Properties

Label 126.6.g.a
Level $126$
Weight $6$
Character orbit 126.g
Analytic conductor $20.208$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,6,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.2083612964\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (4 \zeta_{6} - 4) q^{2} - 16 \zeta_{6} q^{4} + (12 \zeta_{6} - 12) q^{5} + (133 \zeta_{6} - 7) q^{7} + 64 q^{8} - 48 \zeta_{6} q^{10} - 288 \zeta_{6} q^{11} + 737 q^{13} + ( - 28 \zeta_{6} - 504) q^{14} + \cdots + ( - 70560 \zeta_{6} + 7252) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 16 q^{4} - 12 q^{5} + 119 q^{7} + 128 q^{8} - 48 q^{10} - 288 q^{11} + 1474 q^{13} - 1036 q^{14} - 256 q^{16} + 156 q^{17} - 617 q^{19} + 384 q^{20} + 2304 q^{22} - 4596 q^{23} + 2981 q^{25}+ \cdots - 56056 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(-1 + \zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
0.500000 + 0.866025i
0.500000 0.866025i
−2.00000 + 3.46410i 0 −8.00000 13.8564i −6.00000 + 10.3923i 0 59.5000 + 115.181i 64.0000 0 −24.0000 41.5692i
109.1 −2.00000 3.46410i 0 −8.00000 + 13.8564i −6.00000 10.3923i 0 59.5000 115.181i 64.0000 0 −24.0000 + 41.5692i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.6.g.a 2
3.b odd 2 1 126.6.g.d yes 2
7.c even 3 1 inner 126.6.g.a 2
7.c even 3 1 882.6.a.r 1
7.d odd 6 1 882.6.a.q 1
21.g even 6 1 882.6.a.h 1
21.h odd 6 1 126.6.g.d yes 2
21.h odd 6 1 882.6.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.6.g.a 2 1.a even 1 1 trivial
126.6.g.a 2 7.c even 3 1 inner
126.6.g.d yes 2 3.b odd 2 1
126.6.g.d yes 2 21.h odd 6 1
882.6.a.d 1 21.h odd 6 1
882.6.a.h 1 21.g even 6 1
882.6.a.q 1 7.d odd 6 1
882.6.a.r 1 7.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 12T_{5} + 144 \) acting on \(S_{6}^{\mathrm{new}}(126, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$7$ \( T^{2} - 119T + 16807 \) Copy content Toggle raw display
$11$ \( T^{2} + 288T + 82944 \) Copy content Toggle raw display
$13$ \( (T - 737)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 156T + 24336 \) Copy content Toggle raw display
$19$ \( T^{2} + 617T + 380689 \) Copy content Toggle raw display
$23$ \( T^{2} + 4596 T + 21123216 \) Copy content Toggle raw display
$29$ \( (T + 5304)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 2513 T + 6315169 \) Copy content Toggle raw display
$37$ \( T^{2} + 2375 T + 5640625 \) Copy content Toggle raw display
$41$ \( (T + 14280)^{2} \) Copy content Toggle raw display
$43$ \( (T + 1579)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 17268 T + 298183824 \) Copy content Toggle raw display
$53$ \( T^{2} - 18612 T + 346406544 \) Copy content Toggle raw display
$59$ \( T^{2} + 28428 T + 808151184 \) Copy content Toggle raw display
$61$ \( T^{2} + 15566 T + 242300356 \) Copy content Toggle raw display
$67$ \( T^{2} - 8053 T + 64850809 \) Copy content Toggle raw display
$71$ \( (T - 13020)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 2526369169 \) Copy content Toggle raw display
$79$ \( T^{2} + 30155 T + 909324025 \) Copy content Toggle raw display
$83$ \( (T - 99276)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 2714826816 \) Copy content Toggle raw display
$97$ \( (T - 116222)^{2} \) Copy content Toggle raw display
show more
show less