Properties

Label 1260.2.bm.d.109.2
Level $1260$
Weight $2$
Character 1260.109
Analytic conductor $10.061$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1260,2,Mod(109,1260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1260.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 4 x^{14} + 12 x^{13} + 162 x^{12} - 524 x^{11} - 88 x^{10} + 1492 x^{9} + \cdots + 1521 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 109.2
Root \(1.51479 - 1.11371i\) of defining polynomial
Character \(\chi\) \(=\) 1260.109
Dual form 1260.2.bm.d.289.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.70325 - 1.44877i) q^{5} +(0.308646 - 2.62769i) q^{7} +(0.919382 - 1.59242i) q^{11} -0.356394i q^{13} +(-3.16793 - 1.82901i) q^{17} +(0.936492 + 1.62205i) q^{19} +(-5.76833 + 3.33035i) q^{23} +(0.802121 + 4.93524i) q^{25} -2.37383 q^{29} +(3.37298 - 5.84218i) q^{31} +(-4.33262 + 4.02845i) q^{35} +(-3.66455 + 2.11573i) q^{37} +1.83876 q^{41} +2.80588i q^{43} +(-7.63606 + 4.40868i) q^{47} +(-6.80948 - 1.62205i) q^{49} +(-8.93627 - 5.15936i) q^{53} +(-3.87298 + 1.38031i) q^{55} +(4.86444 - 8.42546i) q^{59} +(-0.436492 - 0.756026i) q^{61} +(-0.516333 + 0.607028i) q^{65} +(-10.0285 - 5.78996i) q^{67} -10.7990 q^{71} +(7.90719 + 4.56522i) q^{73} +(-3.90061 - 2.90734i) q^{77} +(2.93649 + 5.08615i) q^{79} +9.66339i q^{83} +(2.74597 + 7.70486i) q^{85} +(-3.29321 - 5.70402i) q^{89} +(-0.936492 - 0.110000i) q^{91} +(0.754902 - 4.11952i) q^{95} -12.2474i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{19} - 8 q^{31} - 16 q^{49} + 24 q^{61} + 16 q^{79} - 80 q^{85} + 16 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.70325 1.44877i −0.761717 0.647910i
\(6\) 0 0
\(7\) 0.308646 2.62769i 0.116657 0.993172i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.919382 1.59242i 0.277204 0.480131i −0.693485 0.720471i \(-0.743926\pi\)
0.970689 + 0.240340i \(0.0772589\pi\)
\(12\) 0 0
\(13\) 0.356394i 0.0988459i −0.998778 0.0494229i \(-0.984262\pi\)
0.998778 0.0494229i \(-0.0157382\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.16793 1.82901i −0.768336 0.443599i 0.0639446 0.997953i \(-0.479632\pi\)
−0.832281 + 0.554354i \(0.812965\pi\)
\(18\) 0 0
\(19\) 0.936492 + 1.62205i 0.214846 + 0.372124i 0.953225 0.302262i \(-0.0977417\pi\)
−0.738379 + 0.674386i \(0.764408\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.76833 + 3.33035i −1.20278 + 0.694426i −0.961173 0.275948i \(-0.911008\pi\)
−0.241608 + 0.970374i \(0.577675\pi\)
\(24\) 0 0
\(25\) 0.802121 + 4.93524i 0.160424 + 0.987048i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.37383 −0.440810 −0.220405 0.975408i \(-0.570738\pi\)
−0.220405 + 0.975408i \(0.570738\pi\)
\(30\) 0 0
\(31\) 3.37298 5.84218i 0.605806 1.04929i −0.386118 0.922449i \(-0.626184\pi\)
0.991924 0.126837i \(-0.0404825\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.33262 + 4.02845i −0.732346 + 0.680932i
\(36\) 0 0
\(37\) −3.66455 + 2.11573i −0.602449 + 0.347824i −0.770004 0.638039i \(-0.779746\pi\)
0.167556 + 0.985863i \(0.446413\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.83876 0.287167 0.143583 0.989638i \(-0.454138\pi\)
0.143583 + 0.989638i \(0.454138\pi\)
\(42\) 0 0
\(43\) 2.80588i 0.427893i 0.976845 + 0.213947i \(0.0686319\pi\)
−0.976845 + 0.213947i \(0.931368\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.63606 + 4.40868i −1.11383 + 0.643073i −0.939820 0.341670i \(-0.889007\pi\)
−0.174015 + 0.984743i \(0.555674\pi\)
\(48\) 0 0
\(49\) −6.80948 1.62205i −0.972782 0.231722i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −8.93627 5.15936i −1.22749 0.708692i −0.260986 0.965343i \(-0.584048\pi\)
−0.966504 + 0.256651i \(0.917381\pi\)
\(54\) 0 0
\(55\) −3.87298 + 1.38031i −0.522233 + 0.186121i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.86444 8.42546i 0.633297 1.09690i −0.353577 0.935405i \(-0.615035\pi\)
0.986873 0.161496i \(-0.0516320\pi\)
\(60\) 0 0
\(61\) −0.436492 0.756026i −0.0558870 0.0967992i 0.836728 0.547618i \(-0.184465\pi\)
−0.892615 + 0.450819i \(0.851132\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.516333 + 0.607028i −0.0640433 + 0.0752926i
\(66\) 0 0
\(67\) −10.0285 5.78996i −1.22518 0.707357i −0.259161 0.965834i \(-0.583446\pi\)
−0.966017 + 0.258478i \(0.916779\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −10.7990 −1.28161 −0.640804 0.767704i \(-0.721399\pi\)
−0.640804 + 0.767704i \(0.721399\pi\)
\(72\) 0 0
\(73\) 7.90719 + 4.56522i 0.925467 + 0.534319i 0.885375 0.464877i \(-0.153902\pi\)
0.0400918 + 0.999196i \(0.487235\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.90061 2.90734i −0.444515 0.331322i
\(78\) 0 0
\(79\) 2.93649 + 5.08615i 0.330381 + 0.572237i 0.982587 0.185805i \(-0.0594894\pi\)
−0.652205 + 0.758042i \(0.726156\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.66339i 1.06069i 0.847781 + 0.530347i \(0.177938\pi\)
−0.847781 + 0.530347i \(0.822062\pi\)
\(84\) 0 0
\(85\) 2.74597 + 7.70486i 0.297842 + 0.835710i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.29321 5.70402i −0.349080 0.604624i 0.637006 0.770859i \(-0.280173\pi\)
−0.986086 + 0.166234i \(0.946839\pi\)
\(90\) 0 0
\(91\) −0.936492 0.110000i −0.0981710 0.0115311i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.754902 4.11952i 0.0774513 0.422654i
\(96\) 0 0
\(97\) 12.2474i 1.24354i −0.783200 0.621770i \(-0.786414\pi\)
0.783200 0.621770i \(-0.213586\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.39951 9.35223i 0.537272 0.930582i −0.461778 0.886995i \(-0.652788\pi\)
0.999050 0.0435862i \(-0.0138783\pi\)
\(102\) 0 0
\(103\) −2.42997 + 1.40294i −0.239432 + 0.138236i −0.614916 0.788593i \(-0.710810\pi\)
0.375484 + 0.926829i \(0.377477\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.06854 + 4.08102i −0.683341 + 0.394527i −0.801113 0.598513i \(-0.795758\pi\)
0.117771 + 0.993041i \(0.462425\pi\)
\(108\) 0 0
\(109\) 2.93649 5.08615i 0.281265 0.487165i −0.690432 0.723398i \(-0.742579\pi\)
0.971697 + 0.236233i \(0.0759127\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.00538i 0.564938i −0.959276 0.282469i \(-0.908847\pi\)
0.959276 0.282469i \(-0.0911535\pi\)
\(114\) 0 0
\(115\) 14.6498 + 2.68458i 1.36610 + 0.250339i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.78382 + 7.75981i −0.530202 + 0.711341i
\(120\) 0 0
\(121\) 3.80948 + 6.59820i 0.346316 + 0.599837i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 5.78382 9.56804i 0.517321 0.855791i
\(126\) 0 0
\(127\) 14.3405i 1.27252i −0.771476 0.636259i \(-0.780481\pi\)
0.771476 0.636259i \(-0.219519\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.94506 6.83305i −0.344682 0.597006i 0.640614 0.767863i \(-0.278680\pi\)
−0.985296 + 0.170857i \(0.945346\pi\)
\(132\) 0 0
\(133\) 4.55129 1.96017i 0.394647 0.169968i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.8040 + 6.23769i 0.923048 + 0.532922i 0.884606 0.466339i \(-0.154427\pi\)
0.0384415 + 0.999261i \(0.487761\pi\)
\(138\) 0 0
\(139\) −1.87298 −0.158864 −0.0794322 0.996840i \(-0.525311\pi\)
−0.0794322 + 0.996840i \(0.525311\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.567527 0.327662i −0.0474590 0.0274005i
\(144\) 0 0
\(145\) 4.04323 + 3.43914i 0.335772 + 0.285605i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.99642 + 17.3143i 0.818939 + 1.41844i 0.906465 + 0.422281i \(0.138771\pi\)
−0.0875262 + 0.996162i \(0.527896\pi\)
\(150\) 0 0
\(151\) −3.43649 + 5.95218i −0.279658 + 0.484381i −0.971300 0.237859i \(-0.923554\pi\)
0.691642 + 0.722241i \(0.256888\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −14.2090 + 5.06401i −1.14130 + 0.406751i
\(156\) 0 0
\(157\) −18.8224 10.8671i −1.50219 0.867292i −0.999997 0.00253929i \(-0.999192\pi\)
−0.502197 0.864753i \(-0.667475\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.97074 + 16.1853i 0.549371 + 1.27558i
\(162\) 0 0
\(163\) −2.39076 + 1.38031i −0.187259 + 0.108114i −0.590699 0.806892i \(-0.701148\pi\)
0.403440 + 0.915006i \(0.367815\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.15936i 0.399243i 0.979873 + 0.199621i \(0.0639712\pi\)
−0.979873 + 0.199621i \(0.936029\pi\)
\(168\) 0 0
\(169\) 12.8730 0.990229
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 12.8369 7.41137i 0.975969 0.563476i 0.0749185 0.997190i \(-0.476130\pi\)
0.901051 + 0.433714i \(0.142797\pi\)
\(174\) 0 0
\(175\) 13.2158 0.584480i 0.999023 0.0441825i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.37383 4.11160i 0.177429 0.307315i −0.763570 0.645725i \(-0.776555\pi\)
0.940999 + 0.338409i \(0.109889\pi\)
\(180\) 0 0
\(181\) −7.87298 −0.585194 −0.292597 0.956236i \(-0.594519\pi\)
−0.292597 + 0.956236i \(0.594519\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.30686 + 1.70548i 0.684254 + 0.125390i
\(186\) 0 0
\(187\) −5.82508 + 3.36311i −0.425972 + 0.245935i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.58643 + 11.4080i 0.476577 + 0.825456i 0.999640 0.0268382i \(-0.00854390\pi\)
−0.523062 + 0.852294i \(0.675211\pi\)
\(192\) 0 0
\(193\) 10.2980 + 5.94553i 0.741263 + 0.427968i 0.822528 0.568724i \(-0.192563\pi\)
−0.0812653 + 0.996693i \(0.525896\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.4834i 1.53063i −0.643655 0.765316i \(-0.722583\pi\)
0.643655 0.765316i \(-0.277417\pi\)
\(198\) 0 0
\(199\) −2.56351 + 4.44013i −0.181722 + 0.314752i −0.942467 0.334299i \(-0.891501\pi\)
0.760745 + 0.649051i \(0.224834\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.732675 + 6.23769i −0.0514237 + 0.437800i
\(204\) 0 0
\(205\) −3.13187 2.66395i −0.218740 0.186058i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.44397 0.238225
\(210\) 0 0
\(211\) −14.6190 −1.00641 −0.503205 0.864167i \(-0.667846\pi\)
−0.503205 + 0.864167i \(0.667846\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.06508 4.77912i 0.277236 0.325933i
\(216\) 0 0
\(217\) −14.3104 10.6663i −0.971450 0.724076i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.651847 + 1.12903i −0.0438480 + 0.0759469i
\(222\) 0 0
\(223\) 12.6491i 0.847047i 0.905885 + 0.423524i \(0.139207\pi\)
−0.905885 + 0.423524i \(0.860793\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 21.2056 + 12.2431i 1.40747 + 0.812601i 0.995143 0.0984372i \(-0.0313844\pi\)
0.412323 + 0.911038i \(0.364718\pi\)
\(228\) 0 0
\(229\) −12.3730 21.4306i −0.817630 1.41618i −0.907424 0.420216i \(-0.861954\pi\)
0.0897944 0.995960i \(-0.471379\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.3715 6.56535i 0.744973 0.430110i −0.0789015 0.996882i \(-0.525141\pi\)
0.823875 + 0.566772i \(0.191808\pi\)
\(234\) 0 0
\(235\) 19.3933 + 3.55382i 1.26508 + 0.231826i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −29.4882 −1.90743 −0.953716 0.300710i \(-0.902776\pi\)
−0.953716 + 0.300710i \(0.902776\pi\)
\(240\) 0 0
\(241\) −4.30948 + 7.46423i −0.277598 + 0.480813i −0.970787 0.239942i \(-0.922872\pi\)
0.693190 + 0.720755i \(0.256205\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.24826 + 12.6281i 0.590849 + 0.806782i
\(246\) 0 0
\(247\) 0.578089 0.333760i 0.0367829 0.0212366i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.0116 0.947525 0.473763 0.880653i \(-0.342895\pi\)
0.473763 + 0.880653i \(0.342895\pi\)
\(252\) 0 0
\(253\) 12.2474i 0.769991i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 21.2056 12.2431i 1.32277 0.763701i 0.338600 0.940930i \(-0.390047\pi\)
0.984170 + 0.177229i \(0.0567133\pi\)
\(258\) 0 0
\(259\) 4.42843 + 10.2823i 0.275169 + 0.638911i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 21.7731 + 12.5707i 1.34259 + 0.775144i 0.987187 0.159569i \(-0.0510105\pi\)
0.355402 + 0.934713i \(0.384344\pi\)
\(264\) 0 0
\(265\) 7.74597 + 21.7343i 0.475831 + 1.33513i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.7441 25.5375i 0.898963 1.55705i 0.0701407 0.997537i \(-0.477655\pi\)
0.828822 0.559512i \(-0.189011\pi\)
\(270\) 0 0
\(271\) 7.30948 + 12.6604i 0.444019 + 0.769063i 0.997983 0.0634770i \(-0.0202189\pi\)
−0.553964 + 0.832540i \(0.686886\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.59641 + 3.26006i 0.518383 + 0.196589i
\(276\) 0 0
\(277\) −19.4005 11.2009i −1.16566 0.672997i −0.213010 0.977050i \(-0.568327\pi\)
−0.952655 + 0.304053i \(0.901660\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −23.6704 −1.41206 −0.706028 0.708184i \(-0.749515\pi\)
−0.706028 + 0.708184i \(0.749515\pi\)
\(282\) 0 0
\(283\) −2.42997 1.40294i −0.144447 0.0833962i 0.426035 0.904707i \(-0.359910\pi\)
−0.570481 + 0.821310i \(0.693243\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.567527 4.83169i 0.0335001 0.285206i
\(288\) 0 0
\(289\) −1.80948 3.13410i −0.106440 0.184359i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 14.8227i 0.865954i −0.901405 0.432977i \(-0.857463\pi\)
0.901405 0.432977i \(-0.142537\pi\)
\(294\) 0 0
\(295\) −20.4919 + 7.30320i −1.19309 + 0.425209i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.18692 + 2.05580i 0.0686412 + 0.118890i
\(300\) 0 0
\(301\) 7.37298 + 0.866025i 0.424972 + 0.0499169i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.351854 + 1.92008i −0.0201471 + 0.109943i
\(306\) 0 0
\(307\) 26.9897i 1.54038i −0.637814 0.770190i \(-0.720161\pi\)
0.637814 0.770190i \(-0.279839\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.56075 6.16740i 0.201912 0.349721i −0.747233 0.664562i \(-0.768618\pi\)
0.949144 + 0.314841i \(0.101951\pi\)
\(312\) 0 0
\(313\) 18.8616 10.8898i 1.06612 0.615526i 0.139003 0.990292i \(-0.455610\pi\)
0.927120 + 0.374765i \(0.122277\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.1042 6.98836i 0.679839 0.392505i −0.119955 0.992779i \(-0.538275\pi\)
0.799795 + 0.600274i \(0.204942\pi\)
\(318\) 0 0
\(319\) −2.18246 + 3.78013i −0.122194 + 0.211647i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.85140i 0.381222i
\(324\) 0 0
\(325\) 1.75889 0.285871i 0.0975657 0.0158573i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.22780 + 21.4259i 0.508745 + 1.18125i
\(330\) 0 0
\(331\) −11.1190 19.2586i −0.611153 1.05855i −0.991046 0.133517i \(-0.957373\pi\)
0.379894 0.925030i \(-0.375961\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.69273 + 24.3908i 0.474934 + 1.33261i
\(336\) 0 0
\(337\) 19.2395i 1.04804i −0.851705 0.524022i \(-0.824431\pi\)
0.851705 0.524022i \(-0.175569\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.20212 10.7424i −0.335863 0.581733i
\(342\) 0 0
\(343\) −6.36396 + 17.3925i −0.343622 + 0.939108i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.13505 0.655324i −0.0609329 0.0351796i 0.469224 0.883079i \(-0.344534\pi\)
−0.530157 + 0.847900i \(0.677867\pi\)
\(348\) 0 0
\(349\) 13.7460 0.735805 0.367902 0.929864i \(-0.380076\pi\)
0.367902 + 0.929864i \(0.380076\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 30.1419 + 17.4024i 1.60429 + 0.926237i 0.990615 + 0.136678i \(0.0436427\pi\)
0.613675 + 0.789559i \(0.289691\pi\)
\(354\) 0 0
\(355\) 18.3934 + 15.6453i 0.976222 + 0.830367i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.4509 + 19.8335i 0.604354 + 1.04677i 0.992153 + 0.125028i \(0.0399020\pi\)
−0.387799 + 0.921744i \(0.626765\pi\)
\(360\) 0 0
\(361\) 7.74597 13.4164i 0.407682 0.706127i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.85396 19.2314i −0.358753 1.00662i
\(366\) 0 0
\(367\) −20.9830 12.1145i −1.09530 0.632373i −0.160319 0.987065i \(-0.551252\pi\)
−0.934983 + 0.354693i \(0.884586\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −16.3153 + 21.8893i −0.847049 + 1.13644i
\(372\) 0 0
\(373\) 19.1311 11.0453i 0.990570 0.571906i 0.0851254 0.996370i \(-0.472871\pi\)
0.905445 + 0.424464i \(0.139538\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.846020i 0.0435722i
\(378\) 0 0
\(379\) 17.0000 0.873231 0.436616 0.899648i \(-0.356177\pi\)
0.436616 + 0.899648i \(0.356177\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8.93627 + 5.15936i −0.456622 + 0.263631i −0.710623 0.703573i \(-0.751587\pi\)
0.254001 + 0.967204i \(0.418253\pi\)
\(384\) 0 0
\(385\) 2.43163 + 10.6030i 0.123928 + 0.540380i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7.23828 + 12.5371i −0.366995 + 0.635654i −0.989094 0.147284i \(-0.952947\pi\)
0.622099 + 0.782939i \(0.286280\pi\)
\(390\) 0 0
\(391\) 24.3649 1.23219
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.36709 12.9173i 0.119101 0.649940i
\(396\) 0 0
\(397\) −3.66455 + 2.11573i −0.183919 + 0.106185i −0.589132 0.808036i \(-0.700530\pi\)
0.405214 + 0.914222i \(0.367197\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.6378 + 21.8893i 0.631101 + 1.09310i 0.987327 + 0.158699i \(0.0507300\pi\)
−0.356226 + 0.934400i \(0.615937\pi\)
\(402\) 0 0
\(403\) −2.08212 1.20211i −0.103718 0.0598814i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.78065i 0.385673i
\(408\) 0 0
\(409\) −16.2460 + 28.1388i −0.803311 + 1.39138i 0.114114 + 0.993468i \(0.463597\pi\)
−0.917425 + 0.397908i \(0.869736\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −20.6381 15.3827i −1.01553 0.756934i
\(414\) 0 0
\(415\) 14.0000 16.4592i 0.687235 0.807949i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.42519 0.411598 0.205799 0.978594i \(-0.434021\pi\)
0.205799 + 0.978594i \(0.434021\pi\)
\(420\) 0 0
\(421\) 5.36492 0.261470 0.130735 0.991417i \(-0.458266\pi\)
0.130735 + 0.991417i \(0.458266\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.48552 17.1016i 0.314594 0.829549i
\(426\) 0 0
\(427\) −2.12132 + 0.913619i −0.102658 + 0.0442131i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14.2090 24.6107i 0.684424 1.18546i −0.289193 0.957271i \(-0.593387\pi\)
0.973617 0.228187i \(-0.0732797\pi\)
\(432\) 0 0
\(433\) 12.2022i 0.586399i 0.956051 + 0.293200i \(0.0947201\pi\)
−0.956051 + 0.293200i \(0.905280\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.8040 6.23769i −0.516825 0.298389i
\(438\) 0 0
\(439\) −15.3095 26.5168i −0.730681 1.26558i −0.956592 0.291429i \(-0.905869\pi\)
0.225911 0.974148i \(-0.427464\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13.9719 + 8.06670i −0.663826 + 0.383260i −0.793733 0.608266i \(-0.791865\pi\)
0.129907 + 0.991526i \(0.458532\pi\)
\(444\) 0 0
\(445\) −2.65465 + 14.4865i −0.125842 + 0.686725i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −13.1729 −0.621666 −0.310833 0.950465i \(-0.600608\pi\)
−0.310833 + 0.950465i \(0.600608\pi\)
\(450\) 0 0
\(451\) 1.69052 2.92808i 0.0796037 0.137878i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.43572 + 1.54412i 0.0673074 + 0.0723894i
\(456\) 0 0
\(457\) −2.16052 + 1.24738i −0.101065 + 0.0583499i −0.549681 0.835375i \(-0.685251\pi\)
0.448616 + 0.893725i \(0.351917\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.58643 0.306761 0.153380 0.988167i \(-0.450984\pi\)
0.153380 + 0.988167i \(0.450984\pi\)
\(462\) 0 0
\(463\) 12.2927i 0.571291i −0.958335 0.285645i \(-0.907792\pi\)
0.958335 0.285645i \(-0.0922080\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.73546 2.15667i 0.172856 0.0997987i −0.411076 0.911601i \(-0.634847\pi\)
0.583932 + 0.811803i \(0.301513\pi\)
\(468\) 0 0
\(469\) −18.3095 + 24.5647i −0.845453 + 1.13429i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.46813 + 2.57968i 0.205445 + 0.118614i
\(474\) 0 0
\(475\) −7.25403 + 5.92289i −0.332838 + 0.271761i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.31889 10.9446i 0.288718 0.500074i −0.684786 0.728744i \(-0.740104\pi\)
0.973504 + 0.228670i \(0.0734378\pi\)
\(480\) 0 0
\(481\) 0.754033 + 1.30602i 0.0343810 + 0.0595496i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −17.7438 + 20.8605i −0.805703 + 0.947225i
\(486\) 0 0
\(487\) −6.40316 3.69687i −0.290155 0.167521i 0.347857 0.937548i \(-0.386910\pi\)
−0.638012 + 0.770027i \(0.720243\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −30.5583 −1.37908 −0.689539 0.724249i \(-0.742187\pi\)
−0.689539 + 0.724249i \(0.742187\pi\)
\(492\) 0 0
\(493\) 7.52014 + 4.34175i 0.338690 + 0.195543i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.33308 + 28.3765i −0.149509 + 1.27286i
\(498\) 0 0
\(499\) −0.372983 0.646026i −0.0166970 0.0289201i 0.857556 0.514390i \(-0.171982\pi\)
−0.874253 + 0.485470i \(0.838648\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14.6320i 0.652411i −0.945299 0.326205i \(-0.894230\pi\)
0.945299 0.326205i \(-0.105770\pi\)
\(504\) 0 0
\(505\) −22.7460 + 8.10653i −1.01218 + 0.360736i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −16.8504 29.1857i −0.746880 1.29363i −0.949311 0.314338i \(-0.898218\pi\)
0.202431 0.979297i \(-0.435116\pi\)
\(510\) 0 0
\(511\) 14.4365 19.3686i 0.638633 0.856816i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.17138 + 1.13091i 0.271944 + 0.0498337i
\(516\) 0 0
\(517\) 16.2131i 0.713049i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.1541 31.4438i 0.795345 1.37758i −0.127276 0.991867i \(-0.540623\pi\)
0.922620 0.385710i \(-0.126043\pi\)
\(522\) 0 0
\(523\) −37.9535 + 21.9125i −1.65959 + 0.958166i −0.686689 + 0.726951i \(0.740937\pi\)
−0.972903 + 0.231215i \(0.925730\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −21.3708 + 12.3384i −0.930925 + 0.537470i
\(528\) 0 0
\(529\) 10.6825 18.5026i 0.464455 0.804459i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.655324i 0.0283852i
\(534\) 0 0
\(535\) 17.9520 + 3.28970i 0.776131 + 0.142226i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8.84349 + 9.35223i −0.380916 + 0.402829i
\(540\) 0 0
\(541\) −7.24597 12.5504i −0.311528 0.539583i 0.667165 0.744910i \(-0.267508\pi\)
−0.978693 + 0.205327i \(0.934174\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.3703 + 4.40868i −0.529883 + 0.188847i
\(546\) 0 0
\(547\) 12.6491i 0.540837i −0.962743 0.270418i \(-0.912838\pi\)
0.962743 0.270418i \(-0.0871621\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.22307 3.85048i −0.0947062 0.164036i
\(552\) 0 0
\(553\) 14.2712 6.14636i 0.606871 0.261370i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −37.0453 21.3881i −1.56966 0.906243i −0.996208 0.0870022i \(-0.972271\pi\)
−0.573450 0.819240i \(-0.694395\pi\)
\(558\) 0 0
\(559\) 1.00000 0.0422955
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12.6717 7.31602i −0.534050 0.308334i 0.208614 0.977998i \(-0.433105\pi\)
−0.742664 + 0.669664i \(0.766438\pi\)
\(564\) 0 0
\(565\) −8.70042 + 10.2287i −0.366029 + 0.430323i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.43567 11.1469i −0.269797 0.467303i 0.699012 0.715110i \(-0.253623\pi\)
−0.968809 + 0.247807i \(0.920290\pi\)
\(570\) 0 0
\(571\) −8.93649 + 15.4785i −0.373981 + 0.647753i −0.990174 0.139842i \(-0.955341\pi\)
0.616193 + 0.787595i \(0.288674\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −21.0630 25.7968i −0.878387 1.07580i
\(576\) 0 0
\(577\) −14.2712 8.23945i −0.594116 0.343013i 0.172607 0.984991i \(-0.444781\pi\)
−0.766723 + 0.641978i \(0.778114\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 25.3924 + 2.98257i 1.05345 + 0.123738i
\(582\) 0 0
\(583\) −16.4317 + 9.48683i −0.680531 + 0.392904i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.85140i 0.282787i 0.989953 + 0.141394i \(0.0451583\pi\)
−0.989953 + 0.141394i \(0.954842\pi\)
\(588\) 0 0
\(589\) 12.6351 0.520620
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −23.4757 + 13.5537i −0.964032 + 0.556584i −0.897412 0.441194i \(-0.854555\pi\)
−0.0666206 + 0.997778i \(0.521222\pi\)
\(594\) 0 0
\(595\) 21.0935 4.83746i 0.864749 0.198317i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 22.6342 39.2036i 0.924809 1.60182i 0.132940 0.991124i \(-0.457558\pi\)
0.791869 0.610692i \(-0.209108\pi\)
\(600\) 0 0
\(601\) −15.6190 −0.637110 −0.318555 0.947904i \(-0.603198\pi\)
−0.318555 + 0.947904i \(0.603198\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.07080 16.7575i 0.124846 0.681287i
\(606\) 0 0
\(607\) 11.8804 6.85915i 0.482210 0.278404i −0.239127 0.970988i \(-0.576861\pi\)
0.721337 + 0.692584i \(0.243528\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.57123 + 2.72145i 0.0635651 + 0.110098i
\(612\) 0 0
\(613\) 27.0383 + 15.6106i 1.09207 + 0.630504i 0.934126 0.356944i \(-0.116181\pi\)
0.157940 + 0.987449i \(0.449515\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.6347i 0.709948i 0.934876 + 0.354974i \(0.115510\pi\)
−0.934876 + 0.354974i \(0.884490\pi\)
\(618\) 0 0
\(619\) −7.62702 + 13.2104i −0.306556 + 0.530970i −0.977606 0.210441i \(-0.932510\pi\)
0.671051 + 0.741411i \(0.265843\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −16.0048 + 6.89301i −0.641219 + 0.276163i
\(624\) 0 0
\(625\) −23.7132 + 7.91732i −0.948528 + 0.316693i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 15.4787 0.617177
\(630\) 0 0
\(631\) −2.50807 −0.0998446 −0.0499223 0.998753i \(-0.515897\pi\)
−0.0499223 + 0.998753i \(0.515897\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −20.7762 + 24.4255i −0.824477 + 0.969298i
\(636\) 0 0
\(637\) −0.578089 + 2.42686i −0.0229047 + 0.0961555i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −17.7698 + 30.7781i −0.701864 + 1.21566i 0.265948 + 0.963987i \(0.414315\pi\)
−0.967812 + 0.251676i \(0.919018\pi\)
\(642\) 0 0
\(643\) 15.0533i 0.593645i −0.954933 0.296823i \(-0.904073\pi\)
0.954933 0.296823i \(-0.0959271\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.46813 2.57968i −0.175660 0.101418i 0.409592 0.912269i \(-0.365671\pi\)
−0.585252 + 0.810851i \(0.699004\pi\)
\(648\) 0 0
\(649\) −8.94456 15.4924i −0.351105 0.608131i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −16.1700 + 9.33573i −0.632779 + 0.365335i −0.781828 0.623495i \(-0.785712\pi\)
0.149049 + 0.988830i \(0.452379\pi\)
\(654\) 0 0
\(655\) −3.18010 + 17.3539i −0.124257 + 0.678072i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −32.6306 −1.27111 −0.635554 0.772056i \(-0.719228\pi\)
−0.635554 + 0.772056i \(0.719228\pi\)
\(660\) 0 0
\(661\) 8.93649 15.4785i 0.347589 0.602042i −0.638231 0.769845i \(-0.720334\pi\)
0.985821 + 0.167802i \(0.0536670\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −10.5918 3.25512i −0.410733 0.126228i
\(666\) 0 0
\(667\) 13.6931 7.90569i 0.530198 0.306110i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.60521 −0.0619684
\(672\) 0 0
\(673\) 0.356394i 0.0137380i 0.999976 + 0.00686899i \(0.00218648\pi\)
−0.999976 + 0.00686899i \(0.997814\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.7046 + 8.48971i −0.565144 + 0.326286i −0.755207 0.655486i \(-0.772464\pi\)
0.190064 + 0.981772i \(0.439131\pi\)
\(678\) 0 0
\(679\) −32.1825 3.78013i −1.23505 0.145068i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −10.8040 6.23769i −0.413403 0.238679i 0.278848 0.960335i \(-0.410048\pi\)
−0.692251 + 0.721657i \(0.743381\pi\)
\(684\) 0 0
\(685\) −9.36492 26.2769i −0.357815 1.00399i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.83876 + 3.18483i −0.0700513 + 0.121332i
\(690\) 0 0
\(691\) 7.24597 + 12.5504i 0.275650 + 0.477439i 0.970299 0.241910i \(-0.0777737\pi\)
−0.694649 + 0.719349i \(0.744440\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.19016 + 2.71353i 0.121010 + 0.102930i
\(696\) 0 0
\(697\) −5.82508 3.36311i −0.220640 0.127387i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.44615 0.167929 0.0839644 0.996469i \(-0.473242\pi\)
0.0839644 + 0.996469i \(0.473242\pi\)
\(702\) 0 0
\(703\) −6.86364 3.96273i −0.258867 0.149457i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −22.9082 17.0748i −0.861551 0.642162i
\(708\) 0 0
\(709\) 25.8014 + 44.6894i 0.968992 + 1.67834i 0.698483 + 0.715626i \(0.253859\pi\)
0.270509 + 0.962717i \(0.412808\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 44.9329i 1.68275i
\(714\) 0 0
\(715\) 0.491933 + 1.38031i 0.0183973 + 0.0516206i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.94506 + 6.83305i 0.147126 + 0.254830i 0.930164 0.367144i \(-0.119664\pi\)
−0.783038 + 0.621974i \(0.786331\pi\)
\(720\) 0 0
\(721\) 2.93649 + 6.81820i 0.109361 + 0.253923i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.90410 11.7154i −0.0707166 0.435100i
\(726\) 0 0
\(727\) 14.7422i 0.546758i 0.961906 + 0.273379i \(0.0881413\pi\)
−0.961906 + 0.273379i \(0.911859\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.13198 8.88885i 0.189813 0.328766i
\(732\) 0 0
\(733\) 40.3443 23.2928i 1.49015 0.860339i 0.490214 0.871602i \(-0.336919\pi\)
0.999937 + 0.0112635i \(0.00358537\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −18.4401 + 10.6464i −0.679248 + 0.392164i
\(738\) 0 0
\(739\) 23.6825 41.0192i 0.871173 1.50892i 0.0103893 0.999946i \(-0.496693\pi\)
0.860784 0.508970i \(-0.169974\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.4861i 0.898309i −0.893454 0.449154i \(-0.851725\pi\)
0.893454 0.449154i \(-0.148275\pi\)
\(744\) 0 0
\(745\) 8.05808 43.9731i 0.295225 1.61105i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.54197 + 19.8335i 0.312117 + 0.724700i
\(750\) 0 0
\(751\) 14.9919 + 25.9668i 0.547063 + 0.947542i 0.998474 + 0.0552252i \(0.0175877\pi\)
−0.451411 + 0.892316i \(0.649079\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14.4766 5.15936i 0.526856 0.187768i
\(756\) 0 0
\(757\) 21.7343i 0.789946i 0.918693 + 0.394973i \(0.129246\pi\)
−0.918693 + 0.394973i \(0.870754\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.2896 23.0183i −0.481749 0.834414i 0.518032 0.855361i \(-0.326665\pi\)
−0.999781 + 0.0209479i \(0.993332\pi\)
\(762\) 0 0
\(763\) −12.4585 9.28600i −0.451027 0.336176i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.00278 1.73366i −0.108424 0.0625988i
\(768\) 0 0
\(769\) 19.6190 0.707477 0.353739 0.935344i \(-0.384910\pi\)
0.353739 + 0.935344i \(0.384910\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −36.3126 20.9651i −1.30607 0.754062i −0.324635 0.945839i \(-0.605241\pi\)
−0.981438 + 0.191778i \(0.938575\pi\)
\(774\) 0 0
\(775\) 31.5381 + 11.9604i 1.13288 + 0.429628i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.72199 + 2.98257i 0.0616966 + 0.106862i
\(780\) 0 0
\(781\) −9.92843 + 17.1965i −0.355267 + 0.615340i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 16.3153 + 45.7789i 0.582319 + 1.63392i
\(786\) 0 0
\(787\) 35.2541 + 20.3540i 1.25667 + 0.725541i 0.972426 0.233210i \(-0.0749230\pi\)
0.284247 + 0.958751i \(0.408256\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −15.7802 1.85354i −0.561081 0.0659042i
\(792\) 0 0
\(793\) −0.269443 + 0.155563i −0.00956820 + 0.00552420i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 11.1647i 0.395475i −0.980255 0.197738i \(-0.936641\pi\)
0.980255 0.197738i \(-0.0633594\pi\)
\(798\) 0 0
\(799\) 32.2540 1.14107
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 14.5395 8.39436i 0.513086 0.296230i
\(804\) 0 0
\(805\) 11.5759 37.6666i 0.407995 1.32757i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −9.22780 + 15.9830i −0.324432 + 0.561933i −0.981397 0.191988i \(-0.938507\pi\)
0.656965 + 0.753921i \(0.271840\pi\)
\(810\) 0 0
\(811\) −39.6028 −1.39064 −0.695321 0.718699i \(-0.744738\pi\)
−0.695321 + 0.718699i \(0.744738\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.07182 + 1.11266i 0.212687 + 0.0389748i
\(816\) 0 0
\(817\) −4.55129 + 2.62769i −0.159229 + 0.0919311i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −13.5572 23.4817i −0.473149 0.819517i 0.526379 0.850250i \(-0.323549\pi\)
−0.999528 + 0.0307327i \(0.990216\pi\)
\(822\) 0 0
\(823\) −45.8607 26.4777i −1.59860 0.922955i −0.991757 0.128136i \(-0.959100\pi\)
−0.606848 0.794818i \(-0.707566\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29.4548i 1.02424i −0.858913 0.512122i \(-0.828860\pi\)
0.858913 0.512122i \(-0.171140\pi\)
\(828\) 0 0
\(829\) −6.31754 + 10.9423i −0.219417 + 0.380042i −0.954630 0.297795i \(-0.903749\pi\)
0.735213 + 0.677836i \(0.237082\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 18.6052 + 17.5931i 0.644632 + 0.609565i
\(834\) 0 0
\(835\) 7.47473 8.78767i 0.258674 0.304110i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 22.9017 0.790656 0.395328 0.918540i \(-0.370631\pi\)
0.395328 + 0.918540i \(0.370631\pi\)
\(840\) 0 0
\(841\) −23.3649 −0.805687
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −21.9259 18.6500i −0.754274 0.641580i
\(846\) 0 0
\(847\) 18.5138 7.97360i 0.636141 0.273976i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 14.0922 24.4085i 0.483076 0.836712i
\(852\) 0 0
\(853\) 28.1041i 0.962266i −0.876648 0.481133i \(-0.840225\pi\)
0.876648 0.481133i \(-0.159775\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 32.7423 + 18.9038i 1.11845 + 0.645740i 0.941006 0.338390i \(-0.109882\pi\)
0.177449 + 0.984130i \(0.443216\pi\)
\(858\) 0 0
\(859\) −17.5635 30.4209i −0.599259 1.03795i −0.992931 0.118696i \(-0.962129\pi\)
0.393671 0.919251i \(-0.371205\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.43526 1.40600i 0.0828971 0.0478607i −0.457978 0.888963i \(-0.651426\pi\)
0.540876 + 0.841103i \(0.318093\pi\)
\(864\) 0 0
\(865\) −32.6018 5.97428i −1.10849 0.203132i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10.7990 0.366332
\(870\) 0 0
\(871\) −2.06351 + 3.57410i −0.0699193 + 0.121104i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −23.3567 18.1512i −0.789599 0.613623i
\(876\) 0 0
\(877\) −34.5584 + 19.9523i −1.16695 + 0.673742i −0.952961 0.303093i \(-0.901981\pi\)
−0.213994 + 0.976835i \(0.568647\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −27.3479 −0.921374 −0.460687 0.887563i \(-0.652397\pi\)
−0.460687 + 0.887563i \(0.652397\pi\)
\(882\) 0 0
\(883\) 35.1414i 1.18260i 0.806450 + 0.591302i \(0.201386\pi\)
−0.806450 + 0.591302i \(0.798614\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13.4044 7.73903i 0.450076 0.259851i −0.257786 0.966202i \(-0.582993\pi\)
0.707862 + 0.706351i \(0.249660\pi\)
\(888\) 0 0
\(889\) −37.6825 4.42615i −1.26383 0.148448i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −14.3022 8.25739i −0.478606 0.276323i
\(894\) 0 0
\(895\) −10.0000 + 3.56394i −0.334263 + 0.119129i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −8.00690 + 13.8684i −0.267045 + 0.462536i
\(900\) 0 0
\(901\) 18.8730 + 32.6890i 0.628750 + 1.08903i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 13.4097 + 11.4062i 0.445752 + 0.379153i
\(906\) 0 0
\(907\) 35.8322 + 20.6877i 1.18979 + 0.686925i 0.958259 0.285903i \(-0.0922934\pi\)
0.231530 + 0.972828i \(0.425627\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2.90890 −0.0963763 −0.0481881 0.998838i \(-0.515345\pi\)
−0.0481881 + 0.998838i \(0.515345\pi\)
\(912\) 0 0
\(913\) 15.3881 + 8.88434i 0.509273 + 0.294029i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −19.1727 + 8.25739i −0.633139 + 0.272683i
\(918\) 0 0
\(919\) 3.75403 + 6.50218i 0.123834 + 0.214487i 0.921277 0.388908i \(-0.127148\pi\)
−0.797442 + 0.603395i \(0.793814\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.84871i 0.126682i
\(924\) 0 0
\(925\) −13.3810 16.3884i −0.439966 0.538846i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6.43567 11.1469i −0.211148 0.365718i 0.740926 0.671586i \(-0.234387\pi\)
−0.952074 + 0.305868i \(0.901053\pi\)
\(930\) 0 0
\(931\) −3.74597 12.5644i −0.122769 0.411780i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 14.7939 + 2.71099i 0.483813 + 0.0886588i
\(936\) 0 0
\(937\) 20.4445i 0.667893i −0.942592 0.333947i \(-0.891620\pi\)
0.942592 0.333947i \(-0.108380\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0.651847 1.12903i 0.0212496 0.0368054i −0.855205 0.518290i \(-0.826569\pi\)
0.876455 + 0.481484i \(0.159902\pi\)
\(942\) 0 0
\(943\) −10.6066 + 6.12372i −0.345398 + 0.199416i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 29.0068 16.7471i 0.942595 0.544208i 0.0518222 0.998656i \(-0.483497\pi\)
0.890773 + 0.454449i \(0.150164\pi\)
\(948\) 0 0
\(949\) 1.62702 2.81808i 0.0528152 0.0914786i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 20.6374i 0.668512i 0.942482 + 0.334256i \(0.108485\pi\)
−0.942482 + 0.334256i \(0.891515\pi\)
\(954\) 0 0
\(955\) 5.30930 28.9730i 0.171805 0.937543i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 19.7253 26.4643i 0.636963 0.854576i
\(960\) 0 0
\(961\) −7.25403 12.5644i −0.234001 0.405302i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −8.92628 25.0461i −0.287347 0.806263i
\(966\) 0 0
\(967\) 45.5617i 1.46516i 0.680679 + 0.732582i \(0.261685\pi\)
−0.680679 + 0.732582i \(0.738315\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 22.6342 + 39.2036i 0.726366 + 1.25810i 0.958409 + 0.285398i \(0.0921257\pi\)
−0.232043 + 0.972706i \(0.574541\pi\)
\(972\) 0 0
\(973\) −0.578089 + 4.92161i −0.0185327 + 0.157780i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 36.3126 + 20.9651i 1.16174 + 0.670732i 0.951721 0.306964i \(-0.0993132\pi\)
0.210022 + 0.977697i \(0.432647\pi\)
\(978\) 0 0
\(979\) −12.1109 −0.387066
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18.2749 + 10.5510i 0.582879 + 0.336525i 0.762277 0.647251i \(-0.224082\pi\)
−0.179398 + 0.983777i \(0.557415\pi\)
\(984\) 0 0
\(985\) −31.1246 + 36.5917i −0.991712 + 1.16591i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −9.34457 16.1853i −0.297140 0.514662i
\(990\) 0 0
\(991\) −11.1905 + 19.3826i −0.355479 + 0.615707i −0.987200 0.159489i \(-0.949015\pi\)
0.631721 + 0.775196i \(0.282349\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 10.7990 3.84871i 0.342352 0.122012i
\(996\) 0 0
\(997\) 51.1077 + 29.5070i 1.61860 + 0.934498i 0.987283 + 0.158970i \(0.0508173\pi\)
0.631314 + 0.775527i \(0.282516\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.2.bm.d.109.2 16
3.2 odd 2 inner 1260.2.bm.d.109.7 yes 16
5.4 even 2 inner 1260.2.bm.d.109.4 yes 16
7.2 even 3 inner 1260.2.bm.d.289.4 yes 16
15.14 odd 2 inner 1260.2.bm.d.109.5 yes 16
21.2 odd 6 inner 1260.2.bm.d.289.5 yes 16
35.9 even 6 inner 1260.2.bm.d.289.2 yes 16
105.44 odd 6 inner 1260.2.bm.d.289.7 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.bm.d.109.2 16 1.1 even 1 trivial
1260.2.bm.d.109.4 yes 16 5.4 even 2 inner
1260.2.bm.d.109.5 yes 16 15.14 odd 2 inner
1260.2.bm.d.109.7 yes 16 3.2 odd 2 inner
1260.2.bm.d.289.2 yes 16 35.9 even 6 inner
1260.2.bm.d.289.4 yes 16 7.2 even 3 inner
1260.2.bm.d.289.5 yes 16 21.2 odd 6 inner
1260.2.bm.d.289.7 yes 16 105.44 odd 6 inner