Properties

Label 1260.4.bi
Level $1260$
Weight $4$
Character orbit 1260.bi
Rep. character $\chi_{1260}(31,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $1152$
Sturm bound $1152$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1260.bi (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 252 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1152\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1260, [\chi])\).

Total New Old
Modular forms 1744 1152 592
Cusp forms 1712 1152 560
Eisenstein series 32 0 32

Trace form

\( 1152 q - 100 q^{14} + 140 q^{18} + 136 q^{21} - 28800 q^{25} - 28 q^{29} - 980 q^{32} - 1400 q^{36} - 1352 q^{42} - 770 q^{44} + 660 q^{45} + 1224 q^{54} + 1342 q^{56} - 490 q^{60} - 168 q^{72} - 4032 q^{74}+ \cdots - 2562 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1260, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1260, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1260, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)