358
\(95\) −4.69720 + 14.2754i −0.481923 + 1.46462i
\(96\) 1.00000i 0.102062i
\(97\) −3.47315 + 2.00523i −0.352645 + 0.203600i −0.665850 0.746086i \(-0.731931\pi\)
0.313204 + 0.949686i \(0.398598\pi\)
\(98\) 2.72079 + 4.71255i 0.274841 + 0.476039i
\(99\) 3.27478 + 0.525163i 0.329128 + 0.0527808i
\(100\) −3.44340 5.96415i −0.344340 0.596415i
\(101\) 1.66293 + 0.960091i 0.165467 + 0.0955327i 0.580447 0.814298i \(-0.302878\pi\)
−0.414979 + 0.909831i \(0.636211\pi\)
\(102\) 1.09825 0.108743
\(103\) 0.580029i 0.0571520i −0.999592 0.0285760i \(-0.990903\pi\)
0.999592 0.0285760i \(-0.00909726\pi\)
\(104\) 0.821877 1.42353i 0.0805917 0.139589i
\(105\) 2.15201 3.72739i 0.210015 0.363756i
\(106\) 8.82229i 0.856896i
\(107\) −1.50856 −0.145838 −0.0729189 0.997338i \(-0.523231\pi\)
−0.0729189 + 0.997338i \(0.523231\pi\)
\(108\) −0.866025 0.500000i −0.0833333 0.0481125i
\(109\) −3.11316 5.39214i −0.298186 0.516474i 0.677535 0.735491i \(-0.263048\pi\)
−0.975721 + 0.219017i \(0.929715\pi\)
\(110\) −11.2906 1.81062i −1.07651 0.172636i
\(111\) −1.40024 2.42528i −0.132904 0.230197i
\(112\) 1.08112 0.624183i 0.102156 0.0589798i
\(113\) 7.42260i 0.698260i −0.937074 0.349130i \(-0.886477\pi\)
0.937074 0.349130i \(-0.113523\pi\)
\(114\) −0.890378 4.26699i −0.0833915 0.399640i
\(115\) 23.6497 2.20535
\(116\) −0.766066 1.32687i −0.0711275 0.123196i
\(117\) 0.821877 + 1.42353i 0.0759826 + 0.131606i
\(118\) 7.93429 + 4.58086i 0.730411 + 0.421703i
\(119\) −0.685511 1.18734i −0.0628407 0.108843i
\(120\) 2.98582 + 1.72386i 0.272567 + 0.157366i
\(121\) −8.20297 + 7.32879i −0.745725 + 0.666254i
\(122\) 4.67466i 0.423224i
\(123\) 3.54746 + 2.04813i 0.319864 + 0.184673i
\(124\) 2.27022 + 1.31071i 0.203872 + 0.117705i
\(125\) −6.50520 −0.581843
\(126\) 1.24837i 0.111213i
\(127\) 5.76857 9.99146i 0.511878 0.886599i −0.488027 0.872829i \(-0.662283\pi\)
0.999905 0.0137705i \(-0.00438342\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 1.00296 1.73718i 0.0883056 0.152950i
\(130\) −2.83361 4.90795i −0.248524 0.430456i
\(131\) −6.23545 + 3.60004i −0.544794 + 0.314537i −0.747020 0.664802i \(-0.768516\pi\)
0.202226 + 0.979339i \(0.435183\pi\)
\(132\) 3.09863 1.18259i 0.269701 0.102931i
\(133\) −4.05736 + 3.62599i −0.351818 + 0.314413i
\(134\) 11.3862i 0.983618i
\(135\) −2.98582 + 1.72386i −0.256978 + 0.148366i
\(136\) 0.951116 0.549127i 0.0815575 0.0470872i
\(137\) −1.01202 + 1.75287i −0.0864627 + 0.149758i −0.906014 0.423249i \(-0.860890\pi\)
0.819551 + 0.573006i \(0.194223\pi\)
\(138\) −5.94051 + 3.42976i −0.505690 + 0.291960i
\(139\) 19.1914 + 11.0802i 1.62779 + 0.939806i 0.984750 + 0.173975i \(0.0556613\pi\)
0.643042 + 0.765831i \(0.277672\pi\)
\(140\) 4.30402i 0.363756i
\(141\) 0.772098i 0.0650224i
\(142\) −1.61897 0.934712i −0.135861 0.0784393i
\(143\) −5.38294 0.863238i −0.450144 0.0721876i
\(144\) −1.00000 −0.0833333
\(145\) −5.28237 −0.438677
\(146\) −4.66802 2.69509i −0.386328 0.223047i
\(147\) −4.71255 + 2.72079i −0.388684 + 0.224407i
\(148\) −2.42528 1.40024i −0.199357 0.115099i
\(149\) −16.8557 + 9.73163i −1.38087 + 0.797246i −0.992263 0.124157i \(-0.960377\pi\)
−0.388608 + 0.921403i \(0.627044\pi\)
\(150\) 5.96415 3.44340i 0.486971 0.281153i
\(151\) 13.2156 1.07547 0.537733 0.843115i \(-0.319281\pi\)
0.537733 + 0.843115i \(0.319281\pi\)
\(152\) −2.90459 3.25014i −0.235593 0.263621i
\(153\) 1.09825i 0.0887886i
\(154\) −3.21263 2.61183i −0.258881 0.210467i
\(155\) 7.82709 4.51897i 0.628687 0.362972i
\(156\) 1.42353 + 0.821877i 0.113974 + 0.0658028i
\(157\) 5.27038 + 9.12857i 0.420622 + 0.728539i 0.996000 0.0893485i \(-0.0284785\pi\)
−0.575378 + 0.817887i \(0.695145\pi\)
\(158\) 5.22027 9.04178i 0.415303 0.719325i
\(159\) 8.82229 0.699653
\(160\) 3.44773 0.272567
\(161\) 7.41594 + 4.28159i 0.584458 + 0.337437i
\(162\) 0.500000 0.866025i 0.0392837 0.0680414i
\(163\) 1.16899 0.0915625 0.0457812 0.998951i \(-0.485422\pi\)
0.0457812 + 0.998951i \(0.485422\pi\)
\(164\) 4.09625 0.319864
\(165\) 1.81062 11.2906i 0.140956 0.878968i
\(166\) −3.69736 + 2.13467i −0.286971 + 0.165683i
\(167\) −3.26312 + 5.65190i −0.252508 + 0.437357i −0.964216 0.265119i \(-0.914589\pi\)
0.711708 + 0.702476i \(0.247922\pi\)
\(168\) 0.624183 + 1.08112i 0.0481568 + 0.0834100i
\(169\) 5.14904 + 8.91839i 0.396080 + 0.686030i
\(170\) 3.78648i 0.290410i
\(171\) 4.26699 0.890378i 0.326305 0.0680889i
\(172\) 2.00592i 0.152950i
\(173\) 7.99835 + 13.8536i 0.608104 + 1.05327i 0.991553 + 0.129704i \(0.0414028\pi\)
−0.383449 + 0.923562i \(0.625264\pi\)
\(174\) 1.32687 0.766066i 0.100589 0.0580753i
\(175\) −7.44545 4.29863i −0.562823 0.324946i
\(176\) 2.09220 2.57346i 0.157705 0.193982i
\(177\) −4.58086 + 7.93429i −0.344319 + 0.596378i
\(178\) 11.5285i 0.864098i
\(179\) 10.4097i 0.778060i 0.921225 + 0.389030i \(0.127190\pi\)
−0.921225 + 0.389030i \(0.872810\pi\)
\(180\) −1.72386 + 2.98582i −0.128489 + 0.222550i
\(181\) 22.7100 + 13.1116i 1.68802 + 0.974579i 0.956032 + 0.293262i \(0.0947409\pi\)
0.731989 + 0.681317i \(0.238592\pi\)
\(182\) 2.05201i 0.152105i
\(183\) 4.67466 0.345561
\(184\) −3.42976 + 5.94051i −0.252845 + 0.437940i
\(185\) −8.36170 + 4.82763i −0.614764 + 0.354934i
\(186\) −1.31071 + 2.27022i −0.0961060 + 0.166460i
\(187\) −2.82632 2.29776i −0.206681 0.168029i
\(188\) 0.386049 + 0.668656i 0.0281555 + 0.0487668i
\(189\) −1.24837 −0.0908053
\(190\) −14.7114 + 3.06978i −1.06728 + 0.222705i
\(191\) 20.3253 1.47069 0.735344 0.677694i \(-0.237020\pi\)
0.735344 + 0.677694i \(0.237020\pi\)
\(192\) −0.866025 + 0.500000i −0.0625000 + 0.0360844i
\(193\) 1.39463 + 2.41558i 0.100388 + 0.173877i 0.911845 0.410536i \(-0.134658\pi\)
−0.811457 + 0.584413i \(0.801325\pi\)
\(194\) −3.47315 2.00523i −0.249358 0.143967i
\(195\) 4.90795 2.83361i 0.351466 0.202919i
\(196\) −2.72079 + 4.71255i −0.194342 + 0.336611i
\(197\) 8.06663i 0.574724i −0.957822 0.287362i \(-0.907222\pi\)
0.957822 0.287362i \(-0.0927782\pi\)
\(198\) 1.18259 + 3.09863i 0.0840428 + 0.220210i
\(199\) 6.83492 11.8384i 0.484514 0.839204i −0.515327 0.856993i \(-0.672330\pi\)
0.999842 + 0.0177898i \(0.00566297\pi\)
\(200\) 3.44340 5.96415i 0.243485 0.421729i
\(201\) −11.3862 −0.803121
\(202\) 1.92018i 0.135104i
\(203\) −1.65641 0.956331i −0.116257 0.0671213i
\(204\) 0.549127 + 0.951116i 0.0384466 + 0.0665914i
\(205\) 7.06138 12.2307i 0.493188 0.854227i
\(206\) 0.502320 0.290015i 0.0349983 0.0202063i
\(207\) −3.42976 5.94051i −0.238385 0.412894i
\(208\) 1.64375 0.113974
\(209\) −6.63603 + 12.8438i −0.459024 + 0.888424i
\(210\) 4.30402 0.297006
\(211\) −9.65373 16.7208i −0.664590 1.15110i −0.979396 0.201948i \(-0.935273\pi\)
0.314806 0.949156i \(-0.398061\pi\)
\(212\) 7.64033 4.41114i 0.524740 0.302959i
\(213\) 0.934712 1.61897i 0.0640454 0.110930i
\(214\) −0.754278 1.30645i −0.0515614 0.0893070i
\(215\) −5.98930 3.45793i −0.408467 0.235829i
\(216\) 1.00000i 0.0680414i
\(217\) 3.27249 0.222151
\(218\) 3.11316 5.39214i 0.210849 0.365202i
\(219\) 2.69509 4.66802i 0.182117 0.315436i
\(220\) −4.07724 10.6832i −0.274887 0.720262i
\(221\) 1.80526i 0.121435i
\(222\) 1.40024 2.42528i 0.0939777 0.162774i
\(223\) −5.48809 + 3.16855i −0.367510 + 0.212182i −0.672370 0.740215i \(-0.734724\pi\)
0.304860 + 0.952397i \(0.401390\pi\)
\(224\) 1.08112 + 0.624183i 0.0722352 + 0.0417050i
\(225\) 3.44340 + 5.96415i 0.229560 + 0.397610i
\(226\) 6.42816 3.71130i 0.427595 0.246872i
\(227\) 17.4617 1.15897 0.579486 0.814982i \(-0.303253\pi\)
0.579486 + 0.814982i \(0.303253\pi\)
\(228\) 3.25014 2.90459i 0.215245 0.192361i
\(229\) 26.2752 1.73632 0.868158 0.496287i \(-0.165304\pi\)
0.868158 + 0.496287i \(0.165304\pi\)
\(230\) 11.8249 + 20.4813i 0.779708 + 1.35049i
\(231\) 2.61183 3.21263i 0.171846 0.211375i
\(232\) 0.766066 1.32687i 0.0502947 0.0871130i
\(233\) 6.90824 3.98847i 0.452574 0.261294i −0.256343 0.966586i \(-0.582518\pi\)
0.708917 + 0.705292i \(0.249184\pi\)
\(234\) −0.821877 + 1.42353i −0.0537278 + 0.0930593i
\(235\) 2.66198 0.173648
\(236\) 9.16173i 0.596378i
\(237\) 9.04178 + 5.22027i 0.587327 + 0.339093i
\(238\) 0.685511 1.18734i 0.0444351 0.0769639i
\(239\) 4.21658i 0.272748i 0.990657 + 0.136374i \(0.0435449\pi\)
−0.990657 + 0.136374i \(0.956455\pi\)
\(240\) 3.44773i 0.222550i
\(241\) 13.7940 23.8920i 0.888552 1.53902i 0.0469650 0.998897i \(-0.485045\pi\)
0.841587 0.540121i \(-0.181622\pi\)
\(242\) −10.4484 3.43959i −0.671649 0.221105i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 4.04837 2.33733i 0.259170 0.149632i
\(245\) 9.38054 + 16.2476i 0.599301 + 1.03802i
\(246\) 4.09625i 0.261168i
\(247\) −7.01389 + 1.46356i −0.446283 + 0.0931243i
\(248\) 2.62142i 0.166460i
\(249\) −2.13467 3.69736i −0.135279 0.234310i
\(250\) −3.25260 5.63367i −0.205713 0.356305i
\(251\) −1.41158 + 2.44494i −0.0890984 + 0.154323i −0.907130 0.420850i \(-0.861732\pi\)
0.818032 + 0.575173i \(0.195065\pi\)
\(252\) −1.08112 + 0.624183i −0.0681040 + 0.0393198i
\(253\) 22.4634 + 3.60236i 1.41226 + 0.226478i
\(254\) 11.5371 0.723905
\(255\) 3.78648 0.237118
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.17573 4.14291i −0.447610 0.258428i 0.259210 0.965821i \(-0.416538\pi\)
−0.706820 + 0.707393i \(0.749871\pi\)
\(258\) 2.00592 0.124883
\(259\) −3.49601 −0.217232
\(260\) 2.83361 4.90795i 0.175733 0.304378i
\(261\) 0.766066 + 1.32687i 0.0474183 + 0.0821309i
\(262\) −6.23545 3.60004i −0.385228 0.222411i
\(263\) 12.1077 6.99036i 0.746590 0.431044i −0.0778702 0.996964i \(-0.524812\pi\)
0.824461 + 0.565919i \(0.191479\pi\)
\(264\) 2.57346 + 2.09220i 0.158386 + 0.128766i
\(265\) 30.4168i 1.86849i
\(266\) −5.16888 1.70078i −0.316924 0.104282i
\(267\) 11.5285 0.705533
\(268\) −9.86074 + 5.69310i −0.602341 + 0.347761i
\(269\) −7.21175 + 4.16371i −0.439708 + 0.253866i −0.703474 0.710721i \(-0.748369\pi\)
0.263766 + 0.964587i \(0.415035\pi\)
\(270\) −2.98582 1.72386i −0.181711 0.104911i
\(271\) 25.3510 14.6364i 1.53996 0.889097i 0.541122 0.840944i \(-0.318000\pi\)
0.998840 0.0481531i \(-0.0153336\pi\)
\(272\) 0.951116 + 0.549127i 0.0576699 + 0.0332957i
\(273\) 2.05201 0.124193
\(274\) −2.02404 −0.122277
\(275\) −22.5528 3.61670i −1.35999 0.218095i
\(276\) −5.94051 3.42976i −0.357577 0.206447i
\(277\) 11.2396i 0.675324i 0.941267 + 0.337662i \(0.109636\pi\)
−0.941267 + 0.337662i \(0.890364\pi\)
\(278\) 22.1603i 1.32909i
\(279\) −2.27022 1.31071i −0.135914 0.0784702i
\(280\) 3.72739 2.15201i 0.222754 0.128607i
\(281\) 6.56974 11.3791i 0.391918 0.678821i −0.600785 0.799411i \(-0.705145\pi\)
0.992702 + 0.120589i \(0.0384785\pi\)
\(282\) −0.668656 + 0.386049i −0.0398179 + 0.0229889i
\(283\) −12.2273 + 7.05943i −0.726837 + 0.419640i −0.817264 0.576263i \(-0.804510\pi\)
0.0904266 + 0.995903i \(0.471177\pi\)
\(284\) 1.86942i 0.110930i
\(285\) −3.06978 14.7114i −0.181838 0.871429i
\(286\) −1.94388 5.09338i −0.114944 0.301178i
\(287\) 4.42853 2.55681i 0.261408 0.150924i
\(288\) −0.500000 0.866025i −0.0294628 0.0510310i
\(289\) −7.89692 + 13.6779i −0.464525 + 0.804580i
\(290\) −2.64119 4.57467i −0.155096 0.268634i
\(291\) 2.00523 3.47315i 0.117548 0.203600i
\(292\) 5.39017i 0.315436i
\(293\) −24.5703 −1.43541 −0.717705 0.696347i \(-0.754807\pi\)
−0.717705 + 0.696347i \(0.754807\pi\)
\(294\) −4.71255 2.72079i −0.274841 0.158680i
\(295\) 27.3553 + 15.7936i 1.59268 + 0.919537i
\(296\) 2.80047i 0.162774i
\(297\) −3.09863 + 1.18259i −0.179801 + 0.0686207i
\(298\) −16.8557 9.73163i −0.976423 0.563738i
\(299\) 5.63768 + 9.76474i 0.326035 + 0.564710i
\(300\) 5.96415 + 3.44340i 0.344340 + 0.198805i
\(301\) −1.25206 2.16863i −0.0721675 0.124998i
\(302\) 6.60778 + 11.4450i 0.380235 + 0.658586i
\(303\) −1.92018 −0.110312
\(304\) 1.36241 4.14051i 0.0781394 0.237475i
\(305\) 16.1169i 0.922853i
\(306\) −0.951116 + 0.549127i −0.0543717 + 0.0313915i
\(307\) 8.36440 + 14.4876i 0.477381 + 0.826849i 0.999664 0.0259236i \(-0.00825265\pi\)
−0.522282 + 0.852773i \(0.674919\pi\)
\(308\) 0.655595 4.08813i 0.0373560 0.232943i
\(309\) 0.290015 + 0.502320i 0.0164984 + 0.0285760i
\(310\) 7.82709 + 4.51897i 0.444549 + 0.256660i
\(311\) 27.5985 1.56497 0.782484 0.622671i \(-0.213953\pi\)
0.782484 + 0.622671i \(0.213953\pi\)
\(312\) 1.64375i 0.0930593i
\(313\) −6.53619 + 11.3210i −0.369447 + 0.639901i −0.989479 0.144675i \(-0.953786\pi\)
0.620032 + 0.784577i \(0.287120\pi\)
\(314\) −5.27038 + 9.12857i −0.297425 + 0.515155i
\(315\) 4.30402i 0.242504i
\(316\) 10.4405 0.587327
\(317\) −25.2620 14.5850i −1.41885 0.819176i −0.422656 0.906290i \(-0.638902\pi\)
−0.996198 + 0.0871138i \(0.972236\pi\)
\(318\) 4.41114 + 7.64033i 0.247365 + 0.428448i
\(319\) −5.01740 0.804619i −0.280921 0.0450500i
\(320\) 1.72386 + 2.98582i 0.0963669 + 0.166912i
\(321\) 1.30645 0.754278i 0.0729189 0.0420997i
\(322\) 8.56319i 0.477208i
\(323\) −4.54733 1.49627i −0.253020 0.0832546i
\(324\) 1.00000 0.0555556
\(325\) −5.66011 9.80360i −0.313966 0.543806i
\(326\) 0.584496 + 1.01238i 0.0323722 + 0.0560703i
\(327\) 5.39214 + 3.11316i 0.298186 + 0.172158i
\(328\) 2.04813 + 3.54746i 0.113089 + 0.195876i
\(329\) 0.834728 + 0.481930i 0.0460200 + 0.0265697i
\(330\) 10.6832 4.07724i 0.588092 0.224444i
\(331\) 24.6409i 1.35438i −0.735806 0.677192i \(-0.763197\pi\)
0.735806 0.677192i \(-0.236803\pi\)
\(332\) −3.69736 2.13467i −0.202919 0.117155i
\(333\) 2.42528 + 1.40024i 0.132904 + 0.0767324i
\(334\) −6.52625 −0.357100
\(335\) 39.2565i 2.14481i
\(336\) −0.624183 + 1.08112i −0.0340520 + 0.0589798i
\(337\) 6.43400 + 11.1440i 0.350482 + 0.607053i 0.986334 0.164758i \(-0.0526843\pi\)
−0.635852 + 0.771811i \(0.719351\pi\)
\(338\) −5.14904 + 8.91839i −0.280071 + 0.485097i
\(339\) 3.71130 + 6.42816i 0.201570 + 0.349130i
\(340\) 3.27919 1.89324i 0.177839 0.102675i
\(341\) 8.12281 3.10006i 0.439875 0.167878i
\(342\) 2.90459 + 3.25014i 0.157062 + 0.175747i
\(343\) 15.5316i 0.838630i
\(344\) 1.73718 1.00296i 0.0936622 0.0540759i
\(345\) −20.4813 + 11.8249i −1.10267 + 0.636629i
\(346\) −7.99835 + 13.8536i −0.429994 + 0.744772i
\(347\) −24.8878 + 14.3690i −1.33605 + 0.771368i −0.986219 0.165445i \(-0.947094\pi\)
−0.349830 + 0.936813i \(0.613761\pi\)
\(348\) 1.32687 + 0.766066i 0.0711275 + 0.0410655i
\(349\) 13.6949i 0.733070i 0.930404 + 0.366535i \(0.119456\pi\)
−0.930404 + 0.366535i \(0.880544\pi\)
\(350\) 8.59726i 0.459543i
\(351\) −1.42353 0.821877i −0.0759826 0.0438686i
\(352\) 3.27478 + 0.525163i 0.174547 + 0.0279913i
\(353\) −14.2208 −0.756895 −0.378448 0.925623i \(-0.623542\pi\)
−0.378448 + 0.925623i \(0.623542\pi\)
\(354\) −9.16173 −0.486940
\(355\) −5.58176 3.22263i −0.296249 0.171039i
\(356\) 9.98398 5.76425i 0.529150 0.305505i
\(357\) 1.18734 + 0.685511i 0.0628407 + 0.0362811i
\(358\) −9.01509 + 5.20486i −0.476462 + 0.275086i
\(359\) −15.7117 + 9.07113i −0.829230 + 0.478756i −0.853589 0.520947i \(-0.825579\pi\)
0.0243591 + 0.999703i \(0.492245\pi\)
\(360\) −3.44773 −0.181711
\(361\) −2.12676 + 18.8806i −0.111935 + 0.993716i
\(362\) 26.2232i 1.37826i
\(363\) 3.43959 10.4484i 0.180532 0.548399i
\(364\) 1.77709 1.02600i 0.0931448 0.0537772i
\(365\) −16.0941 9.29191i −0.842402 0.486361i
\(366\) 2.33733 + 4.04837i 0.122174 + 0.211612i
\(367\) 2.48444 4.30317i 0.129687 0.224624i −0.793869 0.608089i \(-0.791936\pi\)
0.923555 + 0.383466i \(0.125270\pi\)
\(368\) −6.85951 −0.357577
\(369\) −4.09625 −0.213242
\(370\) −8.36170 4.82763i −0.434704 0.250976i
\(371\) 5.50672 9.53792i 0.285895 0.495184i
\(372\) −2.62142 −0.135914
\(373\) 30.2547 1.56653 0.783264 0.621689i \(-0.213553\pi\)
0.783264 + 0.621689i \(0.213553\pi\)
\(374\) 0.576762 3.59654i 0.0298237 0.185973i
\(375\) 5.63367 3.25260i 0.290921 0.167964i
\(376\) −0.386049 + 0.668656i −0.0199090 + 0.0344833i
\(377\) −1.25922 2.18104i −0.0648534 0.112329i
\(378\) −0.624183 1.08112i −0.0321045 0.0556066i
\(379\) 23.0880i 1.18595i 0.805221 + 0.592975i \(0.202047\pi\)
−0.805221 + 0.592975i \(0.797953\pi\)
\(380\) −10.0142 11.2056i −0.513718 0.574834i
\(381\) 11.5371i 0.591066i
\(382\) 10.1627 + 17.6022i 0.519967 + 0.900609i
\(383\) 4.34845 2.51058i 0.222196 0.128285i −0.384771 0.923012i \(-0.625720\pi\)
0.606967 + 0.794727i \(0.292386\pi\)
\(384\) −0.866025 0.500000i −0.0441942 0.0255155i
\(385\) −11.0762 9.00486i −0.564498 0.458930i
\(386\) −1.39463 + 2.41558i −0.0709850 + 0.122950i
\(387\) 2.00592i 0.101967i
\(388\) 4.01045i 0.203600i
\(389\) 6.18511 10.7129i 0.313597 0.543167i −0.665541 0.746361i \(-0.731799\pi\)
0.979138 + 0.203195i \(0.0651324\pi\)
\(390\) 4.90795 + 2.83361i 0.248524 + 0.143485i
\(391\) 7.53349i 0.380985i
\(392\) −5.44158 −0.274841
\(393\) 3.60004 6.23545i 0.181598 0.314537i
\(394\) 6.98591 4.03331i 0.351945 0.203195i
\(395\) 17.9981 31.1736i 0.905581 1.56851i
\(396\) −2.09220 + 2.57346i −0.105137 + 0.129321i
\(397\) −8.99311 15.5765i −0.451351 0.781763i 0.547119 0.837055i \(-0.315724\pi\)
−0.998470 + 0.0552916i \(0.982391\pi\)
\(398\) 13.6698 0.685207
\(399\) 1.70078 5.16888i 0.0851456 0.258767i
\(400\) 6.88681 0.344340
\(401\) −22.0003 + 12.7019i −1.09864 + 0.634303i −0.935865 0.352360i \(-0.885379\pi\)
−0.162780 + 0.986662i \(0.552046\pi\)
\(402\) −5.69310 9.86074i −0.283946 0.491809i
\(403\) 3.73168 + 2.15449i 0.185888 + 0.107323i
\(404\) −1.66293 + 0.960091i −0.0827337 + 0.0477663i
\(405\) 1.72386 2.98582i 0.0856594 0.148366i
\(406\) 1.91266i 0.0949238i
\(407\) −8.67761 + 3.31180i −0.430133 + 0.164160i
\(408\) −0.549127 + 0.951116i −0.0271858 + 0.0470872i
\(409\) −6.03359 + 10.4505i −0.298342 + 0.516744i −0.975757 0.218858i \(-0.929767\pi\)
0.677415 + 0.735601i \(0.263100\pi\)
\(410\) 14.1228 0.697473
\(411\) 2.02404i 0.0998385i
\(412\) 0.502320 + 0.290015i 0.0247475 + 0.0142880i
\(413\) 5.71860 + 9.90490i 0.281394 + 0.487388i
\(414\) 3.42976 5.94051i 0.168563 0.291960i
\(415\) −12.7475 + 7.35976i −0.625749 + 0.361276i
\(416\) 0.821877 + 1.42353i 0.0402958 + 0.0697944i
\(417\) −22.1603 −1.08519
\(418\) −14.4411 + 0.674929i −0.706336 + 0.0330119i
\(419\) −13.1385 −0.641859 −0.320930 0.947103i \(-0.603995\pi\)
−0.320930 + 0.947103i \(0.603995\pi\)
\(420\) 2.15201 + 3.72739i 0.105007 + 0.181878i
\(421\) −2.50186 + 1.44445i −0.121933 + 0.0703982i −0.559726 0.828678i \(-0.689094\pi\)
0.437793 + 0.899076i \(0.355760\pi\)
\(422\) 9.65373 16.7208i 0.469936 0.813954i
\(423\) −0.386049 0.668656i −0.0187703 0.0325112i
\(424\) 7.64033 + 4.41114i 0.371047 + 0.214224i
\(425\) 7.56347i 0.366882i
\(426\) 1.86942 0.0905739
\(427\) 2.91784 5.05385i 0.141204 0.244573i
\(428\) 0.754278 1.30645i 0.0364594 0.0631496i
\(429\) 5.09338 1.94388i 0.245911 0.0938516i
\(430\) 6.91585i 0.333512i
\(431\) 1.21886 2.11112i 0.0587103 0.101689i −0.835176 0.549982i \(-0.814635\pi\)
0.893887 + 0.448293i \(0.147968\pi\)
\(432\) 0.866025 0.500000i 0.0416667 0.0240563i
\(433\) −28.9405 16.7088i −1.39079 0.802973i −0.397387 0.917651i \(-0.630083\pi\)
−0.993403 + 0.114678i \(0.963416\pi\)
\(434\) 1.63625 + 2.83406i 0.0785424 + 0.136039i
\(435\) 4.57467 2.64119i 0.219339 0.126635i
\(436\) 6.22631 0.298186
\(437\) 29.2695 6.10756i 1.40015 0.292164i
\(438\) 5.39017 0.257552
\(439\) 7.04233 + 12.1977i 0.336112 + 0.582163i 0.983698 0.179829i \(-0.0575545\pi\)
−0.647586 + 0.761993i \(0.724221\pi\)
\(440\) 7.21332 8.87260i 0.343881 0.422984i
\(441\) 2.72079 4.71255i 0.129561 0.224407i
\(442\) 1.56340 0.902630i 0.0743634 0.0429337i
\(443\) 1.80191 3.12101i 0.0856115 0.148283i −0.820040 0.572306i \(-0.806049\pi\)
0.905652 + 0.424023i \(0.139382\pi\)
\(444\) 2.80047 0.132904
\(445\) 39.7471i 1.88419i
\(446\) −5.48809 3.16855i −0.259869 0.150035i
\(447\) 9.73163 16.8557i 0.460290 0.797246i
\(448\) 1.24837i 0.0589798i
\(449\) 9.81169i 0.463042i 0.972830 + 0.231521i \(0.0743702\pi\)
−0.972830 + 0.231521i \(0.925630\pi\)
\(450\) −3.44340 + 5.96415i −0.162324 + 0.281153i
\(451\) 8.57016 10.5416i 0.403553 0.496383i
\(452\) 6.42816 + 3.71130i 0.302355 + 0.174565i
\(453\) −11.4450 + 6.60778i −0.537733 + 0.310460i
\(454\) 8.73084 + 15.1223i 0.409758 + 0.709722i
\(455\) 7.07476i 0.331670i
\(456\) 4.14051 + 1.36241i 0.193897 + 0.0638005i
\(457\) 32.2772i 1.50986i −0.655803 0.754932i \(-0.727670\pi\)
0.655803 0.754932i \(-0.272330\pi\)
\(458\) 13.1376 + 22.7550i 0.613881 + 1.06327i
\(459\) −0.549127 0.951116i −0.0256311 0.0443943i
\(460\) −11.8249 + 20.4813i −0.551337 + 0.954944i
\(461\) 15.8758 9.16591i 0.739411 0.426899i −0.0824442 0.996596i \(-0.526273\pi\)
0.821855 + 0.569697i \(0.192939\pi\)
\(462\) 4.08813 + 0.655595i 0.190197 + 0.0305011i
\(463\) −35.9196 −1.66933 −0.834663 0.550761i \(-0.814338\pi\)
−0.834663 + 0.550761i \(0.814338\pi\)
\(464\) 1.53213 0.0711275
\(465\) −4.51897 + 7.82709i −0.209562 + 0.362972i
\(466\) 6.90824 + 3.98847i 0.320018 + 0.184762i
\(467\) −31.2514 −1.44614 −0.723071 0.690774i \(-0.757270\pi\)
−0.723071 + 0.690774i \(0.757270\pi\)
\(468\) −1.64375 −0.0759826
\(469\) −7.10707 + 12.3098i −0.328174 + 0.568414i
\(470\) 1.33099 + 2.30534i 0.0613940 + 0.106338i
\(471\) −9.12857 5.27038i −0.420622 0.242846i
\(472\) −7.93429 + 4.58086i −0.365205 + 0.210851i
\(473\) −5.16216 4.19677i −0.237356 0.192968i
\(474\) 10.4405i 0.479550i
\(475\) −29.3860 + 6.13186i −1.34832 + 0.281349i
\(476\) 1.37102 0.0628407
\(477\) −7.64033 + 4.41114i −0.349826 + 0.201972i
\(478\) −3.65166 + 2.10829i −0.167023 + 0.0964309i
\(479\) 22.0278 + 12.7177i 1.00648 + 0.581089i 0.910158 0.414262i \(-0.135960\pi\)
0.0963174 + 0.995351i \(0.469294\pi\)
\(480\) −2.98582 + 1.72386i −0.136283 + 0.0786832i
\(481\) −3.98656 2.30164i −0.181772 0.104946i
\(482\) 27.5881 1.25660
\(483\) −8.56319 −0.389638
\(484\) −2.24543 10.7684i −0.102065 0.489472i
\(485\) −11.9745 6.91347i −0.543733 0.313924i
\(486\) 1.00000i 0.0453609i
\(487\) 21.5332i 0.975764i 0.872909 + 0.487882i \(0.162230\pi\)
−0.872909 + 0.487882i \(0.837770\pi\)
\(488\) 4.04837 + 2.33733i 0.183261 + 0.105806i
\(489\) −1.01238 + 0.584496i −0.0457812 + 0.0264318i
\(490\) −9.38054 + 16.2476i −0.423770 + 0.733990i
\(491\) 18.0097 10.3979i 0.812769 0.469252i −0.0351478 0.999382i \(-0.511190\pi\)
0.847916 + 0.530130i \(0.177857\pi\)
\(492\) −3.54746 + 2.04813i −0.159932 + 0.0923367i
\(493\) 1.68267i 0.0757837i
\(494\) −4.77443 5.34242i −0.214812 0.240367i
\(495\) 4.07724 + 10.6832i 0.183258 + 0.480175i
\(496\) −2.27022 + 1.31071i −0.101936 + 0.0588526i
\(497\) −1.16686 2.02107i −0.0523410 0.0906572i
\(498\) 2.13467 3.69736i 0.0956568 0.165683i
\(499\) 6.60058 + 11.4325i 0.295483 + 0.511791i 0.975097 0.221779i \(-0.0711862\pi\)
−0.679614 + 0.733570i \(0.737853\pi\)
\(500\) 3.25260 5.63367i 0.145461 0.251945i
\(501\) 6.52625i 0.291571i
\(502\) −2.82317 −0.126004
\(503\) −0.888084 0.512736i −0.0395977 0.0228618i 0.480070 0.877230i \(-0.340611\pi\)
−0.519668 + 0.854368i \(0.673944\pi\)
\(504\) −1.08112 0.624183i −0.0481568 0.0278033i
\(505\) 6.62026i 0.294598i
\(506\) 8.11197 + 21.2551i 0.360621 + 0.944903i
\(507\) −8.91839 5.14904i −0.396080 0.228677i
\(508\) 5.76857 + 9.99146i 0.255939 + 0.443299i
\(509\) 15.3833 + 8.88155i 0.681853 + 0.393668i 0.800553 0.599262i \(-0.204539\pi\)
−0.118700 + 0.992930i \(0.537873\pi\)
\(510\) 1.89324 + 3.27919i 0.0838340 + 0.145205i
\(511\) −3.36445 5.82740i −0.148835 0.257789i
\(512\) −1.00000 −0.0441942
\(513\) −3.25014 + 2.90459i −0.143497 + 0.128241i
\(514\) 8.28582i 0.365472i
\(515\) 1.73186 0.999891i 0.0763149 0.0440605i
\(516\) 1.00296 + 1.73718i 0.0441528 + 0.0764749i
\(517\) 2.52845 + 0.405477i 0.111201 + 0.0178329i
\(518\) −1.74801 3.02764i −0.0768030 0.133027i
\(519\) −13.8536 7.99835i −0.608104 0.351089i
\(520\) 5.66721 0.248524
\(521\) 25.2556i 1.10647i −0.833026 0.553233i \(-0.813394\pi\)
0.833026 0.553233i \(-0.186606\pi\)
\(522\) −0.766066 + 1.32687i −0.0335298 + 0.0580753i
\(523\) −9.19532 + 15.9268i −0.402083 + 0.696428i −0.993977 0.109587i \(-0.965047\pi\)
0.591894 + 0.806016i \(0.298380\pi\)
\(524\) 7.20008i 0.314537i
\(525\) 8.59726 0.375215
\(526\) 12.1077 + 6.99036i 0.527919 + 0.304794i
\(527\) 1.43949 + 2.49327i 0.0627053 + 0.108609i
\(528\) −0.525163 + 3.27478i −0.0228548 + 0.142517i
\(529\) −12.0265 20.8304i −0.522890 0.905672i
\(530\) 26.3417 15.2084i 1.14421 0.660611i
\(531\) 9.16173i 0.397585i
\(532\) −1.11152 5.32677i −0.0481904 0.230945i
\(533\) 6.73323 0.291649
\(534\) 5.76425 + 9.98398i 0.249444 + 0.432049i
\(535\) −2.60055 4.50428i −0.112431 0.194737i
\(536\) −9.86074 5.69310i −0.425919 0.245905i
\(537\) −5.20486 9.01509i −0.224606 0.389030i
\(538\) −7.21175 4.16371i −0.310921 0.179510i
\(539\) 6.43515 + 16.8614i 0.277181 + 0.726273i
\(540\) 3.44773i 0.148366i
\(541\) −15.3902 8.88554i −0.661677 0.382019i 0.131239 0.991351i \(-0.458105\pi\)
−0.792916 + 0.609331i \(0.791438\pi\)
\(542\) 25.3510 + 14.6364i 1.08892 + 0.628687i
\(543\) −26.2232 −1.12535
\(544\) 1.09825i 0.0470872i
\(545\) 10.7333 18.5906i 0.459764 0.796335i
\(546\) 1.02600 + 1.77709i 0.0439089 + 0.0760524i
\(547\) 22.0376 38.1702i 0.942259 1.63204i 0.181109 0.983463i \(-0.442031\pi\)
0.761149 0.648577i \(-0.224635\pi\)
\(548\) −1.01202 1.75287i −0.0432313 0.0748789i
\(549\) −4.04837 + 2.33733i −0.172780 + 0.0997548i
\(550\) −8.14425 21.3397i −0.347272 0.909926i
\(551\) −6.53760 + 1.36418i −0.278511 + 0.0581159i
\(552\) 6.85951i 0.291960i
\(553\) 11.2874 6.51681i 0.479991 0.277123i
\(554\) −9.73381 + 5.61982i −0.413550 + 0.238763i
\(555\) 4.82763 8.36170i 0.204921 0.354934i
\(556\) −19.1914 + 11.0802i −0.813896 + 0.469903i
\(557\) −21.1776 12.2269i −0.897322 0.518069i −0.0209914 0.999780i \(-0.506682\pi\)
−0.876330 + 0.481711i \(0.840016\pi\)
\(558\) 2.62142i 0.110974i
\(559\) 3.29724i 0.139458i
\(560\) 3.72739 + 2.15201i 0.157511 + 0.0909391i
\(561\) 3.59654 + 0.576762i 0.151846 + 0.0243509i
\(562\) 13.1395 0.554255
\(563\) −39.1242 −1.64889 −0.824444 0.565943i \(-0.808512\pi\)
−0.824444 + 0.565943i \(0.808512\pi\)
\(564\) −0.668656 0.386049i −0.0281555 0.0162556i
\(565\) 22.1625 12.7955i 0.932385 0.538313i
\(566\) −12.2273 7.05943i −0.513952 0.296730i
\(567\) 1.08112 0.624183i 0.0454026 0.0262132i
\(568\) 1.61897 0.934712i 0.0679304 0.0392197i
\(569\) −18.3969 −0.771236 −0.385618 0.922658i \(-0.626012\pi\)
−0.385618 + 0.922658i \(0.626012\pi\)
\(570\) 11.2056 10.0142i 0.469350 0.419449i
\(571\) 5.79237i 0.242403i 0.992628 + 0.121202i \(0.0386748\pi\)
−0.992628 + 0.121202i \(0.961325\pi\)
\(572\) 3.43906 4.23014i 0.143794 0.176871i
\(573\) −17.6022 + 10.1627i −0.735344 + 0.424551i
\(574\) 4.42853 + 2.55681i 0.184843 + 0.106719i
\(575\) 23.6201 + 40.9112i 0.985026 + 1.70611i
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) 3.73753 0.155596 0.0777978 0.996969i \(-0.475211\pi\)
0.0777978 + 0.996969i \(0.475211\pi\)
\(578\) −15.7938 −0.656937
\(579\) −2.41558 1.39463i −0.100388 0.0579590i
\(580\) 2.64119 4.57467i 0.109669 0.189953i
\(581\) −5.32970 −0.221113
\(582\) 4.01045 0.166239
\(583\) 4.63314 28.8911i 0.191885 1.19655i
\(584\) 4.66802 2.69509i 0.193164 0.111523i
\(585\) −2.83361 + 4.90795i −0.117155 + 0.202919i
\(586\) −12.2851 21.2785i −0.507494 0.879006i
\(587\) −13.8414 23.9740i −0.571297 0.989515i −0.996433 0.0843856i \(-0.973107\pi\)
0.425137 0.905129i \(-0.360226\pi\)
\(588\) 5.44158i 0.224407i
\(589\) 8.51997 7.61414i 0.351059 0.313735i
\(590\) 31.5871i 1.30042i
\(591\) 4.03331 + 6.98591i 0.165908 + 0.287362i
\(592\) 2.42528 1.40024i 0.0996784 0.0575493i
\(593\) 3.50513 + 2.02369i 0.143938 + 0.0831028i 0.570240 0.821478i \(-0.306850\pi\)
−0.426301 + 0.904581i \(0.640184\pi\)
\(594\) −2.57346 2.09220i −0.105591 0.0858438i
\(595\) 2.36346 4.09362i 0.0968922 0.167822i
\(596\) 19.4633i 0.797246i
\(597\) 13.6698i 0.559469i
\(598\) −5.63768 + 9.76474i −0.230542 + 0.399310i
\(599\) 0.105234 + 0.0607568i 0.00429974 + 0.00248246i 0.502148 0.864782i \(-0.332543\pi\)
−0.497849 + 0.867264i \(0.665876\pi\)
\(600\) 6.88681i 0.281153i
\(601\) −4.24484 −0.173150 −0.0865752 0.996245i \(-0.527592\pi\)
−0.0865752 + 0.996245i \(0.527592\pi\)
\(602\) 1.25206 2.16863i 0.0510302 0.0883868i
\(603\) 9.86074 5.69310i 0.401560 0.231841i
\(604\) −6.60778 + 11.4450i −0.268867 + 0.465691i
\(605\) −36.0232 11.8588i −1.46455 0.482127i
\(606\) −0.960091 1.66293i −0.0390010 0.0675518i
\(607\) −3.93826 −0.159849 −0.0799245 0.996801i \(-0.525468\pi\)
−0.0799245 + 0.996801i \(0.525468\pi\)
\(608\) 4.26699 0.890378i 0.173049 0.0361096i
\(609\) 1.91266 0.0775050
\(610\) 13.9577 8.05847i 0.565130 0.326278i
\(611\) 0.634569 + 1.09911i 0.0256719 + 0.0444651i
\(612\) −0.951116 0.549127i −0.0384466 0.0221971i
\(613\) −9.09086 + 5.24861i −0.367176 + 0.211989i −0.672224 0.740348i \(-0.734661\pi\)
0.305048 + 0.952337i \(0.401328\pi\)
\(614\) −8.36440 + 14.4876i −0.337560 + 0.584671i
\(615\) 14.1228i 0.569484i
\(616\) 3.86822 1.47630i 0.155855 0.0594819i
\(617\) −3.24205 + 5.61539i −0.130520 + 0.226067i −0.923877 0.382689i \(-0.874998\pi\)
0.793357 + 0.608756i \(0.208331\pi\)
\(618\) −0.290015 + 0.502320i −0.0116661 + 0.0202063i
\(619\) 36.5579 1.46939 0.734693 0.678399i \(-0.237326\pi\)
0.734693 + 0.678399i \(0.237326\pi\)
\(620\) 9.03794i 0.362972i
\(621\) 5.94051 + 3.42976i 0.238385 + 0.137631i
\(622\) 13.7992 + 23.9010i 0.553299 + 0.958343i
\(623\) 7.19590 12.4637i 0.288298 0.499346i
\(624\) −1.42353 + 0.821877i −0.0569869 + 0.0329014i
\(625\) 6.00295 + 10.3974i 0.240118 + 0.415897i
\(626\) −13.0724 −0.522477
\(627\) −0.674929 14.4411i −0.0269541 0.576721i
\(628\) −10.5408 −0.420622
\(629\) −1.53781 2.66357i −0.0613167 0.106204i
\(630\) −3.72739 + 2.15201i −0.148503 + 0.0857382i
\(631\) −17.1183 + 29.6498i −0.681469 + 1.18034i 0.293064 + 0.956093i \(0.405325\pi\)
−0.974533 + 0.224245i \(0.928008\pi\)
\(632\) 5.22027 + 9.04178i 0.207651 + 0.359663i
\(633\) 16.7208 + 9.65373i 0.664590 + 0.383701i
\(634\) 29.1700i 1.15849i
\(635\) 39.7769 1.57850
\(636\) −4.41114 + 7.64033i −0.174913 + 0.302959i
\(637\) −4.47231 + 7.74627i −0.177199 + 0.306918i
\(638\) −1.81188 4.74751i −0.0717330 0.187956i
\(639\) 1.86942i 0.0739533i
\(640\) −1.72386 + 2.98582i −0.0681417 + 0.118025i
\(641\) 24.1665 13.9525i 0.954518 0.551091i 0.0600363 0.998196i \(-0.480878\pi\)
0.894481 + 0.447105i \(0.147545\pi\)
\(642\) 1.30645 + 0.754278i 0.0515614 + 0.0297690i
\(643\) −20.3499 35.2471i −0.802523 1.39001i −0.917951 0.396694i \(-0.870157\pi\)
0.115428 0.993316i \(-0.463176\pi\)
\(644\) −7.41594 + 4.28159i −0.292229 + 0.168718i
\(645\) 6.91585 0.272311
\(646\) −0.977861 4.68624i −0.0384734 0.184378i
\(647\) 15.7172 0.617907 0.308953 0.951077i \(-0.400021\pi\)
0.308953 + 0.951077i \(0.400021\pi\)
\(648\) 0.500000 + 0.866025i 0.0196419 + 0.0340207i
\(649\) 23.5774 + 19.1681i 0.925493 + 0.752415i
\(650\) 5.66011 9.80360i 0.222008 0.384529i
\(651\) −2.83406 + 1.63625i −0.111076 + 0.0641296i
\(652\) −0.584496 + 1.01238i −0.0228906 + 0.0396477i
\(653\) 16.5807 0.648855 0.324427 0.945911i \(-0.394828\pi\)
0.324427 + 0.945911i \(0.394828\pi\)
\(654\) 6.22631i 0.243468i
\(655\) −21.4981 12.4120i −0.840002 0.484975i
\(656\) −2.04813 + 3.54746i −0.0799659 + 0.138505i
\(657\) 5.39017i 0.210291i
\(658\) 0.963861i 0.0375752i
\(659\) 19.8485 34.3787i 0.773189 1.33920i −0.162618 0.986689i \(-0.551994\pi\)
0.935807 0.352513i \(-0.114673\pi\)
\(660\) 8.87260 + 7.21332i 0.345365 + 0.280778i
\(661\) −8.00302 4.62055i −0.311281 0.179718i 0.336218 0.941784i \(-0.390852\pi\)
−0.647500 + 0.762066i \(0.724185\pi\)
\(662\) 21.3396 12.3204i 0.829388 0.478847i
\(663\) 0.902630 + 1.56340i 0.0350552 + 0.0607174i
\(664\) 4.26934i 0.165683i
\(665\) −17.8209 5.86383i −0.691064 0.227390i
\(666\) 2.80047i 0.108516i
\(667\) 5.25484 + 9.10165i 0.203468 + 0.352417i
\(668\) −3.26312 5.65190i −0.126254 0.218678i
\(669\) 3.16855 5.48809i 0.122503 0.212182i
\(670\) −33.9971 + 19.6282i −1.31342 + 0.758305i
\(671\) 2.45496 15.3085i 0.0947725 0.590978i
\(672\) −1.24837 −0.0481568
\(673\) 4.15137 0.160023 0.0800117 0.996794i \(-0.474504\pi\)
0.0800117 + 0.996794i \(0.474504\pi\)
\(674\) −6.43400 + 11.1440i −0.247828 + 0.429251i
\(675\) −5.96415 3.44340i −0.229560 0.132537i
\(676\) −10.2981 −0.396080
\(677\) 26.3131 1.01129 0.505647 0.862740i \(-0.331254\pi\)
0.505647 + 0.862740i \(0.331254\pi\)
\(678\) −3.71130 + 6.42816i −0.142532 + 0.246872i
\(679\) −2.50326 4.33577i −0.0960662 0.166392i
\(680\) 3.27919 + 1.89324i 0.125751 + 0.0726024i
\(681\) −15.1223 + 8.73084i −0.579486 + 0.334566i
\(682\) 6.74613 + 5.48453i 0.258323 + 0.210013i
\(683\) 43.3727i 1.65961i −0.558053 0.829806i \(-0.688451\pi\)
0.558053 0.829806i \(-0.311549\pi\)
\(684\) −1.36241 + 4.14051i −0.0520929 + 0.158316i
\(685\) −6.97833 −0.266628
\(686\) −13.4508 + 7.76582i −0.513554 + 0.296501i
\(687\) −22.7550 + 13.1376i −0.868158 + 0.501232i
\(688\) 1.73718 + 1.00296i 0.0662292 + 0.0382374i
\(689\) 12.5588 7.25084i 0.478453 0.276235i
\(690\) −20.4813 11.8249i −0.779708 0.450165i
\(691\) 26.5642 1.01055 0.505275 0.862958i \(-0.331391\pi\)
0.505275 + 0.862958i \(0.331391\pi\)
\(692\) −15.9967 −0.608104
\(693\) −0.655595 + 4.08813i −0.0249040 + 0.155295i
\(694\) −24.8878 14.3690i −0.944729 0.545440i
\(695\) 76.4026i 2.89812i
\(696\) 1.53213i 0.0580753i
\(697\) 3.89601 + 2.24936i 0.147572 + 0.0852007i
\(698\) −11.8601 + 6.84744i −0.448912 + 0.259179i
\(699\) −3.98847 + 6.90824i −0.150858 + 0.261294i
\(700\) 7.44545 4.29863i 0.281411 0.162473i
\(701\) 0.725834 0.419060i 0.0274144 0.0158277i −0.486230 0.873831i \(-0.661628\pi\)
0.513645 + 0.858003i \(0.328295\pi\)
\(702\) 1.64375i 0.0620395i
\(703\) −9.10191 + 8.13421i −0.343285 + 0.306788i
\(704\) 1.18259 + 3.09863i 0.0445704 + 0.116784i
\(705\) −2.30534 + 1.33099i −0.0868242 + 0.0501280i
\(706\) −7.11038 12.3155i −0.267603 0.463502i
\(707\) −1.19855 + 2.07594i −0.0450759 + 0.0780738i
\(708\) −4.58086 7.93429i −0.172159 0.298189i
\(709\) −4.24072 + 7.34515i −0.159264 + 0.275853i −0.934603 0.355692i \(-0.884245\pi\)
0.775340 + 0.631544i \(0.217579\pi\)
\(710\) 6.44526i 0.241886i
\(711\) −10.4405 −0.391551
\(712\) 9.98398 + 5.76425i 0.374165 + 0.216025i
\(713\) −15.5726 8.99084i −0.583198 0.336709i
\(714\) 1.37102i 0.0513092i
\(715\) −6.70197 17.5606i −0.250640 0.656728i
\(716\) −9.01509 5.20486i −0.336910 0.194515i
\(717\) −2.10829 3.65166i −0.0787355 0.136374i
\(718\) −15.7117 9.07113i −0.586354 0.338532i
\(719\) −11.8398 20.5072i −0.441550 0.764788i 0.556254 0.831012i \(-0.312238\pi\)
−0.997805 + 0.0662244i \(0.978905\pi\)
\(720\) −1.72386 2.98582i −0.0642446 0.111275i
\(721\) 0.724089 0.0269665
\(722\) −17.4145 + 7.59847i −0.648099 + 0.282786i
\(723\) 27.5881i 1.02601i
\(724\) −22.7100 + 13.1116i −0.844010 + 0.487290i
\(725\) −5.27575 9.13787i −0.195937 0.339372i
\(726\) 10.7684 2.24543i 0.399652 0.0833359i
\(727\) −3.51442 6.08716i −0.130343 0.225760i 0.793466 0.608615i \(-0.208274\pi\)
−0.923809 + 0.382854i \(0.874941\pi\)
\(728\) 1.77709 + 1.02600i 0.0658634 + 0.0380262i
\(729\) −1.00000 −0.0370370
\(730\) 18.5838i 0.687818i
\(731\) 1.10150 1.90786i 0.0407406 0.0705647i
\(732\) −2.33733 + 4.04837i −0.0863902 + 0.149632i
\(733\) 6.89916i 0.254826i 0.991850 + 0.127413i \(0.0406674\pi\)
−0.991850 + 0.127413i \(0.959333\pi\)
\(734\) 4.96888 0.183405
\(735\) −16.2476 9.38054i −0.599301 0.346006i
\(736\) −3.42976 5.94051i −0.126423 0.218970i
\(737\) −5.97961 + 37.2873i −0.220262 + 1.37350i
\(738\) −2.04813 3.54746i −0.0753926 0.130584i
\(739\) −25.3482 + 14.6348i −0.932449 + 0.538350i −0.887585 0.460644i \(-0.847619\pi\)
−0.0448635 + 0.998993i \(0.514285\pi\)
\(740\) 9.65526i 0.354934i
\(741\) 5.34242 4.77443i 0.196259 0.175393i
\(742\) 11.0134 0.404316
\(743\) −9.05408 15.6821i −0.332162 0.575321i 0.650774 0.759272i \(-0.274445\pi\)
−0.982935 + 0.183951i \(0.941111\pi\)
\(744\) −1.31071 2.27022i −0.0480530 0.0832302i
\(745\) −58.1137 33.5520i −2.12912 1.22925i
\(746\) 15.1273 + 26.2013i 0.553851 + 0.959299i
\(747\) 3.69736 + 2.13467i 0.135279 + 0.0781035i
\(748\) 3.40308 1.29878i 0.124429 0.0474881i
\(749\) 1.88323i 0.0688118i
\(750\) 5.63367 + 3.25260i 0.205713 + 0.118768i
\(751\) −31.6845 18.2930i −1.15618 0.667523i −0.205797 0.978595i \(-0.565979\pi\)
−0.950386 + 0.311072i \(0.899312\pi\)
\(752\) −0.772098 −0.0281555
\(753\) 2.82317i 0.102882i
\(754\) 1.25922 2.18104i 0.0458583 0.0794288i
\(755\) 22.7818 + 39.4592i 0.829115 + 1.43607i
\(756\) 0.624183 1.08112i 0.0227013 0.0393198i
\(757\) 16.0264 + 27.7586i 0.582491 + 1.00890i 0.995183 + 0.0980330i \(0.0312551\pi\)
−0.412693 + 0.910870i \(0.635412\pi\)
\(758\) −19.9948 + 11.5440i −0.726244 + 0.419297i
\(759\) −21.2551 + 8.11197i −0.771510 + 0.294446i
\(760\) 4.69720 14.2754i 0.170385 0.517821i
\(761\) 41.8466i 1.51694i −0.651708 0.758470i \(-0.725947\pi\)
0.651708 0.758470i \(-0.274053\pi\)
\(762\) −9.99146 + 5.76857i −0.361953 + 0.208973i
\(763\) 6.73137 3.88636i 0.243692 0.140696i
\(764\) −10.1627 + 17.6022i −0.367672 + 0.636827i
\(765\) −3.27919 + 1.89324i −0.118559 + 0.0684502i
\(766\) 4.34845 + 2.51058i 0.157116 + 0.0907110i
\(767\) 15.0596i 0.543772i
\(768\) 1.00000i 0.0360844i
\(769\) −10.0853 5.82275i −0.363685 0.209974i 0.307011 0.951706i \(-0.400671\pi\)
−0.670696 + 0.741732i \(0.734004\pi\)
\(770\) 2.26031 14.0947i 0.0814560 0.507939i
\(771\) 8.28582 0.298406
\(772\) −2.78927 −0.100388
\(773\) −5.63424 3.25293i −0.202650 0.117000i 0.395241 0.918577i \(-0.370661\pi\)
−0.597891 + 0.801578i \(0.703994\pi\)
\(774\) −1.73718 + 1.00296i −0.0624415 + 0.0360506i
\(775\) 15.6346 + 9.02661i 0.561610 + 0.324246i
\(776\) 3.47315 2.00523i 0.124679 0.0719834i
\(777\) 3.02764 1.74801i 0.108616 0.0627094i
\(778\) 12.3702 0.443494
\(779\) 5.58076 16.9606i 0.199951 0.607676i
\(780\) 5.66721i 0.202919i
\(781\) −4.81090 3.91120i −0.172147 0.139954i
\(782\) −6.52419 + 3.76674i −0.233305 + 0.134698i
\(783\) −1.32687 0.766066i −0.0474183 0.0273770i
\(784\) −2.72079 4.71255i −0.0971711 0.168305i
\(785\) −18.1708 + 31.4728i −0.648544 + 1.12331i
\(786\) 7.20008 0.256818
\(787\) −9.94951 −0.354662 −0.177331 0.984151i \(-0.556746\pi\)
−0.177331 + 0.984151i \(0.556746\pi\)
\(788\) 6.98591 + 4.03331i 0.248863 + 0.143681i
\(789\) −6.99036 + 12.1077i −0.248863 + 0.431044i
\(790\) 35.9961 1.28068
\(791\) 9.26613 0.329466
\(792\) −3.27478 0.525163i −0.116364 0.0186608i
\(793\) 6.65453 3.84199i 0.236309 0.136433i
\(794\) 8.99311 15.5765i 0.319154 0.552790i
\(795\) 15.2084 + 26.3417i 0.539387 + 0.934245i
\(796\) 6.83492 + 11.8384i 0.242257 + 0.419602i
\(797\) 9.61068i 0.340428i −0.985407 0.170214i \(-0.945554\pi\)
0.985407 0.170214i \(-0.0544458\pi\)
\(798\) 5.32677 1.11152i 0.188566 0.0393473i
\(799\) 0.847959i 0.0299986i
\(800\) 3.44340 + 5.96415i 0.121743 + 0.210865i
\(801\) −9.98398 + 5.76425i −0.352767 + 0.203670i
\(802\) −22.0003 12.7019i −0.776859 0.448520i
\(803\) −13.8714 11.2773i −0.489511 0.397967i
\(804\) 5.69310 9.86074i 0.200780 0.347761i
\(805\) 29.5235i 1.04057i
\(806\) 4.30897i 0.151777i
\(807\) 4.16371 7.21175i 0.146569 0.253866i
\(808\) −1.66293 0.960091i −0.0585016 0.0337759i
\(809\) 8.16091i 0.286922i 0.989656 + 0.143461i \(0.0458232\pi\)
−0.989656 + 0.143461i \(0.954177\pi\)
\(810\) 3.44773 0.121141
\(811\) −17.0726 + 29.5706i −0.599499 + 1.03836i 0.393396 + 0.919369i \(0.371300\pi\)
−0.992895 + 0.118994i \(0.962033\pi\)
\(812\) 1.65641 0.956331i 0.0581287 0.0335606i
\(813\) −14.6364 + 25.3510i −0.513321 + 0.889097i
\(814\) −7.20691 5.85913i −0.252602 0.205363i
\(815\) 2.01518 + 3.49039i 0.0705887 + 0.122263i
\(816\) −1.09825 −0.0384466
\(817\) −8.30553 2.73288i −0.290574 0.0956112i
\(818\) −12.0672 −0.421919
\(819\) −1.77709 + 1.02600i −0.0620966 + 0.0358515i
\(820\) 7.06138 + 12.2307i 0.246594 + 0.427113i
\(821\) −42.9779 24.8133i −1.49994 0.865989i −0.499938 0.866061i \(-0.666644\pi\)
−1.00000 7.20238e-5i \(0.999977\pi\)
\(822\) 1.75287 1.01202i 0.0611383 0.0352982i
\(823\) 4.14575 7.18064i 0.144512 0.250301i −0.784679 0.619902i \(-0.787172\pi\)
0.929191 + 0.369601i \(0.120506\pi\)
\(824\) 0.580029i 0.0202063i
\(825\) 21.3397 8.14425i 0.742951 0.283547i
\(826\) −5.71860 + 9.90490i −0.198975 + 0.344636i
\(827\) 24.1393 41.8105i 0.839406 1.45389i −0.0509868 0.998699i \(-0.516237\pi\)
0.890392 0.455194i \(-0.150430\pi\)
\(828\) 6.85951 0.238385
\(829\) 27.0954i 0.941063i −0.882383 0.470532i \(-0.844062\pi\)
0.882383 0.470532i \(-0.155938\pi\)
\(830\) −12.7475 7.35976i −0.442471 0.255461i
\(831\) −5.61982 9.73381i −0.194949 0.337662i
\(832\) −0.821877 + 1.42353i −0.0284935 + 0.0493521i
\(833\) −5.17557 + 2.98812i −0.179323 + 0.103532i
\(834\) −11.0802 19.1914i −0.383674 0.664543i
\(835\) −22.5007 −0.778669
\(836\) −7.80504 12.1689i −0.269943 0.420869i
\(837\) 2.62142 0.0906096
\(838\) −6.56926 11.3783i −0.226931 0.393057i
\(839\) 23.8871 13.7912i 0.824674 0.476126i −0.0273515 0.999626i \(-0.508707\pi\)
0.852026 + 0.523500i \(0.175374\pi\)
\(840\) −2.15201 + 3.72739i −0.0742515 + 0.128607i
\(841\) 13.3263 + 23.0818i 0.459527 + 0.795924i
\(842\) −2.50186 1.44445i −0.0862198 0.0497790i
\(843\) 13.1395i 0.452548i
\(844\) 19.3075 0.664590
\(845\) −17.7525 + 30.7482i −0.610703 + 1.05777i
\(846\) 0.386049 0.668656i 0.0132726 0.0229889i
\(847\) −9.14902 10.2403i −0.314364 0.351861i
\(848\) 8.82229i 0.302959i
\(849\) 7.05943 12.2273i 0.242279 0.419640i
\(850\) 6.55015 3.78173i 0.224668 0.129712i
\(851\) 16.6362 + 9.60494i 0.570283 + 0.329253i
\(852\) 0.934712 + 1.61897i 0.0320227 + 0.0554650i
\(853\) 38.2447 22.0806i 1.30948 0.756026i 0.327467 0.944863i \(-0.393805\pi\)
0.982008 + 0.188837i \(0.0604718\pi\)
\(854\) 5.83568 0.199693
\(855\) 10.0142 + 11.2056i 0.342479 + 0.383223i
\(856\) 1.50856 0.0515614
\(857\) 13.7485 + 23.8132i 0.469641 + 0.813443i 0.999398 0.0347074i \(-0.0110499\pi\)
−0.529756 + 0.848150i \(0.677717\pi\)
\(858\) 4.23014 + 3.43906i 0.144415 + 0.117407i
\(859\) −27.7978 + 48.1471i −0.948447 + 1.64276i −0.199750 + 0.979847i \(0.564013\pi\)
−0.748698 + 0.662912i \(0.769320\pi\)
\(860\) 5.98930 3.45793i 0.204234 0.117914i
\(861\) −2.55681 + 4.42853i −0.0871359 + 0.150924i
\(862\) 2.43772 0.0830289
\(863\) 44.3053i 1.50817i 0.656778 + 0.754084i \(0.271919\pi\)
−0.656778 + 0.754084i \(0.728081\pi\)
\(864\) 0.866025 + 0.500000i 0.0294628 + 0.0170103i
\(865\) −27.5761 + 47.7632i −0.937616 + 1.62400i
\(866\) 33.4176i 1.13558i
\(867\) 15.7938i 0.536387i
\(868\) −1.63625 + 2.83406i −0.0555378 + 0.0961943i
\(869\) 21.8437 26.8684i 0.740996 0.911447i
\(870\) 4.57467 + 2.64119i 0.155096 + 0.0895446i
\(871\) −16.2086 + 9.35806i −0.549209 + 0.317086i
\(872\) 3.11316 + 5.39214i 0.105425 + 0.182601i
\(873\) 4.01045i 0.135733i
\(874\) 19.9241 + 22.2943i 0.673941 + 0.754118i
\(875\) 8.12087i 0.274536i
\(876\) 2.69509 + 4.66802i 0.0910585 + 0.157718i
\(877\) −4.48687 7.77149i −0.151511 0.262425i 0.780272 0.625440i \(-0.215081\pi\)
−0.931783 + 0.363015i \(0.881747\pi\)
\(878\) −7.04233 + 12.1977i −0.237667 + 0.411652i
\(879\) 21.2785 12.2851i 0.717705 0.414367i
\(880\) 11.2906 + 1.81062i 0.380604 + 0.0610359i
\(881\) 22.9197 0.772184 0.386092 0.922460i \(-0.373825\pi\)
0.386092 + 0.922460i \(0.373825\pi\)
\(882\) 5.44158 0.183228
\(883\) −24.1800 + 41.8810i −0.813723 + 1.40941i 0.0965185 + 0.995331i \(0.469229\pi\)
−0.910241 + 0.414078i \(0.864104\pi\)
\(884\) 1.56340 + 0.902630i 0.0525829 + 0.0303587i
\(885\) −31.5871 −1.06179
\(886\) 3.60383 0.121073
\(887\) 2.18991 3.79304i 0.0735301 0.127358i −0.826916 0.562325i \(-0.809907\pi\)
0.900446 + 0.434968i \(0.143240\pi\)
\(888\) 1.40024 + 2.42528i 0.0469888 + 0.0813870i
\(889\) 12.4730 + 7.20129i 0.418331 + 0.241524i
\(890\) 34.4220 19.8736i 1.15383 0.666163i
\(891\) 2.09220 2.57346i 0.0700912 0.0862143i
\(892\) 6.33710i 0.212182i
\(893\) 3.29454 0.687459i 0.110247 0.0230049i
\(894\) 19.4633 0.650949
\(895\) −31.0816 + 17.9449i −1.03894 + 0.599833i
\(896\) −1.08112 + 0.624183i −0.0361176 + 0.0208525i
\(897\) −9.76474 5.63768i −0.326035 0.188237i
\(898\) −8.49717 + 4.90584i −0.283554 + 0.163710i
\(899\) 3.47827 + 2.00818i 0.116007 + 0.0669766i
\(900\) −6.88681 −0.229560
\(901\) 9.68911 0.322791
\(902\) 13.4143 + 2.15120i 0.446649 + 0.0716271i
\(903\) 2.16863 + 1.25206i 0.0721675 + 0.0416659i
\(904\) 7.42260i 0.246872i
\(905\) 90.4105i 3.00535i
\(906\) −11.4450 6.60778i −0.380235 0.219529i
\(907\) 8.60259 4.96671i 0.285644 0.164917i −0.350332 0.936626i \(-0.613931\pi\)
0.635976 + 0.771709i \(0.280598\pi\)
\(908\) −8.73084 + 15.1223i −0.289743 + 0.501850i
\(909\) 1.66293 0.960091i 0.0551558 0.0318442i
\(910\) 6.12692 3.53738i 0.203105 0.117263i
\(911\) 0.535193i 0.0177317i −0.999961 0.00886587i \(-0.997178\pi\)
0.999961 0.00886587i \(-0.00282213\pi\)
\(912\) 0.890378 + 4.26699i 0.0294834 + 0.141294i
\(913\) −13.2291 + 5.04887i −0.437819 + 0.167093i
\(914\) 27.9529 16.1386i 0.924599 0.533818i
\(915\) 8.05847 + 13.9577i 0.266405 + 0.461427i
\(916\) −13.1376 + 22.7550i −0.434079 + 0.751847i
\(917\) −4.49417 7.78413i −0.148411 0.257055i
\(918\) 0.549127 0.951116i 0.0181239 0.0313915i
\(919\) 36.7107i 1.21097i −0.795855 0.605487i \(-0.792978\pi\)
0.795855 0.605487i \(-0.207022\pi\)
\(920\) −23.6497 −0.779708
\(921\) −14.4876 8.36440i −0.477381 0.275616i
\(922\) 15.8758 + 9.16591i 0.522842 + 0.301863i
\(923\) 3.07287i 0.101145i
\(924\) 1.47630 + 3.86822i 0.0485668 + 0.127255i
\(925\) −16.7024 9.64316i −0.549173 0.317065i
\(926\) −17.9598 31.1073i −0.590196 1.02225i
\(927\) −0.502320 0.290015i −0.0164984 0.00952533i
\(928\) 0.766066 + 1.32687i 0.0251474 + 0.0435565i
\(929\) 15.4136 + 26.6972i 0.505705 + 0.875907i 0.999978 + 0.00660005i \(0.00210088\pi\)
−0.494273 + 0.869307i \(0.664566\pi\)
\(930\) −9.03794 −0.296366
\(931\) 15.8055 + 17.6859i 0.518006 + 0.579631i
\(932\) 7.97695i 0.261294i
\(933\) −23.9010 + 13.7992i −0.782484 + 0.451767i
\(934\) −15.6257 27.0645i −0.511288 0.885577i
\(935\) 1.98852 12.3999i 0.0650315 0.405520i
\(936\) −0.821877 1.42353i −0.0268639 0.0465296i
\(937\) 32.2242 + 18.6047i 1.05272 + 0.607788i 0.923410 0.383816i \(-0.125390\pi\)
0.129311 + 0.991604i \(0.458724\pi\)
\(938\) −14.2141 −0.464108
\(939\) 13.0724i 0.426601i
\(940\) −1.33099 + 2.30534i −0.0434121 + 0.0751920i
\(941\) 12.9510 22.4318i 0.422191 0.731257i −0.573962 0.818882i \(-0.694594\pi\)
0.996154 + 0.0876248i \(0.0279277\pi\)
\(942\) 10.5408i 0.343437i
\(943\) −28.0983 −0.915007
\(944\) −7.93429 4.58086i −0.258239 0.149094i
\(945\) −2.15201 3.72739i −0.0700049 0.121252i
\(946\) 1.05343 6.56895i 0.0342501 0.213575i
\(947\) −22.8650 39.6033i −0.743012 1.28694i −0.951118 0.308829i \(-0.900063\pi\)
0.208105 0.978106i \(-0.433270\pi\)
\(948\) −9.04178 + 5.22027i −0.293663 + 0.169547i
\(949\) 8.86012i 0.287612i
\(950\) −20.0033 22.3831i −0.648994 0.726202i
\(951\) 29.1700 0.945903
\(952\) 0.685511 + 1.18734i 0.0222176 + 0.0384819i
\(953\) −22.6280 39.1929i −0.732994 1.26958i −0.955598 0.294673i \(-0.904789\pi\)
0.222604 0.974909i \(-0.428544\pi\)
\(954\) −7.64033 4.41114i −0.247365 0.142816i
\(955\) 35.0381 + 60.6877i 1.13381 + 1.96381i
\(956\) −3.65166 2.10829i −0.118103 0.0681870i
\(957\) 4.74751 1.81188i 0.153465 0.0585698i
\(958\) 25.4355i 0.821783i
\(959\) −2.18822 1.26337i −0.0706614 0.0407964i
\(960\) −2.98582 1.72386i −0.0963669 0.0556374i
\(961\) 24.1282 0.778327
\(962\) 4.60329i 0.148416i
\(963\) −0.754278 + 1.30645i −0.0243063 + 0.0420997i
\(964\) 13.7940 + 23.8920i 0.444276 + 0.769509i
\(965\) −4.80832 + 8.32825i −0.154785 + 0.268096i
\(966\) −4.28159 7.41594i −0.137758 0.238604i
\(967\) 7.56019 4.36488i 0.243119 0.140365i −0.373490 0.927634i \(-0.621839\pi\)
0.616610 + 0.787269i \(0.288506\pi\)
\(968\) 8.20297 7.32879i 0.263654 0.235556i
\(969\) 4.68624 0.977861i 0.150544 0.0314134i
\(970\) 13.8269i 0.443956i
\(971\) 38.5598 22.2625i 1.23744 0.714438i 0.268873 0.963176i \(-0.413349\pi\)
0.968571 + 0.248737i \(0.0800156\pi\)
\(972\) −0.866025 + 0.500000i −0.0277778 + 0.0160375i
\(973\) −13.8321 + 23.9579i −0.443436 + 0.768054i
\(974\) −18.6483 + 10.7666i −0.597531 + 0.344985i
\(975\) 9.80360 + 5.66011i 0.313966 + 0.181269i
\(976\) 4.67466i 0.149632i
\(977\) 28.9256i 0.925412i 0.886512 + 0.462706i \(0.153121\pi\)
−0.886512 + 0.462706i \(0.846879\pi\)
\(978\) −1.01238 0.584496i −0.0323722 0.0186901i
\(979\) 6.05434 37.7534i 0.193498 1.20660i
\(980\) −18.7611 −0.599301
\(981\) −6.22631 −0.198791
\(982\) 18.0097 + 10.3979i 0.574714 + 0.331811i
\(983\) 52.0382 30.0443i 1.65976 0.958264i 0.686939 0.726715i \(-0.258954\pi\)
0.972823 0.231549i \(-0.0743794\pi\)
\(984\) −3.54746 2.04813i −0.113089 0.0652919i
\(985\) 24.0855 13.9058i 0.767427 0.443074i
\(986\) 1.45724 0.841335i 0.0464078 0.0267936i
\(987\) −0.963861 −0.0306800
\(988\) 2.23946 6.80599i 0.0712468 0.216527i
\(989\) 13.7596i 0.437530i
\(990\) −7.21332 + 8.87260i −0.229254 + 0.281990i
\(991\) 26.6189 15.3685i 0.845578 0.488195i −0.0135780 0.999908i \(-0.504322\pi\)
0.859157 + 0.511713i \(0.170989\pi\)
\(992\) −2.27022 1.31071i −0.0720795 0.0416151i
\(993\) 12.3204 + 21.3396i 0.390977 + 0.677192i
\(994\) 1.16686 2.02107i 0.0370107 0.0641043i
\(995\) 47.1298 1.49412
\(996\) 4.26934 0.135279
\(997\) −36.7710 21.2298i −1.16455 0.672354i −0.212160 0.977235i \(-0.568050\pi\)
−0.952390 + 0.304881i \(0.901383\pi\)
\(998\) −6.60058 + 11.4325i −0.208938 + 0.361891i
\(999\) −2.80047 −0.0886030
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1254.2.k.b.373.1 yes 40
11.10 odd 2 1254.2.k.a.373.1 40
19.8 odd 6 1254.2.k.a.901.1 yes 40
209.65 even 6 inner 1254.2.k.b.901.1 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1254.2.k.a.373.1 40 11.10 odd 2
1254.2.k.a.901.1 yes 40 19.8 odd 6
1254.2.k.b.373.1 yes 40 1.1 even 1 trivial
1254.2.k.b.901.1 yes 40 209.65 even 6 inner