Properties

Label 1260.2.ej.a.737.10
Level $1260$
Weight $2$
Character 1260.737
Analytic conductor $10.061$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1260,2,Mod(53,1260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 6, 9, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1260.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.ej (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 737.10
Character \(\chi\) \(=\) 1260.737
Dual form 1260.2.ej.a.53.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.832439 - 2.07534i) q^{5} +(-0.0650831 - 2.64495i) q^{7} +(1.79266 - 1.03499i) q^{11} +(-0.920307 + 0.920307i) q^{13} +(1.55253 + 0.416000i) q^{17} +(1.78623 + 1.03128i) q^{19} +(4.89140 - 1.31065i) q^{23} +(-3.61409 - 3.45519i) q^{25} -1.58666 q^{29} +(-4.97330 - 8.61402i) q^{31} +(-5.54336 - 2.06669i) q^{35} +(-4.52881 + 1.21349i) q^{37} -11.8345i q^{41} +(-6.62285 + 6.62285i) q^{43} +(2.65657 + 9.91444i) q^{47} +(-6.99153 + 0.344283i) q^{49} +(1.55788 - 5.81410i) q^{53} +(-0.655686 - 4.58196i) q^{55} +(4.46092 + 7.72654i) q^{59} +(4.41894 - 7.65383i) q^{61} +(1.14385 + 2.67605i) q^{65} +(1.99667 - 7.45169i) q^{67} -1.25658i q^{71} +(-8.38264 - 2.24612i) q^{73} +(-2.85418 - 4.67414i) q^{77} +(2.95983 + 1.70886i) q^{79} +(0.626045 + 0.626045i) q^{83} +(2.15573 - 2.87575i) q^{85} +(2.79258 - 4.83689i) q^{89} +(2.49406 + 2.37427i) q^{91} +(3.62718 - 2.84855i) q^{95} +(-8.71944 - 8.71944i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{7} + 16 q^{25} + 32 q^{31} + 16 q^{37} - 16 q^{43} + 32 q^{55} + 48 q^{61} + 32 q^{67} + 40 q^{73} + 80 q^{85} + 96 q^{91} + 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.832439 2.07534i 0.372278 0.928121i
\(6\) 0 0
\(7\) −0.0650831 2.64495i −0.0245991 0.999697i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.79266 1.03499i 0.540508 0.312062i −0.204777 0.978809i \(-0.565647\pi\)
0.745285 + 0.666746i \(0.232314\pi\)
\(12\) 0 0
\(13\) −0.920307 + 0.920307i −0.255247 + 0.255247i −0.823118 0.567871i \(-0.807767\pi\)
0.567871 + 0.823118i \(0.307767\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.55253 + 0.416000i 0.376545 + 0.100895i 0.442127 0.896952i \(-0.354224\pi\)
−0.0655826 + 0.997847i \(0.520891\pi\)
\(18\) 0 0
\(19\) 1.78623 + 1.03128i 0.409788 + 0.236591i 0.690699 0.723143i \(-0.257303\pi\)
−0.280910 + 0.959734i \(0.590636\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.89140 1.31065i 1.01993 0.273289i 0.290156 0.956979i \(-0.406293\pi\)
0.729772 + 0.683691i \(0.239626\pi\)
\(24\) 0 0
\(25\) −3.61409 3.45519i −0.722818 0.691038i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.58666 −0.294636 −0.147318 0.989089i \(-0.547064\pi\)
−0.147318 + 0.989089i \(0.547064\pi\)
\(30\) 0 0
\(31\) −4.97330 8.61402i −0.893232 1.54712i −0.835978 0.548763i \(-0.815099\pi\)
−0.0572541 0.998360i \(-0.518235\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.54336 2.06669i −0.936998 0.349334i
\(36\) 0 0
\(37\) −4.52881 + 1.21349i −0.744531 + 0.199497i −0.611091 0.791560i \(-0.709269\pi\)
−0.133440 + 0.991057i \(0.542602\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 11.8345i 1.84824i −0.382101 0.924120i \(-0.624799\pi\)
0.382101 0.924120i \(-0.375201\pi\)
\(42\) 0 0
\(43\) −6.62285 + 6.62285i −1.00998 + 1.00998i −0.0100260 + 0.999950i \(0.503191\pi\)
−0.999950 + 0.0100260i \(0.996809\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.65657 + 9.91444i 0.387500 + 1.44617i 0.834188 + 0.551480i \(0.185937\pi\)
−0.446688 + 0.894690i \(0.647397\pi\)
\(48\) 0 0
\(49\) −6.99153 + 0.344283i −0.998790 + 0.0491833i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.55788 5.81410i 0.213992 0.798629i −0.772527 0.634982i \(-0.781008\pi\)
0.986519 0.163647i \(-0.0523258\pi\)
\(54\) 0 0
\(55\) −0.655686 4.58196i −0.0884126 0.617831i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.46092 + 7.72654i 0.580762 + 1.00591i 0.995389 + 0.0959185i \(0.0305788\pi\)
−0.414627 + 0.909992i \(0.636088\pi\)
\(60\) 0 0
\(61\) 4.41894 7.65383i 0.565787 0.979972i −0.431189 0.902262i \(-0.641906\pi\)
0.996976 0.0777106i \(-0.0247610\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.14385 + 2.67605i 0.141878 + 0.331923i
\(66\) 0 0
\(67\) 1.99667 7.45169i 0.243933 0.910369i −0.729984 0.683464i \(-0.760473\pi\)
0.973917 0.226905i \(-0.0728606\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.25658i 0.149128i −0.997216 0.0745641i \(-0.976243\pi\)
0.997216 0.0745641i \(-0.0237565\pi\)
\(72\) 0 0
\(73\) −8.38264 2.24612i −0.981114 0.262889i −0.267600 0.963530i \(-0.586231\pi\)
−0.713514 + 0.700641i \(0.752897\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.85418 4.67414i −0.325264 0.532668i
\(78\) 0 0
\(79\) 2.95983 + 1.70886i 0.333007 + 0.192262i 0.657175 0.753738i \(-0.271751\pi\)
−0.324168 + 0.945999i \(0.605084\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.626045 + 0.626045i 0.0687173 + 0.0687173i 0.740630 0.671913i \(-0.234527\pi\)
−0.671913 + 0.740630i \(0.734527\pi\)
\(84\) 0 0
\(85\) 2.15573 2.87575i 0.233822 0.311918i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.79258 4.83689i 0.296013 0.512709i −0.679207 0.733946i \(-0.737676\pi\)
0.975220 + 0.221238i \(0.0710096\pi\)
\(90\) 0 0
\(91\) 2.49406 + 2.37427i 0.261449 + 0.248891i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.62718 2.84855i 0.372141 0.292256i
\(96\) 0 0
\(97\) −8.71944 8.71944i −0.885325 0.885325i 0.108744 0.994070i \(-0.465317\pi\)
−0.994070 + 0.108744i \(0.965317\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.95466 4.59263i 0.791518 0.456983i −0.0489784 0.998800i \(-0.515597\pi\)
0.840497 + 0.541816i \(0.182263\pi\)
\(102\) 0 0
\(103\) 0.554208 + 2.06833i 0.0546078 + 0.203799i 0.987840 0.155475i \(-0.0496909\pi\)
−0.933232 + 0.359274i \(0.883024\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −0.170615 0.636744i −0.0164940 0.0615564i 0.957188 0.289466i \(-0.0934777\pi\)
−0.973682 + 0.227909i \(0.926811\pi\)
\(108\) 0 0
\(109\) 0.650545 0.375592i 0.0623109 0.0359752i −0.468521 0.883452i \(-0.655213\pi\)
0.530832 + 0.847477i \(0.321880\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.6139 + 11.6139i 1.09255 + 1.09255i 0.995256 + 0.0972906i \(0.0310176\pi\)
0.0972906 + 0.995256i \(0.468982\pi\)
\(114\) 0 0
\(115\) 1.35175 11.2424i 0.126051 1.04836i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.999256 4.13345i 0.0916017 0.378913i
\(120\) 0 0
\(121\) −3.35757 + 5.81549i −0.305234 + 0.528681i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.1792 + 4.62424i −0.910456 + 0.413605i
\(126\) 0 0
\(127\) 12.6012 + 12.6012i 1.11818 + 1.11818i 0.992008 + 0.126171i \(0.0402689\pi\)
0.126171 + 0.992008i \(0.459731\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.77300 3.33304i −0.504389 0.291209i 0.226135 0.974096i \(-0.427391\pi\)
−0.730524 + 0.682887i \(0.760724\pi\)
\(132\) 0 0
\(133\) 2.61143 4.79160i 0.226439 0.415484i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.417488 + 0.111865i 0.0356684 + 0.00955731i 0.276609 0.960983i \(-0.410789\pi\)
−0.240941 + 0.970540i \(0.577456\pi\)
\(138\) 0 0
\(139\) 7.96116i 0.675257i 0.941280 + 0.337628i \(0.109625\pi\)
−0.941280 + 0.337628i \(0.890375\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.697287 + 2.60231i −0.0583101 + 0.217616i
\(144\) 0 0
\(145\) −1.32080 + 3.29287i −0.109686 + 0.273458i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.1655 19.3392i 0.914714 1.58433i 0.107394 0.994217i \(-0.465749\pi\)
0.807320 0.590114i \(-0.200917\pi\)
\(150\) 0 0
\(151\) 3.77742 + 6.54268i 0.307402 + 0.532436i 0.977793 0.209572i \(-0.0672071\pi\)
−0.670391 + 0.742008i \(0.733874\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −22.0170 + 3.15067i −1.76845 + 0.253068i
\(156\) 0 0
\(157\) 2.87299 10.7222i 0.229290 0.855722i −0.751350 0.659904i \(-0.770597\pi\)
0.980640 0.195818i \(-0.0627362\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.78494 12.8522i −0.298295 1.01290i
\(162\) 0 0
\(163\) 3.02412 + 11.2862i 0.236868 + 0.884002i 0.977298 + 0.211869i \(0.0679550\pi\)
−0.740431 + 0.672133i \(0.765378\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.35971 5.35971i 0.414747 0.414747i −0.468641 0.883388i \(-0.655256\pi\)
0.883388 + 0.468641i \(0.155256\pi\)
\(168\) 0 0
\(169\) 11.3061i 0.869698i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.61430 0.700500i 0.198762 0.0532580i −0.158065 0.987429i \(-0.550525\pi\)
0.356826 + 0.934171i \(0.383859\pi\)
\(174\) 0 0
\(175\) −8.90359 + 9.78397i −0.673048 + 0.739599i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.82071 + 10.0818i 0.435061 + 0.753547i 0.997301 0.0734271i \(-0.0233936\pi\)
−0.562240 + 0.826974i \(0.690060\pi\)
\(180\) 0 0
\(181\) 11.1684 0.830138 0.415069 0.909790i \(-0.363757\pi\)
0.415069 + 0.909790i \(0.363757\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.25155 + 10.4090i −0.0920155 + 0.765283i
\(186\) 0 0
\(187\) 3.21373 0.861116i 0.235011 0.0629710i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −15.0042 8.66268i −1.08567 0.626810i −0.153247 0.988188i \(-0.548973\pi\)
−0.932419 + 0.361378i \(0.882306\pi\)
\(192\) 0 0
\(193\) −8.17275 2.18988i −0.588287 0.157631i −0.0476170 0.998866i \(-0.515163\pi\)
−0.540670 + 0.841235i \(0.681829\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.1277 + 18.1277i −1.29155 + 1.29155i −0.357714 + 0.933831i \(0.616444\pi\)
−0.933831 + 0.357714i \(0.883556\pi\)
\(198\) 0 0
\(199\) 9.74552 5.62658i 0.690842 0.398858i −0.113086 0.993585i \(-0.536073\pi\)
0.803927 + 0.594728i \(0.202740\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.103265 + 4.19664i 0.00724778 + 0.294547i
\(204\) 0 0
\(205\) −24.5607 9.85151i −1.71539 0.688059i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.26947 0.295325
\(210\) 0 0
\(211\) 24.3671 1.67750 0.838750 0.544517i \(-0.183287\pi\)
0.838750 + 0.544517i \(0.183287\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.23157 + 19.2578i 0.561388 + 1.31337i
\(216\) 0 0
\(217\) −22.4600 + 13.7148i −1.52468 + 0.931019i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.81166 + 1.04596i −0.121865 + 0.0703589i
\(222\) 0 0
\(223\) 0.214929 0.214929i 0.0143927 0.0143927i −0.699874 0.714267i \(-0.746760\pi\)
0.714267 + 0.699874i \(0.246760\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.78960 1.28337i −0.317897 0.0851802i 0.0963423 0.995348i \(-0.469286\pi\)
−0.414239 + 0.910168i \(0.635952\pi\)
\(228\) 0 0
\(229\) 8.46578 + 4.88772i 0.559434 + 0.322990i 0.752918 0.658114i \(-0.228645\pi\)
−0.193484 + 0.981103i \(0.561979\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.5972 + 3.10745i −0.759756 + 0.203576i −0.617841 0.786303i \(-0.711992\pi\)
−0.141915 + 0.989879i \(0.545326\pi\)
\(234\) 0 0
\(235\) 22.7873 + 2.73988i 1.48648 + 0.178730i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 9.70299 0.627634 0.313817 0.949483i \(-0.398392\pi\)
0.313817 + 0.949483i \(0.398392\pi\)
\(240\) 0 0
\(241\) 8.24473 + 14.2803i 0.531090 + 0.919874i 0.999342 + 0.0362795i \(0.0115506\pi\)
−0.468252 + 0.883595i \(0.655116\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −5.10551 + 14.7964i −0.326179 + 0.945308i
\(246\) 0 0
\(247\) −2.59297 + 0.694784i −0.164987 + 0.0442080i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.05492i 0.255944i 0.991778 + 0.127972i \(0.0408468\pi\)
−0.991778 + 0.127972i \(0.959153\pi\)
\(252\) 0 0
\(253\) 7.41212 7.41212i 0.465996 0.465996i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.832881 + 3.10835i 0.0519537 + 0.193894i 0.987025 0.160565i \(-0.0513317\pi\)
−0.935072 + 0.354459i \(0.884665\pi\)
\(258\) 0 0
\(259\) 3.50437 + 11.8995i 0.217751 + 0.739398i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.70445 + 25.0214i −0.413414 + 1.54288i 0.374576 + 0.927196i \(0.377788\pi\)
−0.787991 + 0.615687i \(0.788878\pi\)
\(264\) 0 0
\(265\) −10.7694 8.07303i −0.661560 0.495922i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.19919 + 5.54115i 0.195058 + 0.337850i 0.946919 0.321471i \(-0.104177\pi\)
−0.751862 + 0.659321i \(0.770844\pi\)
\(270\) 0 0
\(271\) 9.68721 16.7787i 0.588456 1.01924i −0.405979 0.913882i \(-0.633069\pi\)
0.994435 0.105353i \(-0.0335973\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −10.0549 2.45343i −0.606336 0.147947i
\(276\) 0 0
\(277\) −4.41024 + 16.4593i −0.264986 + 0.988941i 0.697273 + 0.716806i \(0.254396\pi\)
−0.962259 + 0.272135i \(0.912270\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.136136i 0.00812121i −0.999992 0.00406060i \(-0.998707\pi\)
0.999992 0.00406060i \(-0.00129253\pi\)
\(282\) 0 0
\(283\) 15.4069 + 4.12826i 0.915843 + 0.245399i 0.685807 0.727783i \(-0.259449\pi\)
0.230035 + 0.973182i \(0.426116\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −31.3017 + 0.770228i −1.84768 + 0.0454651i
\(288\) 0 0
\(289\) −12.4851 7.20829i −0.734419 0.424017i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 21.9866 + 21.9866i 1.28447 + 1.28447i 0.938096 + 0.346375i \(0.112588\pi\)
0.346375 + 0.938096i \(0.387412\pi\)
\(294\) 0 0
\(295\) 19.7487 2.82607i 1.14981 0.164540i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.29539 + 5.70779i −0.190577 + 0.330090i
\(300\) 0 0
\(301\) 17.9482 + 17.0861i 1.03451 + 0.984826i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −12.2058 15.5422i −0.698903 0.889941i
\(306\) 0 0
\(307\) −4.51324 4.51324i −0.257584 0.257584i 0.566487 0.824071i \(-0.308302\pi\)
−0.824071 + 0.566487i \(0.808302\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 20.3653 11.7579i 1.15481 0.666730i 0.204756 0.978813i \(-0.434360\pi\)
0.950055 + 0.312083i \(0.101027\pi\)
\(312\) 0 0
\(313\) 2.33358 + 8.70905i 0.131902 + 0.492264i 0.999991 0.00414319i \(-0.00131882\pi\)
−0.868090 + 0.496408i \(0.834652\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.32976 8.69480i −0.130853 0.488349i 0.869128 0.494587i \(-0.164681\pi\)
−0.999981 + 0.00623873i \(0.998014\pi\)
\(318\) 0 0
\(319\) −2.84435 + 1.64219i −0.159253 + 0.0919448i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.34417 + 2.34417i 0.130433 + 0.130433i
\(324\) 0 0
\(325\) 6.50591 0.146238i 0.360883 0.00811183i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 26.0503 7.67175i 1.43620 0.422957i
\(330\) 0 0
\(331\) −7.59294 + 13.1514i −0.417346 + 0.722864i −0.995672 0.0929421i \(-0.970373\pi\)
0.578326 + 0.815806i \(0.303706\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −13.8027 10.3469i −0.754122 0.565309i
\(336\) 0 0
\(337\) 15.2449 + 15.2449i 0.830442 + 0.830442i 0.987577 0.157135i \(-0.0502259\pi\)
−0.157135 + 0.987577i \(0.550226\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −17.8309 10.2947i −0.965598 0.557488i
\(342\) 0 0
\(343\) 1.36564 + 18.4698i 0.0737378 + 0.997278i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.5534 + 2.82777i 0.566535 + 0.151803i 0.530707 0.847555i \(-0.321926\pi\)
0.0358281 + 0.999358i \(0.488593\pi\)
\(348\) 0 0
\(349\) 12.4107i 0.664328i −0.943222 0.332164i \(-0.892221\pi\)
0.943222 0.332164i \(-0.107779\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.18153 11.8736i 0.169336 0.631970i −0.828111 0.560563i \(-0.810585\pi\)
0.997447 0.0714065i \(-0.0227488\pi\)
\(354\) 0 0
\(355\) −2.60782 1.04602i −0.138409 0.0555171i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.91881 + 11.9837i −0.365161 + 0.632477i −0.988802 0.149233i \(-0.952319\pi\)
0.623641 + 0.781711i \(0.285653\pi\)
\(360\) 0 0
\(361\) −7.37293 12.7703i −0.388049 0.672121i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −11.6395 + 15.5271i −0.609240 + 0.812725i
\(366\) 0 0
\(367\) 6.40699 23.9112i 0.334442 1.24816i −0.570030 0.821624i \(-0.693068\pi\)
0.904472 0.426532i \(-0.140265\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −15.4794 3.74213i −0.803651 0.194282i
\(372\) 0 0
\(373\) 1.56110 + 5.82609i 0.0808306 + 0.301664i 0.994492 0.104812i \(-0.0334242\pi\)
−0.913661 + 0.406476i \(0.866757\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.46022 1.46022i 0.0752050 0.0752050i
\(378\) 0 0
\(379\) 35.4262i 1.81972i 0.414912 + 0.909862i \(0.363813\pi\)
−0.414912 + 0.909862i \(0.636187\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.88073 1.30779i 0.249394 0.0668248i −0.131956 0.991256i \(-0.542126\pi\)
0.381350 + 0.924431i \(0.375459\pi\)
\(384\) 0 0
\(385\) −12.0764 + 2.03246i −0.615469 + 0.103584i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12.0642 20.8959i −0.611680 1.05946i −0.990957 0.134178i \(-0.957160\pi\)
0.379277 0.925283i \(-0.376173\pi\)
\(390\) 0 0
\(391\) 8.13930 0.411622
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.01035 4.72014i 0.302413 0.237496i
\(396\) 0 0
\(397\) −6.30707 + 1.68997i −0.316543 + 0.0848174i −0.413592 0.910462i \(-0.635726\pi\)
0.0970495 + 0.995280i \(0.469059\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.5981 7.27351i −0.629119 0.363222i 0.151292 0.988489i \(-0.451657\pi\)
−0.780411 + 0.625267i \(0.784990\pi\)
\(402\) 0 0
\(403\) 12.5045 + 3.35057i 0.622894 + 0.166904i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.86267 + 6.86267i −0.340170 + 0.340170i
\(408\) 0 0
\(409\) 10.8306 6.25305i 0.535539 0.309194i −0.207730 0.978186i \(-0.566608\pi\)
0.743269 + 0.668993i \(0.233274\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 20.1460 12.3018i 0.991319 0.605331i
\(414\) 0 0
\(415\) 1.82040 0.778113i 0.0893599 0.0381961i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 33.7945 1.65097 0.825485 0.564425i \(-0.190902\pi\)
0.825485 + 0.564425i \(0.190902\pi\)
\(420\) 0 0
\(421\) 38.7453 1.88833 0.944165 0.329472i \(-0.106871\pi\)
0.944165 + 0.329472i \(0.106871\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.17364 6.86776i −0.202451 0.333136i
\(426\) 0 0
\(427\) −20.5316 11.1897i −0.993594 0.541510i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9.40066 + 5.42747i −0.452814 + 0.261432i −0.709018 0.705191i \(-0.750861\pi\)
0.256204 + 0.966623i \(0.417528\pi\)
\(432\) 0 0
\(433\) −20.6363 + 20.6363i −0.991719 + 0.991719i −0.999966 0.00824728i \(-0.997375\pi\)
0.00824728 + 0.999966i \(0.497375\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10.0888 + 2.70328i 0.482612 + 0.129316i
\(438\) 0 0
\(439\) 19.7818 + 11.4210i 0.944132 + 0.545095i 0.891253 0.453506i \(-0.149827\pi\)
0.0528790 + 0.998601i \(0.483160\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 25.0024 6.69937i 1.18790 0.318297i 0.389844 0.920881i \(-0.372529\pi\)
0.798055 + 0.602584i \(0.205862\pi\)
\(444\) 0 0
\(445\) −7.71355 9.82197i −0.365657 0.465606i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −36.9105 −1.74191 −0.870957 0.491358i \(-0.836501\pi\)
−0.870957 + 0.491358i \(0.836501\pi\)
\(450\) 0 0
\(451\) −12.2487 21.2153i −0.576767 0.998989i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 7.00358 3.19960i 0.328333 0.150000i
\(456\) 0 0
\(457\) −24.6338 + 6.60060i −1.15232 + 0.308763i −0.783894 0.620894i \(-0.786770\pi\)
−0.368425 + 0.929657i \(0.620103\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 22.7818i 1.06105i −0.847669 0.530526i \(-0.821994\pi\)
0.847669 0.530526i \(-0.178006\pi\)
\(462\) 0 0
\(463\) −16.8483 + 16.8483i −0.783005 + 0.783005i −0.980337 0.197332i \(-0.936772\pi\)
0.197332 + 0.980337i \(0.436772\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.1911 + 38.0338i 0.471589 + 1.75999i 0.634065 + 0.773280i \(0.281385\pi\)
−0.162476 + 0.986712i \(0.551948\pi\)
\(468\) 0 0
\(469\) −19.8393 4.79612i −0.916094 0.221464i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.01793 + 18.7272i −0.230724 + 0.861075i
\(474\) 0 0
\(475\) −2.89232 9.89888i −0.132709 0.454192i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.97178 + 12.0755i 0.318549 + 0.551743i 0.980186 0.198082i \(-0.0634711\pi\)
−0.661637 + 0.749825i \(0.730138\pi\)
\(480\) 0 0
\(481\) 3.05111 5.28468i 0.139119 0.240961i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −25.3542 + 10.8374i −1.15128 + 0.492102i
\(486\) 0 0
\(487\) 4.71318 17.5898i 0.213575 0.797072i −0.773089 0.634298i \(-0.781289\pi\)
0.986663 0.162774i \(-0.0520441\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.91225i 0.221687i 0.993838 + 0.110843i \(0.0353552\pi\)
−0.993838 + 0.110843i \(0.964645\pi\)
\(492\) 0 0
\(493\) −2.46335 0.660052i −0.110944 0.0297272i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.32358 + 0.0817819i −0.149083 + 0.00366842i
\(498\) 0 0
\(499\) −26.6432 15.3825i −1.19272 0.688615i −0.233794 0.972286i \(-0.575114\pi\)
−0.958922 + 0.283672i \(0.908447\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.44578 + 6.44578i 0.287403 + 0.287403i 0.836053 0.548649i \(-0.184858\pi\)
−0.548649 + 0.836053i \(0.684858\pi\)
\(504\) 0 0
\(505\) −2.90950 20.3317i −0.129471 0.904750i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.58314 11.4023i 0.291793 0.505400i −0.682441 0.730941i \(-0.739082\pi\)
0.974234 + 0.225541i \(0.0724149\pi\)
\(510\) 0 0
\(511\) −5.39531 + 22.3179i −0.238675 + 0.987284i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.75384 + 0.571589i 0.209479 + 0.0251872i
\(516\) 0 0
\(517\) 15.0237 + 15.0237i 0.660742 + 0.660742i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 36.0893 20.8362i 1.58110 0.912850i 0.586404 0.810019i \(-0.300543\pi\)
0.994699 0.102831i \(-0.0327901\pi\)
\(522\) 0 0
\(523\) −9.24821 34.5148i −0.404396 1.50923i −0.805167 0.593048i \(-0.797925\pi\)
0.400772 0.916178i \(-0.368742\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.13779 15.4425i −0.180245 0.672684i
\(528\) 0 0
\(529\) 2.28942 1.32180i 0.0995398 0.0574694i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.8914 + 10.8914i 0.471758 + 0.471758i
\(534\) 0 0
\(535\) −1.46349 0.175966i −0.0632721 0.00760766i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −12.1771 + 7.85337i −0.524506 + 0.338269i
\(540\) 0 0
\(541\) 6.20634 10.7497i 0.266831 0.462166i −0.701210 0.712954i \(-0.747357\pi\)
0.968042 + 0.250789i \(0.0806900\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.237944 1.66276i −0.0101924 0.0712249i
\(546\) 0 0
\(547\) 14.4711 + 14.4711i 0.618741 + 0.618741i 0.945209 0.326467i \(-0.105858\pi\)
−0.326467 + 0.945209i \(0.605858\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.83414 1.63629i −0.120738 0.0697083i
\(552\) 0 0
\(553\) 4.32721 7.93983i 0.184012 0.337636i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 26.0216 + 6.97246i 1.10257 + 0.295432i 0.763810 0.645441i \(-0.223326\pi\)
0.338759 + 0.940873i \(0.389993\pi\)
\(558\) 0 0
\(559\) 12.1901i 0.515587i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6.78697 25.3293i 0.286037 1.06750i −0.662042 0.749467i \(-0.730310\pi\)
0.948078 0.318037i \(-0.103024\pi\)
\(564\) 0 0
\(565\) 33.7708 14.4350i 1.42075 0.607285i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −0.374804 + 0.649179i −0.0157126 + 0.0272150i −0.873775 0.486331i \(-0.838335\pi\)
0.858062 + 0.513546i \(0.171668\pi\)
\(570\) 0 0
\(571\) −10.0179 17.3516i −0.419237 0.726140i 0.576626 0.817009i \(-0.304369\pi\)
−0.995863 + 0.0908682i \(0.971036\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −22.2065 12.1639i −0.926075 0.507271i
\(576\) 0 0
\(577\) 9.06892 33.8457i 0.377544 1.40901i −0.472048 0.881573i \(-0.656485\pi\)
0.849592 0.527441i \(-0.176848\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.61511 1.69660i 0.0670061 0.0703869i
\(582\) 0 0
\(583\) −3.22480 12.0351i −0.133558 0.498444i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −17.2300 + 17.2300i −0.711156 + 0.711156i −0.966777 0.255621i \(-0.917720\pi\)
0.255621 + 0.966777i \(0.417720\pi\)
\(588\) 0 0
\(589\) 20.5154i 0.845324i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −26.8397 + 7.19168i −1.10217 + 0.295327i −0.763650 0.645631i \(-0.776595\pi\)
−0.338525 + 0.940958i \(0.609928\pi\)
\(594\) 0 0
\(595\) −7.74651 5.51464i −0.317576 0.226078i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 15.7938 + 27.3557i 0.645318 + 1.11772i 0.984228 + 0.176905i \(0.0566086\pi\)
−0.338909 + 0.940819i \(0.610058\pi\)
\(600\) 0 0
\(601\) −45.0704 −1.83846 −0.919231 0.393720i \(-0.871188\pi\)
−0.919231 + 0.393720i \(0.871188\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.27416 + 11.8092i 0.377048 + 0.480110i
\(606\) 0 0
\(607\) −9.12618 + 2.44535i −0.370420 + 0.0992538i −0.439227 0.898376i \(-0.644748\pi\)
0.0688065 + 0.997630i \(0.478081\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11.5692 6.67947i −0.468039 0.270223i
\(612\) 0 0
\(613\) −33.6467 9.01561i −1.35898 0.364137i −0.495537 0.868587i \(-0.665029\pi\)
−0.863441 + 0.504450i \(0.831695\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.6321 32.6321i 1.31372 1.31372i 0.395065 0.918653i \(-0.370722\pi\)
0.918653 0.395065i \(-0.129278\pi\)
\(618\) 0 0
\(619\) −13.8691 + 8.00732i −0.557446 + 0.321842i −0.752120 0.659027i \(-0.770968\pi\)
0.194674 + 0.980868i \(0.437635\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.9751 7.07143i −0.519835 0.283311i
\(624\) 0 0
\(625\) 1.12332 + 24.9748i 0.0449328 + 0.998990i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7.53594 −0.300478
\(630\) 0 0
\(631\) −32.7818 −1.30502 −0.652511 0.757779i \(-0.726284\pi\)
−0.652511 + 0.757779i \(0.726284\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 36.6417 15.6621i 1.45408 0.621533i
\(636\) 0 0
\(637\) 6.11751 6.75120i 0.242384 0.267492i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 35.6286 20.5702i 1.40725 0.812473i 0.412124 0.911128i \(-0.364787\pi\)
0.995122 + 0.0986545i \(0.0314539\pi\)
\(642\) 0 0
\(643\) −7.21487 + 7.21487i −0.284527 + 0.284527i −0.834911 0.550385i \(-0.814481\pi\)
0.550385 + 0.834911i \(0.314481\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.1136 5.12148i −0.751434 0.201346i −0.137280 0.990532i \(-0.543836\pi\)
−0.614154 + 0.789186i \(0.710503\pi\)
\(648\) 0 0
\(649\) 15.9938 + 9.23405i 0.627814 + 0.362468i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 23.4535 6.28434i 0.917806 0.245925i 0.231159 0.972916i \(-0.425748\pi\)
0.686647 + 0.726991i \(0.259082\pi\)
\(654\) 0 0
\(655\) −11.7229 + 9.20640i −0.458051 + 0.359724i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10.3433 −0.402918 −0.201459 0.979497i \(-0.564568\pi\)
−0.201459 + 0.979497i \(0.564568\pi\)
\(660\) 0 0
\(661\) −5.25115 9.09526i −0.204246 0.353765i 0.745646 0.666342i \(-0.232141\pi\)
−0.949892 + 0.312578i \(0.898808\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.77035 9.40832i −0.301321 0.364839i
\(666\) 0 0
\(667\) −7.76100 + 2.07955i −0.300507 + 0.0805206i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 18.2943i 0.706244i
\(672\) 0 0
\(673\) −10.2728 + 10.2728i −0.395989 + 0.395989i −0.876816 0.480827i \(-0.840337\pi\)
0.480827 + 0.876816i \(0.340337\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11.5277 + 43.0220i 0.443046 + 1.65347i 0.721044 + 0.692889i \(0.243662\pi\)
−0.277998 + 0.960582i \(0.589671\pi\)
\(678\) 0 0
\(679\) −22.4950 + 23.6300i −0.863279 + 0.906836i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 13.1876 49.2166i 0.504608 1.88322i 0.0369388 0.999318i \(-0.488239\pi\)
0.467669 0.883904i \(-0.345094\pi\)
\(684\) 0 0
\(685\) 0.579692 0.773309i 0.0221489 0.0295466i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.91703 + 6.78449i 0.149227 + 0.258469i
\(690\) 0 0
\(691\) 10.3933 18.0017i 0.395379 0.684816i −0.597771 0.801667i \(-0.703947\pi\)
0.993149 + 0.116851i \(0.0372800\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 16.5221 + 6.62718i 0.626720 + 0.251383i
\(696\) 0 0
\(697\) 4.92316 18.3735i 0.186478 0.695946i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 47.5242i 1.79497i 0.441049 + 0.897483i \(0.354606\pi\)
−0.441049 + 0.897483i \(0.645394\pi\)
\(702\) 0 0
\(703\) −9.34092 2.50289i −0.352299 0.0943983i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −12.6650 20.7408i −0.476316 0.780037i
\(708\) 0 0
\(709\) 28.7512 + 16.5995i 1.07977 + 0.623407i 0.930835 0.365440i \(-0.119081\pi\)
0.148937 + 0.988847i \(0.452415\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −35.6164 35.6164i −1.33384 1.33384i
\(714\) 0 0
\(715\) 4.82024 + 3.61338i 0.180267 + 0.135133i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 18.5069 32.0549i 0.690190 1.19544i −0.281585 0.959536i \(-0.590860\pi\)
0.971775 0.235909i \(-0.0758066\pi\)
\(720\) 0 0
\(721\) 5.43457 1.60047i 0.202394 0.0596045i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.73434 + 5.48222i 0.212968 + 0.203605i
\(726\) 0 0
\(727\) −30.2950 30.2950i −1.12358 1.12358i −0.991199 0.132381i \(-0.957738\pi\)
−0.132381 0.991199i \(-0.542262\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −13.0373 + 7.52710i −0.482203 + 0.278400i
\(732\) 0 0
\(733\) 1.64638 + 6.14436i 0.0608103 + 0.226947i 0.989643 0.143553i \(-0.0458529\pi\)
−0.928832 + 0.370500i \(0.879186\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.13309 15.4249i −0.152244 0.568184i
\(738\) 0 0
\(739\) 16.3934 9.46473i 0.603041 0.348166i −0.167196 0.985924i \(-0.553471\pi\)
0.770237 + 0.637758i \(0.220138\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.95638 + 2.95638i 0.108459 + 0.108459i 0.759254 0.650795i \(-0.225564\pi\)
−0.650795 + 0.759254i \(0.725564\pi\)
\(744\) 0 0
\(745\) −30.8409 39.2710i −1.12992 1.43878i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.67305 + 0.492710i −0.0611320 + 0.0180032i
\(750\) 0 0
\(751\) 11.3918 19.7312i 0.415692 0.720000i −0.579809 0.814753i \(-0.696873\pi\)
0.995501 + 0.0947527i \(0.0302060\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.7228 2.39306i 0.608604 0.0870922i
\(756\) 0 0
\(757\) 26.8834 + 26.8834i 0.977092 + 0.977092i 0.999743 0.0226513i \(-0.00721076\pi\)
−0.0226513 + 0.999743i \(0.507211\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5.63819 3.25521i −0.204384 0.118001i 0.394315 0.918976i \(-0.370982\pi\)
−0.598699 + 0.800974i \(0.704315\pi\)
\(762\) 0 0
\(763\) −1.03576 1.69622i −0.0374971 0.0614071i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −11.2162 3.00537i −0.404994 0.108518i
\(768\) 0 0
\(769\) 16.1605i 0.582762i 0.956607 + 0.291381i \(0.0941147\pi\)
−0.956607 + 0.291381i \(0.905885\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.39756 + 35.0722i −0.338007 + 1.26146i 0.562566 + 0.826752i \(0.309814\pi\)
−0.900573 + 0.434706i \(0.856852\pi\)
\(774\) 0 0
\(775\) −11.7891 + 48.3156i −0.423476 + 1.73555i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.2047 21.1391i 0.437278 0.757388i
\(780\) 0 0
\(781\) −1.30055 2.25262i −0.0465373 0.0806049i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −19.8606 14.8880i −0.708854 0.531375i
\(786\) 0 0
\(787\) 9.76500 36.4435i 0.348085 1.29907i −0.540882 0.841099i \(-0.681909\pi\)
0.888967 0.457972i \(-0.151424\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 29.9624 31.4741i 1.06534 1.11909i
\(792\) 0 0
\(793\) 2.97709 + 11.1107i 0.105720 + 0.394551i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 20.2855 20.2855i 0.718549 0.718549i −0.249759 0.968308i \(-0.580351\pi\)
0.968308 + 0.249759i \(0.0803514\pi\)
\(798\) 0 0
\(799\) 16.4976i 0.583645i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −17.3520 + 4.64945i −0.612338 + 0.164075i
\(804\) 0 0
\(805\) −29.8235 2.84362i −1.05114 0.100225i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −23.5077 40.7166i −0.826488 1.43152i −0.900777 0.434283i \(-0.857002\pi\)
0.0742885 0.997237i \(-0.476331\pi\)
\(810\) 0 0
\(811\) 8.24816 0.289632 0.144816 0.989459i \(-0.453741\pi\)
0.144816 + 0.989459i \(0.453741\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 25.9401 + 3.11896i 0.908641 + 0.109252i
\(816\) 0 0
\(817\) −18.6599 + 4.99991i −0.652828 + 0.174925i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 38.8132 + 22.4088i 1.35459 + 0.782072i 0.988888 0.148660i \(-0.0474961\pi\)
0.365701 + 0.930733i \(0.380829\pi\)
\(822\) 0 0
\(823\) 27.7357 + 7.43176i 0.966805 + 0.259055i 0.707479 0.706735i \(-0.249833\pi\)
0.259327 + 0.965790i \(0.416499\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.1240 14.1240i 0.491138 0.491138i −0.417526 0.908665i \(-0.637103\pi\)
0.908665 + 0.417526i \(0.137103\pi\)
\(828\) 0 0
\(829\) 11.4383 6.60390i 0.397268 0.229363i −0.288036 0.957619i \(-0.593002\pi\)
0.685305 + 0.728256i \(0.259669\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −10.9978 2.37397i −0.381052 0.0822530i
\(834\) 0 0
\(835\) −6.66161 15.5849i −0.230534 0.539337i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.3640 −0.426854 −0.213427 0.976959i \(-0.568463\pi\)
−0.213427 + 0.976959i \(0.568463\pi\)
\(840\) 0 0
\(841\) −26.4825 −0.913190
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 23.4640 + 9.41161i 0.807185 + 0.323769i
\(846\) 0 0
\(847\) 15.6002 + 8.50213i 0.536029 + 0.292137i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −20.5617 + 11.8713i −0.704848 + 0.406944i
\(852\) 0 0
\(853\) 23.3128 23.3128i 0.798215 0.798215i −0.184599 0.982814i \(-0.559099\pi\)
0.982814 + 0.184599i \(0.0590985\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.3629 + 3.84853i 0.490627 + 0.131463i 0.495647 0.868524i \(-0.334931\pi\)
−0.00501942 + 0.999987i \(0.501598\pi\)
\(858\) 0 0
\(859\) −34.8177 20.1020i −1.18797 0.685873i −0.230122 0.973162i \(-0.573913\pi\)
−0.957844 + 0.287289i \(0.907246\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −31.6775 + 8.48797i −1.07832 + 0.288934i −0.753906 0.656983i \(-0.771832\pi\)
−0.324410 + 0.945917i \(0.605166\pi\)
\(864\) 0 0
\(865\) 0.722468 6.00869i 0.0245647 0.204302i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7.07464 0.239991
\(870\) 0 0
\(871\) 5.02029 + 8.69539i 0.170106 + 0.294632i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 12.8934 + 26.6226i 0.435876 + 0.900007i
\(876\) 0 0
\(877\) 32.0189 8.57943i 1.08120 0.289707i 0.326113 0.945331i \(-0.394261\pi\)
0.755087 + 0.655624i \(0.227594\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 25.6978i 0.865780i 0.901447 + 0.432890i \(0.142506\pi\)
−0.901447 + 0.432890i \(0.857494\pi\)
\(882\) 0 0
\(883\) 9.70034 9.70034i 0.326442 0.326442i −0.524790 0.851232i \(-0.675856\pi\)
0.851232 + 0.524790i \(0.175856\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −0.341110 1.27304i −0.0114534 0.0427445i 0.959963 0.280128i \(-0.0903769\pi\)
−0.971416 + 0.237383i \(0.923710\pi\)
\(888\) 0 0
\(889\) 32.5095 34.1498i 1.09034 1.14535i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.47932 + 20.4491i −0.183358 + 0.684303i
\(894\) 0 0
\(895\) 25.7685 3.68752i 0.861346 0.123260i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.89095 + 13.6675i 0.263178 + 0.455838i
\(900\) 0 0
\(901\) 4.83734 8.37852i 0.161155 0.279129i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 9.29698 23.1782i 0.309042 0.770469i
\(906\) 0 0
\(907\) −11.7355 + 43.7974i −0.389670 + 1.45427i 0.441002 + 0.897506i \(0.354623\pi\)
−0.830672 + 0.556762i \(0.812044\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 40.1728i 1.33098i 0.746405 + 0.665492i \(0.231778\pi\)
−0.746405 + 0.665492i \(0.768222\pi\)
\(912\) 0 0
\(913\) 1.77024 + 0.474334i 0.0585864 + 0.0156982i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −8.44001 + 15.4862i −0.278714 + 0.511400i
\(918\) 0 0
\(919\) −12.1328 7.00488i −0.400224 0.231070i 0.286356 0.958123i \(-0.407556\pi\)
−0.686581 + 0.727053i \(0.740889\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.15644 + 1.15644i 0.0380645 + 0.0380645i
\(924\) 0 0
\(925\) 20.5604 + 11.2622i 0.676021 + 0.370300i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13.8950 + 24.0668i −0.455879 + 0.789605i −0.998738 0.0502183i \(-0.984008\pi\)
0.542859 + 0.839824i \(0.317342\pi\)
\(930\) 0 0
\(931\) −12.8435 6.59524i −0.420929 0.216150i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.888121 7.38641i 0.0290447 0.241561i
\(936\) 0 0
\(937\) 8.75138 + 8.75138i 0.285895 + 0.285895i 0.835455 0.549559i \(-0.185204\pi\)
−0.549559 + 0.835455i \(0.685204\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −26.7152 + 15.4240i −0.870890 + 0.502808i −0.867644 0.497186i \(-0.834367\pi\)
−0.00324585 + 0.999995i \(0.501033\pi\)
\(942\) 0 0
\(943\) −15.5109 57.8874i −0.505103 1.88507i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9.60409 35.8430i −0.312091 1.16474i −0.926667 0.375882i \(-0.877340\pi\)
0.614576 0.788857i \(-0.289327\pi\)
\(948\) 0 0
\(949\) 9.78173 5.64748i 0.317528 0.183325i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 12.4853 + 12.4853i 0.404440 + 0.404440i 0.879794 0.475355i \(-0.157680\pi\)
−0.475355 + 0.879794i \(0.657680\pi\)
\(954\) 0 0
\(955\) −30.4681 + 23.9277i −0.985925 + 0.774283i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.268707 1.11152i 0.00867701 0.0358927i
\(960\) 0 0
\(961\) −33.9675 + 58.8335i −1.09573 + 1.89785i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −11.3481 + 15.1383i −0.365307 + 0.487319i
\(966\) 0 0
\(967\) −3.52371 3.52371i −0.113315 0.113315i 0.648176 0.761491i \(-0.275532\pi\)
−0.761491 + 0.648176i \(0.775532\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7.39965 4.27219i −0.237466 0.137101i 0.376546 0.926398i \(-0.377112\pi\)
−0.614011 + 0.789297i \(0.710445\pi\)
\(972\) 0 0
\(973\) 21.0569 0.518137i 0.675052 0.0166107i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.913421 + 0.244750i 0.0292229 + 0.00783026i 0.273401 0.961900i \(-0.411851\pi\)
−0.244178 + 0.969730i \(0.578518\pi\)
\(978\) 0 0
\(979\) 11.5612i 0.369498i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 6.66846 24.8870i 0.212691 0.793773i −0.774276 0.632848i \(-0.781886\pi\)
0.986967 0.160925i \(-0.0514476\pi\)
\(984\) 0 0
\(985\) 22.5310 + 52.7114i 0.717897 + 1.67952i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −23.7148 + 41.0752i −0.754087 + 1.30612i
\(990\) 0 0
\(991\) 9.19441 + 15.9252i 0.292070 + 0.505880i 0.974299 0.225258i \(-0.0723226\pi\)
−0.682229 + 0.731139i \(0.738989\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3.56453 24.9091i −0.113003 0.789671i
\(996\) 0 0
\(997\) −8.31060 + 31.0156i −0.263199 + 0.982273i 0.700144 + 0.714002i \(0.253119\pi\)
−0.963343 + 0.268272i \(0.913548\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.2.ej.a.737.10 yes 64
3.2 odd 2 inner 1260.2.ej.a.737.7 yes 64
5.3 odd 4 inner 1260.2.ej.a.233.5 yes 64
7.4 even 3 inner 1260.2.ej.a.557.12 yes 64
15.8 even 4 inner 1260.2.ej.a.233.12 yes 64
21.11 odd 6 inner 1260.2.ej.a.557.5 yes 64
35.18 odd 12 inner 1260.2.ej.a.53.7 64
105.53 even 12 inner 1260.2.ej.a.53.10 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.ej.a.53.7 64 35.18 odd 12 inner
1260.2.ej.a.53.10 yes 64 105.53 even 12 inner
1260.2.ej.a.233.5 yes 64 5.3 odd 4 inner
1260.2.ej.a.233.12 yes 64 15.8 even 4 inner
1260.2.ej.a.557.5 yes 64 21.11 odd 6 inner
1260.2.ej.a.557.12 yes 64 7.4 even 3 inner
1260.2.ej.a.737.7 yes 64 3.2 odd 2 inner
1260.2.ej.a.737.10 yes 64 1.1 even 1 trivial