Properties

Label 1260.2.bm.a
Level $1260$
Weight $2$
Character orbit 1260.bm
Analytic conductor $10.061$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1260,2,Mod(109,1260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1260.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - \beta_{2}) q^{5} + (2 \beta_{2} + \beta_1 - 2) q^{7} + (\beta_{3} - 2 \beta_{2} - 2 \beta_1 + 1) q^{11} + (2 \beta_{3} + 2 \beta_{2} - 2 \beta_1) q^{13} + (\beta_{3} + 2 \beta_{2} - 3) q^{17}+ \cdots + ( - 8 \beta_{2} + 4) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{5} - 3 q^{7} - 3 q^{11} - 9 q^{17} - q^{19} + 12 q^{23} + 9 q^{25} + 2 q^{29} + q^{31} - 16 q^{35} + 27 q^{37} + 30 q^{41} + 15 q^{47} + 5 q^{49} + 3 q^{53} + 27 q^{55} - q^{59} + 12 q^{61}+ \cdots + q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 4\nu^{2} - 4\nu - 5 ) / 20 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 4\nu + 5 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 5\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -4\beta_{3} + 4\beta _1 + 5 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
2.13746 0.656712i
−1.63746 + 1.52274i
2.13746 + 0.656712i
−1.63746 1.52274i
0 0 0 −2.13746 0.656712i 0 1.13746 2.38876i 0 0 0
109.2 0 0 0 1.63746 + 1.52274i 0 −2.63746 0.209313i 0 0 0
289.1 0 0 0 −2.13746 + 0.656712i 0 1.13746 + 2.38876i 0 0 0
289.2 0 0 0 1.63746 1.52274i 0 −2.63746 + 0.209313i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1260.2.bm.a 4
3.b odd 2 1 140.2.q.a 4
5.b even 2 1 1260.2.bm.b 4
7.c even 3 1 1260.2.bm.b 4
12.b even 2 1 560.2.bw.e 4
15.d odd 2 1 140.2.q.b yes 4
15.e even 4 2 700.2.i.f 8
21.c even 2 1 980.2.q.g 4
21.g even 6 1 980.2.e.c 4
21.g even 6 1 980.2.q.b 4
21.h odd 6 1 140.2.q.b yes 4
21.h odd 6 1 980.2.e.f 4
35.j even 6 1 inner 1260.2.bm.a 4
60.h even 2 1 560.2.bw.a 4
84.n even 6 1 560.2.bw.a 4
105.g even 2 1 980.2.q.b 4
105.o odd 6 1 140.2.q.a 4
105.o odd 6 1 980.2.e.f 4
105.p even 6 1 980.2.e.c 4
105.p even 6 1 980.2.q.g 4
105.w odd 12 2 4900.2.a.bf 4
105.x even 12 2 700.2.i.f 8
105.x even 12 2 4900.2.a.be 4
420.ba even 6 1 560.2.bw.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.q.a 4 3.b odd 2 1
140.2.q.a 4 105.o odd 6 1
140.2.q.b yes 4 15.d odd 2 1
140.2.q.b yes 4 21.h odd 6 1
560.2.bw.a 4 60.h even 2 1
560.2.bw.a 4 84.n even 6 1
560.2.bw.e 4 12.b even 2 1
560.2.bw.e 4 420.ba even 6 1
700.2.i.f 8 15.e even 4 2
700.2.i.f 8 105.x even 12 2
980.2.e.c 4 21.g even 6 1
980.2.e.c 4 105.p even 6 1
980.2.e.f 4 21.h odd 6 1
980.2.e.f 4 105.o odd 6 1
980.2.q.b 4 21.g even 6 1
980.2.q.b 4 105.g even 2 1
980.2.q.g 4 21.c even 2 1
980.2.q.g 4 105.p even 6 1
1260.2.bm.a 4 1.a even 1 1 trivial
1260.2.bm.a 4 35.j even 6 1 inner
1260.2.bm.b 4 5.b even 2 1
1260.2.bm.b 4 7.c even 3 1
4900.2.a.be 4 105.x even 12 2
4900.2.a.bf 4 105.w odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1260, [\chi])\):

\( T_{11}^{4} + 3T_{11}^{3} + 21T_{11}^{2} - 36T_{11} + 144 \) Copy content Toggle raw display
\( T_{17}^{4} + 9T_{17}^{3} + 29T_{17}^{2} + 18T_{17} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( T^{4} + 3 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$11$ \( T^{4} + 3 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$13$ \( T^{4} + 44T^{2} + 256 \) Copy content Toggle raw display
$17$ \( T^{4} + 9 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$19$ \( T^{4} + T^{3} + \cdots + 196 \) Copy content Toggle raw display
$23$ \( T^{4} - 12 T^{3} + \cdots + 49 \) Copy content Toggle raw display
$29$ \( (T^{2} - T - 14)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - T^{3} + \cdots + 196 \) Copy content Toggle raw display
$37$ \( T^{4} - 27 T^{3} + \cdots + 3136 \) Copy content Toggle raw display
$41$ \( (T^{2} - 15 T + 42)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 47T^{2} + 196 \) Copy content Toggle raw display
$47$ \( T^{4} - 15 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$53$ \( T^{4} - 3 T^{3} + \cdots + 1764 \) Copy content Toggle raw display
$59$ \( T^{4} + T^{3} + \cdots + 196 \) Copy content Toggle raw display
$61$ \( T^{4} - 12 T^{3} + \cdots + 441 \) Copy content Toggle raw display
$67$ \( T^{4} + 18 T^{3} + \cdots + 2401 \) Copy content Toggle raw display
$71$ \( (T^{2} + 6 T - 48)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 15 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$79$ \( T^{4} - 7 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$83$ \( T^{4} + 87T^{2} + 1764 \) Copy content Toggle raw display
$89$ \( (T^{2} - 7 T + 49)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
show more
show less