Properties

Label 126.4.f.a
Level $126$
Weight $4$
Character orbit 126.f
Analytic conductor $7.434$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,4,Mod(43,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.43");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 126.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.43424066072\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta_{3} q^{2} + (\beta_{5} - \beta_1 - 2) q^{3} + (4 \beta_{3} - 4) q^{4} + (\beta_{5} - \beta_{4} + 3 \beta_{3} + \cdots - 3) q^{5}+ \cdots + ( - 3 \beta_{4} + 12 \beta_{3} + \cdots - 12) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 \beta_{3} q^{2} + (\beta_{5} - \beta_1 - 2) q^{3} + (4 \beta_{3} - 4) q^{4} + (\beta_{5} - \beta_{4} + 3 \beta_{3} + \cdots - 3) q^{5}+ \cdots + ( - 33 \beta_{5} - 78 \beta_{4} + \cdots + 285) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} - 12 q^{3} - 12 q^{4} - 9 q^{5} - 12 q^{6} - 21 q^{7} - 48 q^{8} - 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 6 q^{2} - 12 q^{3} - 12 q^{4} - 9 q^{5} - 12 q^{6} - 21 q^{7} - 48 q^{8} - 36 q^{9} - 36 q^{10} - 48 q^{11} + 24 q^{12} + 57 q^{13} + 42 q^{14} - 63 q^{15} - 48 q^{16} + 48 q^{17} - 144 q^{18} - 282 q^{19} - 36 q^{20} + 42 q^{21} + 96 q^{22} + 30 q^{23} + 96 q^{24} + 210 q^{25} + 228 q^{26} - 189 q^{27} + 168 q^{28} - 117 q^{29} - 126 q^{30} + 165 q^{31} + 96 q^{32} - 342 q^{33} + 48 q^{34} + 126 q^{35} - 144 q^{36} - 798 q^{37} - 282 q^{38} + 102 q^{39} + 72 q^{40} + 384 q^{41} - 84 q^{42} + 771 q^{43} + 384 q^{44} + 189 q^{45} + 120 q^{46} - 81 q^{47} + 96 q^{48} - 147 q^{49} - 420 q^{50} - 675 q^{51} + 228 q^{52} + 1044 q^{53} + 54 q^{54} + 156 q^{55} + 168 q^{56} + 183 q^{57} + 234 q^{58} - 21 q^{59} + 780 q^{61} + 660 q^{62} + 504 q^{63} + 384 q^{64} - 531 q^{65} - 1386 q^{66} + 384 q^{67} - 96 q^{68} - 1809 q^{69} + 126 q^{70} + 114 q^{71} + 288 q^{72} - 234 q^{73} - 798 q^{74} - 147 q^{75} + 564 q^{76} - 336 q^{77} - 1212 q^{78} + 1383 q^{79} + 288 q^{80} + 2592 q^{81} + 1536 q^{82} - 12 q^{83} - 336 q^{84} + 1095 q^{85} - 1542 q^{86} - 27 q^{87} + 384 q^{88} - 1296 q^{89} + 2106 q^{90} - 798 q^{91} + 120 q^{92} - 1707 q^{93} + 162 q^{94} + 1314 q^{95} - 192 q^{96} - 741 q^{97} - 588 q^{98} + 1512 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} - \nu^{4} + 5\nu^{3} - 2\nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + 4\nu^{4} - 11\nu^{3} + 17\nu^{2} - 12\nu + 3 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{5} - 5\nu^{4} + 16\nu^{3} - 19\nu^{2} + 21\nu - 6 ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 2\nu^{3} + 8\nu^{2} - 7\nu + 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 7\nu^{5} - 16\nu^{4} + 62\nu^{3} - 68\nu^{2} + 99\nu - 30 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} + \beta_{3} - 2\beta _1 - 6 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{5} + \beta_{4} - 6\beta_{3} - 4\beta_{2} + \beta _1 - 6 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2\beta_{5} - 3\beta_{4} - 13\beta_{3} - \beta_{2} + 11\beta _1 + 19 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -3\beta_{5} - 6\beta_{4} + 19\beta_{3} + 19\beta_{2} + 11\beta _1 + 37 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(-1 + \beta_{3}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
43.1
0.500000 2.05195i
0.500000 + 1.41036i
0.500000 0.224437i
0.500000 + 2.05195i
0.500000 1.41036i
0.500000 + 0.224437i
1.00000 1.73205i −5.19076 + 0.236725i −2.00000 3.46410i 3.21780 + 5.57339i −4.78074 + 9.22738i −3.50000 + 6.06218i −8.00000 26.8879 2.45756i 12.8712
43.2 1.00000 1.73205i −1.85868 + 4.85235i −2.00000 3.46410i −3.11273 5.39140i 6.54583 + 8.07169i −3.50000 + 6.06218i −8.00000 −20.0906 18.0380i −12.4509
43.3 1.00000 1.73205i 1.04944 5.08907i −2.00000 3.46410i −4.60507 7.97622i −7.76509 6.90676i −3.50000 + 6.06218i −8.00000 −24.7973 10.6814i −18.4203
85.1 1.00000 + 1.73205i −5.19076 0.236725i −2.00000 + 3.46410i 3.21780 5.57339i −4.78074 9.22738i −3.50000 6.06218i −8.00000 26.8879 + 2.45756i 12.8712
85.2 1.00000 + 1.73205i −1.85868 4.85235i −2.00000 + 3.46410i −3.11273 + 5.39140i 6.54583 8.07169i −3.50000 6.06218i −8.00000 −20.0906 + 18.0380i −12.4509
85.3 1.00000 + 1.73205i 1.04944 + 5.08907i −2.00000 + 3.46410i −4.60507 + 7.97622i −7.76509 + 6.90676i −3.50000 6.06218i −8.00000 −24.7973 + 10.6814i −18.4203
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 43.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.4.f.a 6
3.b odd 2 1 378.4.f.a 6
9.c even 3 1 inner 126.4.f.a 6
9.c even 3 1 1134.4.a.g 3
9.d odd 6 1 378.4.f.a 6
9.d odd 6 1 1134.4.a.h 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.4.f.a 6 1.a even 1 1 trivial
126.4.f.a 6 9.c even 3 1 inner
378.4.f.a 6 3.b odd 2 1
378.4.f.a 6 9.d odd 6 1
1134.4.a.g 3 9.c even 3 1
1134.4.a.h 3 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 9T_{5}^{5} + 123T_{5}^{4} + 360T_{5}^{3} + 5085T_{5}^{2} + 15498T_{5} + 136161 \) acting on \(S_{4}^{\mathrm{new}}(126, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2 T + 4)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} + 12 T^{5} + \cdots + 19683 \) Copy content Toggle raw display
$5$ \( T^{6} + 9 T^{5} + \cdots + 136161 \) Copy content Toggle raw display
$7$ \( (T^{2} + 7 T + 49)^{3} \) Copy content Toggle raw display
$11$ \( T^{6} + 48 T^{5} + \cdots + 79548561 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 1824400369 \) Copy content Toggle raw display
$17$ \( (T^{3} - 24 T^{2} + \cdots + 157239)^{2} \) Copy content Toggle raw display
$19$ \( (T^{3} + 141 T^{2} + \cdots - 106169)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 104760326889 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 78328896129 \) Copy content Toggle raw display
$31$ \( T^{6} - 165 T^{5} + \cdots + 559369801 \) Copy content Toggle raw display
$37$ \( (T^{3} + 399 T^{2} + \cdots - 18438443)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 264917119401 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 40798917084409 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 57\!\cdots\!61 \) Copy content Toggle raw display
$53$ \( (T^{3} - 522 T^{2} + \cdots + 106645401)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 71\!\cdots\!61 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 837556418281489 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 16\!\cdots\!69 \) Copy content Toggle raw display
$71$ \( (T^{3} - 57 T^{2} + \cdots - 141832269)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} + 117 T^{2} + \cdots - 225440003)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 32\!\cdots\!89 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 43\!\cdots\!89 \) Copy content Toggle raw display
$89$ \( (T^{3} + 648 T^{2} + \cdots - 21052413)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 66\!\cdots\!09 \) Copy content Toggle raw display
show more
show less