Defining parameters
Level: | \( N \) | \(=\) | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 126.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(126, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 8 | 48 |
Cusp forms | 40 | 8 | 32 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(126, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
126.3.c.a | $4$ | $3.433$ | \(\Q(\sqrt{2}, \sqrt{-33})\) | None | \(0\) | \(0\) | \(0\) | \(-16\) | \(q+\beta _{1}q^{2}+2q^{4}-\beta _{2}q^{5}+(-4+\beta _{3})q^{7}+\cdots\) |
126.3.c.b | $4$ | $3.433$ | \(\Q(\sqrt{2}, \sqrt{-3})\) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+\beta _{1}q^{2}+2q^{4}+(2\beta _{2}-\beta _{3})q^{5}+(2+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(126, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(126, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)