Properties

Label 126.3.c
Level 126126
Weight 33
Character orbit 126.c
Rep. character χ126(55,)\chi_{126}(55,\cdot)
Character field Q\Q
Dimension 88
Newform subspaces 22
Sturm bound 7272
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 126=2327 126 = 2 \cdot 3^{2} \cdot 7
Weight: k k == 3 3
Character orbit: [χ][\chi] == 126.c (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 7 7
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 7272
Trace bound: 77
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M3(126,[χ])M_{3}(126, [\chi]).

Total New Old
Modular forms 56 8 48
Cusp forms 40 8 32
Eisenstein series 16 0 16

Trace form

8q+16q48q7+24q11+24q14+32q16+48q2224q23136q2516q28120q29+24q3516q37+80q43+48q44+48q4688q4996q50++192q98+O(q100) 8 q + 16 q^{4} - 8 q^{7} + 24 q^{11} + 24 q^{14} + 32 q^{16} + 48 q^{22} - 24 q^{23} - 136 q^{25} - 16 q^{28} - 120 q^{29} + 24 q^{35} - 16 q^{37} + 80 q^{43} + 48 q^{44} + 48 q^{46} - 88 q^{49} - 96 q^{50}+ \cdots + 192 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(126,[χ])S_{3}^{\mathrm{new}}(126, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
126.3.c.a 126.c 7.b 44 3.4333.433 Q(2,33)\Q(\sqrt{2}, \sqrt{-33}) None 126.3.c.a 00 00 00 16-16 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q2+2q4β2q5+(4+β3)q7+q+\beta _{1}q^{2}+2q^{4}-\beta _{2}q^{5}+(-4+\beta _{3})q^{7}+\cdots
126.3.c.b 126.c 7.b 44 3.4333.433 Q(2,3)\Q(\sqrt{2}, \sqrt{-3}) None 42.3.c.a 00 00 00 88 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+β1q2+2q4+(2β2β3)q5+(2+)q7+q+\beta _{1}q^{2}+2q^{4}+(2\beta _{2}-\beta _{3})q^{5}+(2+\cdots)q^{7}+\cdots

Decomposition of S3old(126,[χ])S_{3}^{\mathrm{old}}(126, [\chi]) into lower level spaces

S3old(126,[χ]) S_{3}^{\mathrm{old}}(126, [\chi]) \simeq S3new(7,[χ])S_{3}^{\mathrm{new}}(7, [\chi])6^{\oplus 6}\oplusS3new(21,[χ])S_{3}^{\mathrm{new}}(21, [\chi])4^{\oplus 4}\oplusS3new(42,[χ])S_{3}^{\mathrm{new}}(42, [\chi])2^{\oplus 2}\oplusS3new(63,[χ])S_{3}^{\mathrm{new}}(63, [\chi])2^{\oplus 2}