Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1260,2,Mod(1,1260)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1260, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1260.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1260.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(10.0611506547\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 1260.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 1.00000 | 0.447214 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 1.00000 | 0.377964 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −4.00000 | −1.10940 | −0.554700 | − | 0.832050i | \(-0.687167\pi\) | ||||
−0.554700 | + | 0.832050i | \(0.687167\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 6.00000 | 1.45521 | 0.727607 | − | 0.685994i | \(-0.240633\pi\) | ||||
0.727607 | + | 0.685994i | \(0.240633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 2.00000 | 0.458831 | 0.229416 | − | 0.973329i | \(-0.426318\pi\) | ||||
0.229416 | + | 0.973329i | \(0.426318\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 6.00000 | 1.25109 | 0.625543 | − | 0.780189i | \(-0.284877\pi\) | ||||
0.625543 | + | 0.780189i | \(0.284877\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 1.00000 | 0.200000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 2.00000 | 0.359211 | 0.179605 | − | 0.983739i | \(-0.442518\pi\) | ||||
0.179605 | + | 0.983739i | \(0.442518\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 1.00000 | 0.169031 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 2.00000 | 0.328798 | 0.164399 | − | 0.986394i | \(-0.447432\pi\) | ||||
0.164399 | + | 0.986394i | \(0.447432\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 6.00000 | 0.937043 | 0.468521 | − | 0.883452i | \(-0.344787\pi\) | ||||
0.468521 | + | 0.883452i | \(0.344787\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −4.00000 | −0.609994 | −0.304997 | − | 0.952353i | \(-0.598656\pi\) | ||||
−0.304997 | + | 0.952353i | \(0.598656\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 1.00000 | 0.142857 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −6.00000 | −0.824163 | −0.412082 | − | 0.911147i | \(-0.635198\pi\) | ||||
−0.412082 | + | 0.911147i | \(0.635198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 12.0000 | 1.56227 | 0.781133 | − | 0.624364i | \(-0.214642\pi\) | ||||
0.781133 | + | 0.624364i | \(0.214642\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −10.0000 | −1.28037 | −0.640184 | − | 0.768221i | \(-0.721142\pi\) | ||||
−0.640184 | + | 0.768221i | \(0.721142\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | −4.00000 | −0.496139 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −4.00000 | −0.488678 | −0.244339 | − | 0.969690i | \(-0.578571\pi\) | ||||
−0.244339 | + | 0.969690i | \(0.578571\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 12.0000 | 1.42414 | 0.712069 | − | 0.702109i | \(-0.247758\pi\) | ||||
0.712069 | + | 0.702109i | \(0.247758\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −4.00000 | −0.468165 | −0.234082 | − | 0.972217i | \(-0.575209\pi\) | ||||
−0.234082 | + | 0.972217i | \(0.575209\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 8.00000 | 0.900070 | 0.450035 | − | 0.893011i | \(-0.351411\pi\) | ||||
0.450035 | + | 0.893011i | \(0.351411\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 12.0000 | 1.31717 | 0.658586 | − | 0.752506i | \(-0.271155\pi\) | ||||
0.658586 | + | 0.752506i | \(0.271155\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 6.00000 | 0.650791 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 6.00000 | 0.635999 | 0.317999 | − | 0.948091i | \(-0.396989\pi\) | ||||
0.317999 | + | 0.948091i | \(0.396989\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −4.00000 | −0.419314 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 2.00000 | 0.205196 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 8.00000 | 0.812277 | 0.406138 | − | 0.913812i | \(-0.366875\pi\) | ||||
0.406138 | + | 0.913812i | \(0.366875\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −6.00000 | −0.597022 | −0.298511 | − | 0.954406i | \(-0.596490\pi\) | ||||
−0.298511 | + | 0.954406i | \(0.596490\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −4.00000 | −0.394132 | −0.197066 | − | 0.980390i | \(-0.563141\pi\) | ||||
−0.197066 | + | 0.980390i | \(0.563141\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 6.00000 | 0.580042 | 0.290021 | − | 0.957020i | \(-0.406338\pi\) | ||||
0.290021 | + | 0.957020i | \(0.406338\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 14.0000 | 1.34096 | 0.670478 | − | 0.741929i | \(-0.266089\pi\) | ||||
0.670478 | + | 0.741929i | \(0.266089\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 6.00000 | 0.564433 | 0.282216 | − | 0.959351i | \(-0.408930\pi\) | ||||
0.282216 | + | 0.959351i | \(0.408930\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 6.00000 | 0.559503 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 6.00000 | 0.550019 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 1.00000 | 0.0894427 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | −16.0000 | −1.41977 | −0.709885 | − | 0.704317i | \(-0.751253\pi\) | ||||
−0.709885 | + | 0.704317i | \(0.751253\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −12.0000 | −1.04844 | −0.524222 | − | 0.851581i | \(-0.675644\pi\) | ||||
−0.524222 | + | 0.851581i | \(0.675644\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 2.00000 | 0.173422 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −18.0000 | −1.53784 | −0.768922 | − | 0.639343i | \(-0.779207\pi\) | ||||
−0.768922 | + | 0.639343i | \(0.779207\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 14.0000 | 1.18746 | 0.593732 | − | 0.804663i | \(-0.297654\pi\) | ||||
0.593732 | + | 0.804663i | \(0.297654\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −24.0000 | −1.96616 | −0.983078 | − | 0.183186i | \(-0.941359\pi\) | ||||
−0.983078 | + | 0.183186i | \(0.941359\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 8.00000 | 0.651031 | 0.325515 | − | 0.945537i | \(-0.394462\pi\) | ||||
0.325515 | + | 0.945537i | \(0.394462\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 2.00000 | 0.160644 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −4.00000 | −0.319235 | −0.159617 | − | 0.987179i | \(-0.551026\pi\) | ||||
−0.159617 | + | 0.987179i | \(0.551026\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 6.00000 | 0.472866 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −4.00000 | −0.313304 | −0.156652 | − | 0.987654i | \(-0.550070\pi\) | ||||
−0.156652 | + | 0.987654i | \(0.550070\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 12.0000 | 0.928588 | 0.464294 | − | 0.885681i | \(-0.346308\pi\) | ||||
0.464294 | + | 0.885681i | \(0.346308\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 3.00000 | 0.230769 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −18.0000 | −1.36851 | −0.684257 | − | 0.729241i | \(-0.739873\pi\) | ||||
−0.684257 | + | 0.729241i | \(0.739873\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 1.00000 | 0.0755929 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.0000 | −0.896922 | −0.448461 | − | 0.893802i | \(-0.648028\pi\) | ||||
−0.448461 | + | 0.893802i | \(0.648028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −10.0000 | −0.743294 | −0.371647 | − | 0.928374i | \(-0.621207\pi\) | ||||
−0.371647 | + | 0.928374i | \(0.621207\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 2.00000 | 0.147043 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −22.0000 | −1.58359 | −0.791797 | − | 0.610784i | \(-0.790854\pi\) | ||||
−0.791797 | + | 0.610784i | \(0.790854\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 6.00000 | 0.427482 | 0.213741 | − | 0.976890i | \(-0.431435\pi\) | ||||
0.213741 | + | 0.976890i | \(0.431435\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 14.0000 | 0.992434 | 0.496217 | − | 0.868199i | \(-0.334722\pi\) | ||||
0.496217 | + | 0.868199i | \(0.334722\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 6.00000 | 0.419058 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 8.00000 | 0.550743 | 0.275371 | − | 0.961338i | \(-0.411199\pi\) | ||||
0.275371 | + | 0.961338i | \(0.411199\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | −4.00000 | −0.272798 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 2.00000 | 0.135769 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −24.0000 | −1.61441 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −28.0000 | −1.87502 | −0.937509 | − | 0.347960i | \(-0.886874\pi\) | ||||
−0.937509 | + | 0.347960i | \(0.886874\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 26.0000 | 1.71813 | 0.859064 | − | 0.511868i | \(-0.171046\pi\) | ||||
0.859064 | + | 0.511868i | \(0.171046\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −6.00000 | −0.393073 | −0.196537 | − | 0.980497i | \(-0.562969\pi\) | ||||
−0.196537 | + | 0.980497i | \(0.562969\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 2.00000 | 0.128831 | 0.0644157 | − | 0.997923i | \(-0.479482\pi\) | ||||
0.0644157 | + | 0.997923i | \(0.479482\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 1.00000 | 0.0638877 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −8.00000 | −0.509028 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 12.0000 | 0.757433 | 0.378717 | − | 0.925513i | \(-0.376365\pi\) | ||||
0.378717 | + | 0.925513i | \(0.376365\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −18.0000 | −1.12281 | −0.561405 | − | 0.827541i | \(-0.689739\pi\) | ||||
−0.561405 | + | 0.827541i | \(0.689739\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 2.00000 | 0.124274 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −30.0000 | −1.84988 | −0.924940 | − | 0.380114i | \(-0.875885\pi\) | ||||
−0.924940 | + | 0.380114i | \(0.875885\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −6.00000 | −0.368577 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 6.00000 | 0.365826 | 0.182913 | − | 0.983129i | \(-0.441447\pi\) | ||||
0.182913 | + | 0.983129i | \(0.441447\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −10.0000 | −0.607457 | −0.303728 | − | 0.952759i | \(-0.598232\pi\) | ||||
−0.303728 | + | 0.952759i | \(0.598232\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 2.00000 | 0.120168 | 0.0600842 | − | 0.998193i | \(-0.480863\pi\) | ||||
0.0600842 | + | 0.998193i | \(0.480863\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −24.0000 | −1.43172 | −0.715860 | − | 0.698244i | \(-0.753965\pi\) | ||||
−0.715860 | + | 0.698244i | \(0.753965\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −28.0000 | −1.66443 | −0.832214 | − | 0.554455i | \(-0.812927\pi\) | ||||
−0.832214 | + | 0.554455i | \(0.812927\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 6.00000 | 0.354169 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 19.0000 | 1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −6.00000 | −0.350524 | −0.175262 | − | 0.984522i | \(-0.556077\pi\) | ||||
−0.175262 | + | 0.984522i | \(0.556077\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 12.0000 | 0.698667 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −24.0000 | −1.38796 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −4.00000 | −0.230556 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −10.0000 | −0.572598 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 8.00000 | 0.456584 | 0.228292 | − | 0.973593i | \(-0.426686\pi\) | ||||
0.228292 | + | 0.973593i | \(0.426686\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 24.0000 | 1.36092 | 0.680458 | − | 0.732787i | \(-0.261781\pi\) | ||||
0.680458 | + | 0.732787i | \(0.261781\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −4.00000 | −0.226093 | −0.113047 | − | 0.993590i | \(-0.536061\pi\) | ||||
−0.113047 | + | 0.993590i | \(0.536061\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −30.0000 | −1.68497 | −0.842484 | − | 0.538721i | \(-0.818908\pi\) | ||||
−0.842484 | + | 0.538721i | \(0.818908\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 12.0000 | 0.667698 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −4.00000 | −0.221880 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −16.0000 | −0.879440 | −0.439720 | − | 0.898135i | \(-0.644922\pi\) | ||||
−0.439720 | + | 0.898135i | \(0.644922\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −4.00000 | −0.218543 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 2.00000 | 0.108947 | 0.0544735 | − | 0.998515i | \(-0.482652\pi\) | ||||
0.0544735 | + | 0.998515i | \(0.482652\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 1.00000 | 0.0539949 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −18.0000 | −0.966291 | −0.483145 | − | 0.875540i | \(-0.660506\pi\) | ||||
−0.483145 | + | 0.875540i | \(0.660506\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 14.0000 | 0.749403 | 0.374701 | − | 0.927146i | \(-0.377745\pi\) | ||||
0.374701 | + | 0.927146i | \(0.377745\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 18.0000 | 0.958043 | 0.479022 | − | 0.877803i | \(-0.340992\pi\) | ||||
0.479022 | + | 0.877803i | \(0.340992\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 12.0000 | 0.636894 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 24.0000 | 1.26667 | 0.633336 | − | 0.773877i | \(-0.281685\pi\) | ||||
0.633336 | + | 0.773877i | \(0.281685\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −15.0000 | −0.789474 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | −4.00000 | −0.209370 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −4.00000 | −0.208798 | −0.104399 | − | 0.994535i | \(-0.533292\pi\) | ||||
−0.104399 | + | 0.994535i | \(0.533292\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −6.00000 | −0.311504 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 14.0000 | 0.724893 | 0.362446 | − | 0.932005i | \(-0.381942\pi\) | ||||
0.362446 | + | 0.932005i | \(0.381942\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 20.0000 | 1.02733 | 0.513665 | − | 0.857991i | \(-0.328287\pi\) | ||||
0.513665 | + | 0.857991i | \(0.328287\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −36.0000 | −1.82527 | −0.912636 | − | 0.408773i | \(-0.865957\pi\) | ||||
−0.912636 | + | 0.408773i | \(0.865957\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 36.0000 | 1.82060 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 8.00000 | 0.402524 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 8.00000 | 0.401508 | 0.200754 | − | 0.979642i | \(-0.435661\pi\) | ||||
0.200754 | + | 0.979642i | \(0.435661\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −12.0000 | −0.599251 | −0.299626 | − | 0.954057i | \(-0.596862\pi\) | ||||
−0.299626 | + | 0.954057i | \(0.596862\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −8.00000 | −0.398508 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 14.0000 | 0.692255 | 0.346128 | − | 0.938187i | \(-0.387496\pi\) | ||||
0.346128 | + | 0.938187i | \(0.387496\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 12.0000 | 0.590481 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 12.0000 | 0.589057 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 36.0000 | 1.75872 | 0.879358 | − | 0.476162i | \(-0.157972\pi\) | ||||
0.879358 | + | 0.476162i | \(0.157972\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −34.0000 | −1.65706 | −0.828529 | − | 0.559946i | \(-0.810822\pi\) | ||||
−0.828529 | + | 0.559946i | \(0.810822\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 6.00000 | 0.291043 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −10.0000 | −0.483934 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −36.0000 | −1.73406 | −0.867029 | − | 0.498257i | \(-0.833974\pi\) | ||||
−0.867029 | + | 0.498257i | \(0.833974\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −28.0000 | −1.34559 | −0.672797 | − | 0.739827i | \(-0.734907\pi\) | ||||
−0.672797 | + | 0.739827i | \(0.734907\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 12.0000 | 0.574038 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −10.0000 | −0.477274 | −0.238637 | − | 0.971109i | \(-0.576701\pi\) | ||||
−0.238637 | + | 0.971109i | \(0.576701\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −18.0000 | −0.855206 | −0.427603 | − | 0.903967i | \(-0.640642\pi\) | ||||
−0.427603 | + | 0.903967i | \(0.640642\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 6.00000 | 0.284427 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 24.0000 | 1.13263 | 0.566315 | − | 0.824189i | \(-0.308369\pi\) | ||||
0.566315 | + | 0.824189i | \(0.308369\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | −4.00000 | −0.187523 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −10.0000 | −0.467780 | −0.233890 | − | 0.972263i | \(-0.575146\pi\) | ||||
−0.233890 | + | 0.972263i | \(0.575146\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −6.00000 | −0.279448 | −0.139724 | − | 0.990190i | \(-0.544622\pi\) | ||||
−0.139724 | + | 0.990190i | \(0.544622\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 8.00000 | 0.371792 | 0.185896 | − | 0.982569i | \(-0.440481\pi\) | ||||
0.185896 | + | 0.982569i | \(0.440481\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −4.00000 | −0.184703 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 2.00000 | 0.0917663 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −24.0000 | −1.09659 | −0.548294 | − | 0.836286i | \(-0.684723\pi\) | ||||
−0.548294 | + | 0.836286i | \(0.684723\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −8.00000 | −0.364769 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 8.00000 | 0.363261 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 8.00000 | 0.362515 | 0.181257 | − | 0.983436i | \(-0.441983\pi\) | ||||
0.181257 | + | 0.983436i | \(0.441983\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 36.0000 | 1.62466 | 0.812329 | − | 0.583200i | \(-0.198200\pi\) | ||||
0.812329 | + | 0.583200i | \(0.198200\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 12.0000 | 0.538274 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −28.0000 | −1.25345 | −0.626726 | − | 0.779240i | \(-0.715605\pi\) | ||||
−0.626726 | + | 0.779240i | \(0.715605\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 24.0000 | 1.07011 | 0.535054 | − | 0.844818i | \(-0.320291\pi\) | ||||
0.535054 | + | 0.844818i | \(0.320291\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | −6.00000 | −0.266996 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −18.0000 | −0.797836 | −0.398918 | − | 0.916987i | \(-0.630614\pi\) | ||||
−0.398918 | + | 0.916987i | \(0.630614\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −4.00000 | −0.176950 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −4.00000 | −0.176261 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 42.0000 | 1.84005 | 0.920027 | − | 0.391856i | \(-0.128167\pi\) | ||||
0.920027 | + | 0.391856i | \(0.128167\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 20.0000 | 0.874539 | 0.437269 | − | 0.899331i | \(-0.355946\pi\) | ||||
0.437269 | + | 0.899331i | \(0.355946\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 12.0000 | 0.522728 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 13.0000 | 0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −24.0000 | −1.03956 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 6.00000 | 0.259403 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −34.0000 | −1.46177 | −0.730887 | − | 0.682498i | \(-0.760893\pi\) | ||||
−0.730887 | + | 0.682498i | \(0.760893\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 14.0000 | 0.599694 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −4.00000 | −0.171028 | −0.0855138 | − | 0.996337i | \(-0.527253\pi\) | ||||
−0.0855138 | + | 0.996337i | \(0.527253\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 8.00000 | 0.340195 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 18.0000 | 0.762684 | 0.381342 | − | 0.924434i | \(-0.375462\pi\) | ||||
0.381342 | + | 0.924434i | \(0.375462\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 16.0000 | 0.676728 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 12.0000 | 0.505740 | 0.252870 | − | 0.967500i | \(-0.418626\pi\) | ||||
0.252870 | + | 0.967500i | \(0.418626\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 6.00000 | 0.252422 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 12.0000 | 0.503066 | 0.251533 | − | 0.967849i | \(-0.419065\pi\) | ||||
0.251533 | + | 0.967849i | \(0.419065\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 32.0000 | 1.33916 | 0.669579 | − | 0.742741i | \(-0.266474\pi\) | ||||
0.669579 | + | 0.742741i | \(0.266474\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 6.00000 | 0.250217 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 20.0000 | 0.832611 | 0.416305 | − | 0.909225i | \(-0.363325\pi\) | ||||
0.416305 | + | 0.909225i | \(0.363325\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 12.0000 | 0.497844 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 36.0000 | 1.48588 | 0.742940 | − | 0.669359i | \(-0.233431\pi\) | ||||
0.742940 | + | 0.669359i | \(0.233431\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 4.00000 | 0.164817 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 18.0000 | 0.739171 | 0.369586 | − | 0.929197i | \(-0.379500\pi\) | ||||
0.369586 | + | 0.929197i | \(0.379500\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 6.00000 | 0.245976 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 38.0000 | 1.55005 | 0.775026 | − | 0.631929i | \(-0.217737\pi\) | ||||
0.775026 | + | 0.631929i | \(0.217737\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −11.0000 | −0.447214 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −28.0000 | −1.13648 | −0.568242 | − | 0.822861i | \(-0.692376\pi\) | ||||
−0.568242 | + | 0.822861i | \(0.692376\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −46.0000 | −1.85792 | −0.928961 | − | 0.370177i | \(-0.879297\pi\) | ||||
−0.928961 | + | 0.370177i | \(0.879297\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 42.0000 | 1.69086 | 0.845428 | − | 0.534089i | \(-0.179345\pi\) | ||||
0.845428 | + | 0.534089i | \(0.179345\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −10.0000 | −0.401934 | −0.200967 | − | 0.979598i | \(-0.564408\pi\) | ||||
−0.200967 | + | 0.979598i | \(0.564408\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 6.00000 | 0.240385 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 1.00000 | 0.0400000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 12.0000 | 0.478471 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −40.0000 | −1.59237 | −0.796187 | − | 0.605050i | \(-0.793153\pi\) | ||||
−0.796187 | + | 0.605050i | \(0.793153\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | −16.0000 | −0.634941 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | −4.00000 | −0.158486 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 24.0000 | 0.947943 | 0.473972 | − | 0.880540i | \(-0.342820\pi\) | ||||
0.473972 | + | 0.880540i | \(0.342820\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −40.0000 | −1.57745 | −0.788723 | − | 0.614749i | \(-0.789257\pi\) | ||||
−0.788723 | + | 0.614749i | \(0.789257\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −12.0000 | −0.471769 | −0.235884 | − | 0.971781i | \(-0.575799\pi\) | ||||
−0.235884 | + | 0.971781i | \(0.575799\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −30.0000 | −1.17399 | −0.586995 | − | 0.809590i | \(-0.699689\pi\) | ||||
−0.586995 | + | 0.809590i | \(0.699689\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | −12.0000 | −0.468879 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 12.0000 | 0.467454 | 0.233727 | − | 0.972302i | \(-0.424908\pi\) | ||||
0.233727 | + | 0.972302i | \(0.424908\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −10.0000 | −0.388955 | −0.194477 | − | 0.980907i | \(-0.562301\pi\) | ||||
−0.194477 | + | 0.980907i | \(0.562301\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 2.00000 | 0.0775567 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 38.0000 | 1.46479 | 0.732396 | − | 0.680879i | \(-0.238402\pi\) | ||||
0.732396 | + | 0.680879i | \(0.238402\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −6.00000 | −0.230599 | −0.115299 | − | 0.993331i | \(-0.536783\pi\) | ||||
−0.115299 | + | 0.993331i | \(0.536783\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 8.00000 | 0.307012 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 6.00000 | 0.229584 | 0.114792 | − | 0.993390i | \(-0.463380\pi\) | ||||
0.114792 | + | 0.993390i | \(0.463380\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −18.0000 | −0.687745 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 24.0000 | 0.914327 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 26.0000 | 0.989087 | 0.494543 | − | 0.869153i | \(-0.335335\pi\) | ||||
0.494543 | + | 0.869153i | \(0.335335\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 14.0000 | 0.531050 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 36.0000 | 1.36360 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 4.00000 | 0.150863 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −6.00000 | −0.225653 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 26.0000 | 0.976450 | 0.488225 | − | 0.872718i | \(-0.337644\pi\) | ||||
0.488225 | + | 0.872718i | \(0.337644\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 12.0000 | 0.449404 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −4.00000 | −0.148968 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −16.0000 | −0.593407 | −0.296704 | − | 0.954970i | \(-0.595887\pi\) | ||||
−0.296704 | + | 0.954970i | \(0.595887\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −24.0000 | −0.887672 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −4.00000 | −0.147743 | −0.0738717 | − | 0.997268i | \(-0.523536\pi\) | ||||
−0.0738717 | + | 0.997268i | \(0.523536\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −16.0000 | −0.588570 | −0.294285 | − | 0.955718i | \(-0.595081\pi\) | ||||
−0.294285 | + | 0.955718i | \(0.595081\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 30.0000 | 1.10059 | 0.550297 | − | 0.834969i | \(-0.314515\pi\) | ||||
0.550297 | + | 0.834969i | \(0.314515\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | −24.0000 | −0.879292 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 6.00000 | 0.219235 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 44.0000 | 1.60558 | 0.802791 | − | 0.596260i | \(-0.203347\pi\) | ||||
0.802791 | + | 0.596260i | \(0.203347\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 8.00000 | 0.291150 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 38.0000 | 1.38113 | 0.690567 | − | 0.723269i | \(-0.257361\pi\) | ||||
0.690567 | + | 0.723269i | \(0.257361\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 6.00000 | 0.217500 | 0.108750 | − | 0.994069i | \(-0.465315\pi\) | ||||
0.108750 | + | 0.994069i | \(0.465315\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 14.0000 | 0.506834 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −48.0000 | −1.73318 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −34.0000 | −1.22607 | −0.613036 | − | 0.790055i | \(-0.710052\pi\) | ||||
−0.613036 | + | 0.790055i | \(0.710052\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 30.0000 | 1.07903 | 0.539513 | − | 0.841978i | \(-0.318609\pi\) | ||||
0.539513 | + | 0.841978i | \(0.318609\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 2.00000 | 0.0718421 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 12.0000 | 0.429945 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −4.00000 | −0.142766 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −4.00000 | −0.142585 | −0.0712923 | − | 0.997455i | \(-0.522712\pi\) | ||||
−0.0712923 | + | 0.997455i | \(0.522712\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 6.00000 | 0.213335 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 40.0000 | 1.42044 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −18.0000 | −0.637593 | −0.318796 | − | 0.947823i | \(-0.603279\pi\) | ||||
−0.318796 | + | 0.947823i | \(0.603279\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 6.00000 | 0.211472 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 12.0000 | 0.421898 | 0.210949 | − | 0.977497i | \(-0.432345\pi\) | ||||
0.210949 | + | 0.977497i | \(0.432345\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 38.0000 | 1.33436 | 0.667180 | − | 0.744896i | \(-0.267501\pi\) | ||||
0.667180 | + | 0.744896i | \(0.267501\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −4.00000 | −0.140114 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −8.00000 | −0.279885 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −12.0000 | −0.418803 | −0.209401 | − | 0.977830i | \(-0.567152\pi\) | ||||
−0.209401 | + | 0.977830i | \(0.567152\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 8.00000 | 0.278862 | 0.139431 | − | 0.990232i | \(-0.455473\pi\) | ||||
0.139431 | + | 0.990232i | \(0.455473\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −18.0000 | −0.625921 | −0.312961 | − | 0.949766i | \(-0.601321\pi\) | ||||
−0.312961 | + | 0.949766i | \(0.601321\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 14.0000 | 0.486240 | 0.243120 | − | 0.969996i | \(-0.421829\pi\) | ||||
0.243120 | + | 0.969996i | \(0.421829\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 6.00000 | 0.207888 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 12.0000 | 0.415277 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −29.0000 | −1.00000 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 3.00000 | 0.103203 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −11.0000 | −0.377964 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 12.0000 | 0.411355 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −40.0000 | −1.36957 | −0.684787 | − | 0.728743i | \(-0.740105\pi\) | ||||
−0.684787 | + | 0.728743i | \(0.740105\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 42.0000 | 1.43469 | 0.717346 | − | 0.696717i | \(-0.245357\pi\) | ||||
0.717346 | + | 0.696717i | \(0.245357\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −34.0000 | −1.16007 | −0.580033 | − | 0.814593i | \(-0.696960\pi\) | ||||
−0.580033 | + | 0.814593i | \(0.696960\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 30.0000 | 1.02121 | 0.510606 | − | 0.859815i | \(-0.329421\pi\) | ||||
0.510606 | + | 0.859815i | \(0.329421\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −18.0000 | −0.612018 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 16.0000 | 0.542139 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 1.00000 | 0.0338062 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −22.0000 | −0.742887 | −0.371444 | − | 0.928456i | \(-0.621137\pi\) | ||||
−0.371444 | + | 0.928456i | \(0.621137\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 42.0000 | 1.41502 | 0.707508 | − | 0.706705i | \(-0.249819\pi\) | ||||
0.707508 | + | 0.706705i | \(0.249819\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 20.0000 | 0.673054 | 0.336527 | − | 0.941674i | \(-0.390748\pi\) | ||||
0.336527 | + | 0.941674i | \(0.390748\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −16.0000 | −0.536623 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | −12.0000 | −0.401116 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −36.0000 | −1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −10.0000 | −0.332411 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −28.0000 | −0.929725 | −0.464862 | − | 0.885383i | \(-0.653896\pi\) | ||||
−0.464862 | + | 0.885383i | \(0.653896\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −24.0000 | −0.795155 | −0.397578 | − | 0.917568i | \(-0.630149\pi\) | ||||
−0.397578 | + | 0.917568i | \(0.630149\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −12.0000 | −0.396275 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −28.0000 | −0.923635 | −0.461817 | − | 0.886975i | \(-0.652802\pi\) | ||||
−0.461817 | + | 0.886975i | \(0.652802\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −48.0000 | −1.57994 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 2.00000 | 0.0657596 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 30.0000 | 0.984268 | 0.492134 | − | 0.870519i | \(-0.336217\pi\) | ||||
0.492134 | + | 0.870519i | \(0.336217\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 2.00000 | 0.0655474 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 56.0000 | 1.82944 | 0.914720 | − | 0.404088i | \(-0.132411\pi\) | ||||
0.914720 | + | 0.404088i | \(0.132411\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −18.0000 | −0.586783 | −0.293392 | − | 0.955992i | \(-0.594784\pi\) | ||||
−0.293392 | + | 0.955992i | \(0.594784\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 36.0000 | 1.17232 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 18.0000 | 0.584921 | 0.292461 | − | 0.956278i | \(-0.405526\pi\) | ||||
0.292461 | + | 0.956278i | \(0.405526\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 16.0000 | 0.519382 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 6.00000 | 0.194359 | 0.0971795 | − | 0.995267i | \(-0.469018\pi\) | ||||
0.0971795 | + | 0.995267i | \(0.469018\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −18.0000 | −0.581250 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −27.0000 | −0.870968 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | −22.0000 | −0.708205 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −40.0000 | −1.28631 | −0.643157 | − | 0.765735i | \(-0.722376\pi\) | ||||
−0.643157 | + | 0.765735i | \(0.722376\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −36.0000 | −1.15529 | −0.577647 | − | 0.816286i | \(-0.696029\pi\) | ||||
−0.577647 | + | 0.816286i | \(0.696029\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 14.0000 | 0.448819 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 18.0000 | 0.575871 | 0.287936 | − | 0.957650i | \(-0.407031\pi\) | ||||
0.287936 | + | 0.957650i | \(0.407031\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −36.0000 | −1.14822 | −0.574111 | − | 0.818778i | \(-0.694652\pi\) | ||||
−0.574111 | + | 0.818778i | \(0.694652\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 6.00000 | 0.191176 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −24.0000 | −0.763156 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 20.0000 | 0.635321 | 0.317660 | − | 0.948205i | \(-0.397103\pi\) | ||||
0.317660 | + | 0.948205i | \(0.397103\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 14.0000 | 0.443830 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 8.00000 | 0.253363 | 0.126681 | − | 0.991943i | \(-0.459567\pi\) | ||||
0.126681 | + | 0.991943i | \(0.459567\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1260.2.a.j.1.1 | yes | 1 | |
3.2 | odd | 2 | 1260.2.a.d.1.1 | ✓ | 1 | ||
4.3 | odd | 2 | 5040.2.a.w.1.1 | 1 | |||
5.2 | odd | 4 | 6300.2.k.j.6049.2 | 2 | |||
5.3 | odd | 4 | 6300.2.k.j.6049.1 | 2 | |||
5.4 | even | 2 | 6300.2.a.h.1.1 | 1 | |||
7.6 | odd | 2 | 8820.2.a.h.1.1 | 1 | |||
12.11 | even | 2 | 5040.2.a.e.1.1 | 1 | |||
15.2 | even | 4 | 6300.2.k.i.6049.2 | 2 | |||
15.8 | even | 4 | 6300.2.k.i.6049.1 | 2 | |||
15.14 | odd | 2 | 6300.2.a.i.1.1 | 1 | |||
21.20 | even | 2 | 8820.2.a.u.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1260.2.a.d.1.1 | ✓ | 1 | 3.2 | odd | 2 | ||
1260.2.a.j.1.1 | yes | 1 | 1.1 | even | 1 | trivial | |
5040.2.a.e.1.1 | 1 | 12.11 | even | 2 | |||
5040.2.a.w.1.1 | 1 | 4.3 | odd | 2 | |||
6300.2.a.h.1.1 | 1 | 5.4 | even | 2 | |||
6300.2.a.i.1.1 | 1 | 15.14 | odd | 2 | |||
6300.2.k.i.6049.1 | 2 | 15.8 | even | 4 | |||
6300.2.k.i.6049.2 | 2 | 15.2 | even | 4 | |||
6300.2.k.j.6049.1 | 2 | 5.3 | odd | 4 | |||
6300.2.k.j.6049.2 | 2 | 5.2 | odd | 4 | |||
8820.2.a.h.1.1 | 1 | 7.6 | odd | 2 | |||
8820.2.a.u.1.1 | 1 | 21.20 | even | 2 |