Properties

Label 1260.1.cw.b.499.1
Level $1260$
Weight $1$
Character 1260.499
Analytic conductor $0.629$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1260,1,Mod(499,1260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 2, 3, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1260.499");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1260.cw (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.628821915918\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.79380.1
Artin image: $C_3^2\times D_6$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{36} - \cdots)\)

Embedding invariants

Embedding label 499.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1260.499
Dual form 1260.1.cw.b.1159.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(0.500000 + 0.866025i) q^{3} +1.00000 q^{4} +(-0.500000 - 0.866025i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(0.500000 + 0.866025i) q^{7} -1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.500000 + 0.866025i) q^{10} +(0.500000 + 0.866025i) q^{12} +(-0.500000 - 0.866025i) q^{14} +(0.500000 - 0.866025i) q^{15} +1.00000 q^{16} +(0.500000 - 0.866025i) q^{18} +(-0.500000 - 0.866025i) q^{20} +(-0.500000 + 0.866025i) q^{21} +(1.00000 + 1.73205i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(-0.500000 + 0.866025i) q^{25} -1.00000 q^{27} +(0.500000 + 0.866025i) q^{28} +(0.500000 + 0.866025i) q^{29} +(-0.500000 + 0.866025i) q^{30} -1.00000 q^{32} +(0.500000 - 0.866025i) q^{35} +(-0.500000 + 0.866025i) q^{36} +(0.500000 + 0.866025i) q^{40} +(0.500000 - 0.866025i) q^{41} +(0.500000 - 0.866025i) q^{42} +(-0.500000 - 0.866025i) q^{43} +1.00000 q^{45} +(-1.00000 - 1.73205i) q^{46} +1.00000 q^{47} +(0.500000 + 0.866025i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(0.500000 - 0.866025i) q^{50} +1.00000 q^{54} +(-0.500000 - 0.866025i) q^{56} +(-0.500000 - 0.866025i) q^{58} +(0.500000 - 0.866025i) q^{60} +2.00000 q^{61} -1.00000 q^{63} +1.00000 q^{64} -2.00000 q^{67} +(-1.00000 + 1.73205i) q^{69} +(-0.500000 + 0.866025i) q^{70} +(0.500000 - 0.866025i) q^{72} -1.00000 q^{75} +(-0.500000 - 0.866025i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-0.500000 + 0.866025i) q^{82} +(-0.500000 - 0.866025i) q^{83} +(-0.500000 + 0.866025i) q^{84} +(0.500000 + 0.866025i) q^{86} +(-0.500000 + 0.866025i) q^{87} +(-1.00000 + 1.73205i) q^{89} -1.00000 q^{90} +(1.00000 + 1.73205i) q^{92} -1.00000 q^{94} +(-0.500000 - 0.866025i) q^{96} +(0.500000 - 0.866025i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + q^{3} + 2 q^{4} - q^{5} - q^{6} + q^{7} - 2 q^{8} - q^{9} + q^{10} + q^{12} - q^{14} + q^{15} + 2 q^{16} + q^{18} - q^{20} - q^{21} + 2 q^{23} - q^{24} - q^{25} - 2 q^{27}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −1.00000
\(3\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(4\) 1.00000 1.00000
\(5\) −0.500000 0.866025i −0.500000 0.866025i
\(6\) −0.500000 0.866025i −0.500000 0.866025i
\(7\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(8\) −1.00000 −1.00000
\(9\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(10\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(13\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) −0.500000 0.866025i −0.500000 0.866025i
\(15\) 0.500000 0.866025i 0.500000 0.866025i
\(16\) 1.00000 1.00000
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0.500000 0.866025i 0.500000 0.866025i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) −0.500000 0.866025i −0.500000 0.866025i
\(21\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(22\) 0 0
\(23\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) −0.500000 0.866025i −0.500000 0.866025i
\(25\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(26\) 0 0
\(27\) −1.00000 −1.00000
\(28\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(29\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −1.00000 −1.00000
\(33\) 0 0
\(34\) 0 0
\(35\) 0.500000 0.866025i 0.500000 0.866025i
\(36\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(41\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(42\) 0.500000 0.866025i 0.500000 0.866025i
\(43\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 1.00000 1.00000
\(46\) −1.00000 1.73205i −1.00000 1.73205i
\(47\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(49\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(50\) 0.500000 0.866025i 0.500000 0.866025i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(54\) 1.00000 1.00000
\(55\) 0 0
\(56\) −0.500000 0.866025i −0.500000 0.866025i
\(57\) 0 0
\(58\) −0.500000 0.866025i −0.500000 0.866025i
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0.500000 0.866025i 0.500000 0.866025i
\(61\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(62\) 0 0
\(63\) −1.00000 −1.00000
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(70\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0.500000 0.866025i 0.500000 0.866025i
\(73\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(74\) 0 0
\(75\) −1.00000 −1.00000
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −0.500000 0.866025i −0.500000 0.866025i
\(81\) −0.500000 0.866025i −0.500000 0.866025i
\(82\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(83\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(84\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(85\) 0 0
\(86\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(87\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(88\) 0 0
\(89\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) −1.00000 −1.00000
\(91\) 0 0
\(92\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(93\) 0 0
\(94\) −1.00000 −1.00000
\(95\) 0 0
\(96\) −0.500000 0.866025i −0.500000 0.866025i
\(97\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(98\) 0.500000 0.866025i 0.500000 0.866025i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(101\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(102\) 0 0
\(103\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 1.00000 1.00000
\(106\) 0 0
\(107\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(108\) −1.00000 −1.00000
\(109\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(113\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(114\) 0 0
\(115\) 1.00000 1.73205i 1.00000 1.73205i
\(116\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(121\) −0.500000 0.866025i −0.500000 0.866025i
\(122\) −2.00000 −2.00000
\(123\) 1.00000 1.00000
\(124\) 0 0
\(125\) 1.00000 1.00000
\(126\) 1.00000 1.00000
\(127\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(128\) −1.00000 −1.00000
\(129\) 0.500000 0.866025i 0.500000 0.866025i
\(130\) 0 0
\(131\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 2.00000 2.00000
\(135\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(136\) 0 0
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 1.00000 1.73205i 1.00000 1.73205i
\(139\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(140\) 0.500000 0.866025i 0.500000 0.866025i
\(141\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(142\) 0 0
\(143\) 0 0
\(144\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(145\) 0.500000 0.866025i 0.500000 0.866025i
\(146\) 0 0
\(147\) −1.00000 −1.00000
\(148\) 0 0
\(149\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(150\) 1.00000 1.00000
\(151\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(161\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(162\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(163\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(164\) 0.500000 0.866025i 0.500000 0.866025i
\(165\) 0 0
\(166\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(167\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(168\) 0.500000 0.866025i 0.500000 0.866025i
\(169\) −0.500000 0.866025i −0.500000 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) −0.500000 0.866025i −0.500000 0.866025i
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0.500000 0.866025i 0.500000 0.866025i
\(175\) −1.00000 −1.00000
\(176\) 0 0
\(177\) 0 0
\(178\) 1.00000 1.73205i 1.00000 1.73205i
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 1.00000 1.00000
\(181\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 0 0
\(183\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(184\) −1.00000 1.73205i −1.00000 1.73205i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 1.00000 1.00000
\(189\) −0.500000 0.866025i −0.500000 0.866025i
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) 0.500000 0.866025i 0.500000 0.866025i
\(201\) −1.00000 1.73205i −1.00000 1.73205i
\(202\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(203\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(204\) 0 0
\(205\) −1.00000 −1.00000
\(206\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(207\) −2.00000 −2.00000
\(208\) 0 0
\(209\) 0 0
\(210\) −1.00000 −1.00000
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.500000 0.866025i 0.500000 0.866025i
\(215\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(216\) 1.00000 1.00000
\(217\) 0 0
\(218\) −0.500000 0.866025i −0.500000 0.866025i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(224\) −0.500000 0.866025i −0.500000 0.866025i
\(225\) −0.500000 0.866025i −0.500000 0.866025i
\(226\) 0 0
\(227\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(228\) 0 0
\(229\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(230\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(231\) 0 0
\(232\) −0.500000 0.866025i −0.500000 0.866025i
\(233\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(234\) 0 0
\(235\) −0.500000 0.866025i −0.500000 0.866025i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(240\) 0.500000 0.866025i 0.500000 0.866025i
\(241\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(242\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(243\) 0.500000 0.866025i 0.500000 0.866025i
\(244\) 2.00000 2.00000
\(245\) 1.00000 1.00000
\(246\) −1.00000 −1.00000
\(247\) 0 0
\(248\) 0 0
\(249\) 0.500000 0.866025i 0.500000 0.866025i
\(250\) −1.00000 −1.00000
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −1.00000 −1.00000
\(253\) 0 0
\(254\) −1.00000 −1.00000
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(259\) 0 0
\(260\) 0 0
\(261\) −1.00000 −1.00000
\(262\) 0 0
\(263\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −2.00000 −2.00000
\(268\) −2.00000 −2.00000
\(269\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(270\) −0.500000 0.866025i −0.500000 0.866025i
\(271\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(281\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(282\) −0.500000 0.866025i −0.500000 0.866025i
\(283\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.00000 1.00000
\(288\) 0.500000 0.866025i 0.500000 0.866025i
\(289\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(290\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(294\) 1.00000 1.00000
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(299\) 0 0
\(300\) −1.00000 −1.00000
\(301\) 0.500000 0.866025i 0.500000 0.866025i
\(302\) 0 0
\(303\) 1.00000 1.00000
\(304\) 0 0
\(305\) −1.00000 1.73205i −1.00000 1.73205i
\(306\) 0 0
\(307\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(308\) 0 0
\(309\) 0.500000 0.866025i 0.500000 0.866025i
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.500000 0.866025i −0.500000 0.866025i
\(321\) −1.00000 −1.00000
\(322\) 1.00000 1.73205i 1.00000 1.73205i
\(323\) 0 0
\(324\) −0.500000 0.866025i −0.500000 0.866025i
\(325\) 0 0
\(326\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(327\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(328\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(329\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) −0.500000 0.866025i −0.500000 0.866025i
\(333\) 0 0
\(334\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(335\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(336\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(337\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(338\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −1.00000
\(344\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(345\) 2.00000 2.00000
\(346\) 0 0
\(347\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(349\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(350\) 1.00000 1.00000
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) −1.00000 −1.00000
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 1.00000 1.00000
\(363\) 0.500000 0.866025i 0.500000 0.866025i
\(364\) 0 0
\(365\) 0 0
\(366\) −1.00000 1.73205i −1.00000 1.73205i
\(367\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(368\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(369\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(376\) −1.00000 −1.00000
\(377\) 0 0
\(378\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(382\) 0 0
\(383\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(384\) −0.500000 0.866025i −0.500000 0.866025i
\(385\) 0 0
\(386\) 0 0
\(387\) 1.00000 1.00000
\(388\) 0 0
\(389\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.500000 0.866025i 0.500000 0.866025i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(401\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(403\) 0 0
\(404\) 0.500000 0.866025i 0.500000 0.866025i
\(405\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(406\) 0.500000 0.866025i 0.500000 0.866025i
\(407\) 0 0
\(408\) 0 0
\(409\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 1.00000 1.00000
\(411\) 0 0
\(412\) −0.500000 0.866025i −0.500000 0.866025i
\(413\) 0 0
\(414\) 2.00000 2.00000
\(415\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 1.00000 1.00000
\(421\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 0 0
\(423\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(428\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(429\) 0 0
\(430\) 0.500000 0.866025i 0.500000 0.866025i
\(431\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(432\) −1.00000 −1.00000
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 1.00000 1.00000
\(436\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −0.500000 0.866025i −0.500000 0.866025i
\(442\) 0 0
\(443\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(444\) 0 0
\(445\) 2.00000 2.00000
\(446\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(447\) 1.00000 1.73205i 1.00000 1.73205i
\(448\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(449\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) −0.500000 0.866025i −0.500000 0.866025i
\(459\) 0 0
\(460\) 1.00000 1.73205i 1.00000 1.73205i
\(461\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(462\) 0 0
\(463\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(464\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(465\) 0 0
\(466\) 0 0
\(467\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) −1.00000 1.73205i −1.00000 1.73205i
\(470\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(481\) 0 0
\(482\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(483\) −2.00000 −2.00000
\(484\) −0.500000 0.866025i −0.500000 0.866025i
\(485\) 0 0
\(486\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(487\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(488\) −2.00000 −2.00000
\(489\) 2.00000 2.00000
\(490\) −1.00000 −1.00000
\(491\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 1.00000 1.00000
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(499\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) 1.00000 1.00000
\(501\) 2.00000 2.00000
\(502\) 0 0
\(503\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 1.00000 1.00000
\(505\) −1.00000 −1.00000
\(506\) 0 0
\(507\) 0.500000 0.866025i 0.500000 0.866025i
\(508\) 1.00000 1.00000
\(509\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(516\) 0.500000 0.866025i 0.500000 0.866025i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 1.00000 1.00000
\(523\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) −0.500000 0.866025i −0.500000 0.866025i
\(526\) 0.500000 0.866025i 0.500000 0.866025i
\(527\) 0 0
\(528\) 0 0
\(529\) −1.50000 + 2.59808i −1.50000 + 2.59808i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 2.00000 2.00000
\(535\) 1.00000 1.00000
\(536\) 2.00000 2.00000
\(537\) 0 0
\(538\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(539\) 0 0
\(540\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(541\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 0 0
\(543\) −0.500000 0.866025i −0.500000 0.866025i
\(544\) 0 0
\(545\) 0.500000 0.866025i 0.500000 0.866025i
\(546\) 0 0
\(547\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(550\) 0 0
\(551\) 0 0
\(552\) 1.00000 1.73205i 1.00000 1.73205i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0.500000 0.866025i 0.500000 0.866025i
\(561\) 0 0
\(562\) −0.500000 0.866025i −0.500000 0.866025i
\(563\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(564\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(565\) 0 0
\(566\) −1.00000 −1.00000
\(567\) 0.500000 0.866025i 0.500000 0.866025i
\(568\) 0 0
\(569\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −1.00000 −1.00000
\(575\) −2.00000 −2.00000
\(576\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(577\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) 0.500000 0.866025i 0.500000 0.866025i
\(579\) 0 0
\(580\) 0.500000 0.866025i 0.500000 0.866025i
\(581\) 0.500000 0.866025i 0.500000 0.866025i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(588\) −1.00000 −1.00000
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.00000 1.73205i −1.00000 1.73205i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 1.00000 1.00000
\(601\) −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(602\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(603\) 1.00000 1.73205i 1.00000 1.73205i
\(604\) 0 0
\(605\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(606\) −1.00000 −1.00000
\(607\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) −1.00000 −1.00000
\(610\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(614\) −1.00000 −1.00000
\(615\) −0.500000 0.866025i −0.500000 0.866025i
\(616\) 0 0
\(617\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(618\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(619\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(620\) 0 0
\(621\) −1.00000 1.73205i −1.00000 1.73205i
\(622\) 0 0
\(623\) −2.00000 −2.00000
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.500000 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −0.500000 0.866025i −0.500000 0.866025i
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.500000 0.866025i −0.500000 0.866025i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(641\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 1.00000 1.00000
\(643\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(644\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(645\) −1.00000 −1.00000
\(646\) 0 0
\(647\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(648\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1.00000 1.73205i 1.00000 1.73205i
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0.500000 0.866025i 0.500000 0.866025i
\(655\) 0 0
\(656\) 0.500000 0.866025i 0.500000 0.866025i
\(657\) 0 0
\(658\) −0.500000 0.866025i −0.500000 0.866025i
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(665\) 0 0
\(666\) 0 0
\(667\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(668\) 1.00000 1.73205i 1.00000 1.73205i
\(669\) 0.500000 0.866025i 0.500000 0.866025i
\(670\) −1.00000 1.73205i −1.00000 1.73205i
\(671\) 0 0
\(672\) 0.500000 0.866025i 0.500000 0.866025i
\(673\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(674\) 0 0
\(675\) 0.500000 0.866025i 0.500000 0.866025i
\(676\) −0.500000 0.866025i −0.500000 0.866025i
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 2.00000 2.00000
\(682\) 0 0
\(683\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.00000 1.00000
\(687\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(688\) −0.500000 0.866025i −0.500000 0.866025i
\(689\) 0 0
\(690\) −2.00000 −2.00000
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1.00000 −1.00000
\(695\) 0 0
\(696\) 0.500000 0.866025i 0.500000 0.866025i
\(697\) 0 0
\(698\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(699\) 0 0
\(700\) −1.00000 −1.00000
\(701\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0.500000 0.866025i 0.500000 0.866025i
\(706\) 0 0
\(707\) 1.00000 1.00000
\(708\) 0 0
\(709\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1.00000 1.73205i 1.00000 1.73205i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) 1.00000 1.00000
\(721\) 0.500000 0.866025i 0.500000 0.866025i
\(722\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(723\) 1.00000 1.00000
\(724\) −1.00000 −1.00000
\(725\) −1.00000 −1.00000
\(726\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(727\) 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(733\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0.500000 0.866025i 0.500000 0.866025i
\(735\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(736\) −1.00000 1.73205i −1.00000 1.73205i
\(737\) 0 0
\(738\) −0.500000 0.866025i −0.500000 0.866025i
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(746\) 0 0
\(747\) 1.00000 1.00000
\(748\) 0 0
\(749\) −1.00000 −1.00000
\(750\) −0.500000 0.866025i −0.500000 0.866025i
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 1.00000 1.00000
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −0.500000 0.866025i −0.500000 0.866025i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) −0.500000 0.866025i −0.500000 0.866025i
\(763\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(764\) 0 0
\(765\) 0 0
\(766\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(767\) 0 0
\(768\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(769\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(774\) −1.00000 −1.00000
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −0.500000 0.866025i −0.500000 0.866025i
\(784\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(785\) 0 0
\(786\) 0 0
\(787\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(788\) 0 0
\(789\) −1.00000 −1.00000
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.500000 0.866025i 0.500000 0.866025i
\(801\) −1.00000 1.73205i −1.00000 1.73205i
\(802\) −0.500000 0.866025i −0.500000 0.866025i
\(803\) 0 0
\(804\) −1.00000 1.73205i −1.00000 1.73205i
\(805\) 2.00000 2.00000
\(806\) 0 0
\(807\) 1.00000 1.73205i 1.00000 1.73205i
\(808\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(809\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0.500000 0.866025i 0.500000 0.866025i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(813\) 0 0
\(814\) 0 0
\(815\) −2.00000 −2.00000
\(816\) 0 0
\(817\) 0 0
\(818\) 1.00000 1.00000
\(819\) 0 0
\(820\) −1.00000 −1.00000
\(821\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) 0 0
\(823\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(825\) 0 0
\(826\) 0 0
\(827\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(828\) −2.00000 −2.00000
\(829\) 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0.500000 0.866025i 0.500000 0.866025i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −2.00000 −2.00000
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(840\) −1.00000 −1.00000
\(841\) 0 0
\(842\) −0.500000 0.866025i −0.500000 0.866025i
\(843\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(844\) 0 0
\(845\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(846\) 0.500000 0.866025i 0.500000 0.866025i
\(847\) 0.500000 0.866025i 0.500000 0.866025i
\(848\) 0 0
\(849\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(854\) −1.00000 1.73205i −1.00000 1.73205i
\(855\) 0 0
\(856\) 0.500000 0.866025i 0.500000 0.866025i
\(857\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) 0 0
\(859\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(860\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(861\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(862\) 0 0
\(863\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(864\) 1.00000 1.00000
\(865\) 0 0
\(866\) 0 0
\(867\) −1.00000 −1.00000
\(868\) 0 0
\(869\) 0 0
\(870\) −1.00000 −1.00000
\(871\) 0 0
\(872\) −0.500000 0.866025i −0.500000 0.866025i
\(873\) 0 0
\(874\) 0 0
\(875\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(876\) 0 0
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(882\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(883\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −1.00000 −1.00000
\(887\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(890\) −2.00000 −2.00000
\(891\) 0 0
\(892\) −0.500000 0.866025i −0.500000 0.866025i
\(893\) 0 0
\(894\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(895\) 0 0
\(896\) −0.500000 0.866025i −0.500000 0.866025i
\(897\) 0 0
\(898\) 1.00000 1.00000
\(899\) 0 0
\(900\) −0.500000 0.866025i −0.500000 0.866025i
\(901\) 0 0
\(902\) 0 0
\(903\) 1.00000 1.00000
\(904\) 0 0
\(905\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(906\) 0 0
\(907\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(908\) 1.00000 1.73205i 1.00000 1.73205i
\(909\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(910\) 0 0
\(911\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 1.00000 1.73205i 1.00000 1.73205i
\(916\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(920\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(921\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(922\) −0.500000 0.866025i −0.500000 0.866025i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0.500000 0.866025i 0.500000 0.866025i
\(927\) 1.00000 1.00000
\(928\) −0.500000 0.866025i −0.500000 0.866025i
\(929\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0.500000 0.866025i 0.500000 0.866025i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(939\) 0 0
\(940\) −0.500000 0.866025i −0.500000 0.866025i
\(941\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(942\) 0 0
\(943\) 2.00000 2.00000
\(944\) 0 0
\(945\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(946\) 0 0
\(947\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0.500000 0.866025i 0.500000 0.866025i
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) −0.500000 0.866025i −0.500000 0.866025i
\(964\) 0.500000 0.866025i 0.500000 0.866025i
\(965\) 0 0
\(966\) 2.00000 2.00000
\(967\) 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i \(-0.333333\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(968\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(972\) 0.500000 0.866025i 0.500000 0.866025i
\(973\) 0 0
\(974\) −1.00000 1.73205i −1.00000 1.73205i
\(975\) 0 0
\(976\) 2.00000 2.00000
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) −2.00000 −2.00000
\(979\) 0 0
\(980\) 1.00000 1.00000
\(981\) −1.00000 −1.00000
\(982\) 0 0
\(983\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(984\) −1.00000 −1.00000
\(985\) 0 0
\(986\) 0 0
\(987\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(988\) 0 0
\(989\) 1.00000 1.73205i 1.00000 1.73205i
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0.500000 0.866025i 0.500000 0.866025i
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.1.cw.b.499.1 yes 2
3.2 odd 2 3780.1.cw.d.3439.1 2
4.3 odd 2 1260.1.cw.c.499.1 yes 2
5.4 even 2 1260.1.cw.c.499.1 yes 2
7.4 even 3 1260.1.bj.d.319.1 yes 2
9.2 odd 6 3780.1.bj.a.2179.1 2
9.7 even 3 1260.1.bj.d.79.1 yes 2
12.11 even 2 3780.1.cw.a.3439.1 2
15.14 odd 2 3780.1.cw.a.3439.1 2
20.19 odd 2 CM 1260.1.cw.b.499.1 yes 2
21.11 odd 6 3780.1.bj.a.739.1 2
28.11 odd 6 1260.1.bj.a.319.1 yes 2
35.4 even 6 1260.1.bj.a.319.1 yes 2
36.7 odd 6 1260.1.bj.a.79.1 2
36.11 even 6 3780.1.bj.c.2179.1 2
45.29 odd 6 3780.1.bj.c.2179.1 2
45.34 even 6 1260.1.bj.a.79.1 2
60.59 even 2 3780.1.cw.d.3439.1 2
63.11 odd 6 3780.1.cw.d.3259.1 2
63.25 even 3 inner 1260.1.cw.b.1159.1 yes 2
84.11 even 6 3780.1.bj.c.739.1 2
105.74 odd 6 3780.1.bj.c.739.1 2
140.39 odd 6 1260.1.bj.d.319.1 yes 2
180.79 odd 6 1260.1.bj.d.79.1 yes 2
180.119 even 6 3780.1.bj.a.2179.1 2
252.11 even 6 3780.1.cw.a.3259.1 2
252.151 odd 6 1260.1.cw.c.1159.1 yes 2
315.74 odd 6 3780.1.cw.a.3259.1 2
315.214 even 6 1260.1.cw.c.1159.1 yes 2
420.179 even 6 3780.1.bj.a.739.1 2
1260.1019 even 6 3780.1.cw.d.3259.1 2
1260.1159 odd 6 inner 1260.1.cw.b.1159.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.1.bj.a.79.1 2 36.7 odd 6
1260.1.bj.a.79.1 2 45.34 even 6
1260.1.bj.a.319.1 yes 2 28.11 odd 6
1260.1.bj.a.319.1 yes 2 35.4 even 6
1260.1.bj.d.79.1 yes 2 9.7 even 3
1260.1.bj.d.79.1 yes 2 180.79 odd 6
1260.1.bj.d.319.1 yes 2 7.4 even 3
1260.1.bj.d.319.1 yes 2 140.39 odd 6
1260.1.cw.b.499.1 yes 2 1.1 even 1 trivial
1260.1.cw.b.499.1 yes 2 20.19 odd 2 CM
1260.1.cw.b.1159.1 yes 2 63.25 even 3 inner
1260.1.cw.b.1159.1 yes 2 1260.1159 odd 6 inner
1260.1.cw.c.499.1 yes 2 4.3 odd 2
1260.1.cw.c.499.1 yes 2 5.4 even 2
1260.1.cw.c.1159.1 yes 2 252.151 odd 6
1260.1.cw.c.1159.1 yes 2 315.214 even 6
3780.1.bj.a.739.1 2 21.11 odd 6
3780.1.bj.a.739.1 2 420.179 even 6
3780.1.bj.a.2179.1 2 9.2 odd 6
3780.1.bj.a.2179.1 2 180.119 even 6
3780.1.bj.c.739.1 2 84.11 even 6
3780.1.bj.c.739.1 2 105.74 odd 6
3780.1.bj.c.2179.1 2 36.11 even 6
3780.1.bj.c.2179.1 2 45.29 odd 6
3780.1.cw.a.3259.1 2 252.11 even 6
3780.1.cw.a.3259.1 2 315.74 odd 6
3780.1.cw.a.3439.1 2 12.11 even 2
3780.1.cw.a.3439.1 2 15.14 odd 2
3780.1.cw.d.3259.1 2 63.11 odd 6
3780.1.cw.d.3259.1 2 1260.1019 even 6
3780.1.cw.d.3439.1 2 3.2 odd 2
3780.1.cw.d.3439.1 2 60.59 even 2