Properties

Label 1274.2.a.o
Level $1274$
Weight $2$
Character orbit 1274.a
Self dual yes
Analytic conductor $10.173$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1274,2,Mod(1,1274)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1274, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1274.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + 3 q^{3} + q^{4} + q^{5} + 3 q^{6} + q^{8} + 6 q^{9} + q^{10} - 2 q^{11} + 3 q^{12} + q^{13} + 3 q^{15} + q^{16} + 3 q^{17} + 6 q^{18} - 6 q^{19} + q^{20} - 2 q^{22} - 4 q^{23} + 3 q^{24}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 3.00000 1.00000 1.00000 3.00000 0 1.00000 6.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1274.2.a.o 1
7.b odd 2 1 26.2.a.b 1
7.c even 3 2 1274.2.f.a 2
7.d odd 6 2 1274.2.f.l 2
21.c even 2 1 234.2.a.b 1
28.d even 2 1 208.2.a.d 1
35.c odd 2 1 650.2.a.g 1
35.f even 4 2 650.2.b.a 2
56.e even 2 1 832.2.a.a 1
56.h odd 2 1 832.2.a.j 1
63.l odd 6 2 2106.2.e.h 2
63.o even 6 2 2106.2.e.t 2
77.b even 2 1 3146.2.a.a 1
84.h odd 2 1 1872.2.a.m 1
91.b odd 2 1 338.2.a.a 1
91.i even 4 2 338.2.b.a 2
91.n odd 6 2 338.2.c.c 2
91.t odd 6 2 338.2.c.g 2
91.bc even 12 4 338.2.e.d 4
105.g even 2 1 5850.2.a.bn 1
105.k odd 4 2 5850.2.e.v 2
112.j even 4 2 3328.2.b.k 2
112.l odd 4 2 3328.2.b.g 2
119.d odd 2 1 7514.2.a.i 1
133.c even 2 1 9386.2.a.f 1
140.c even 2 1 5200.2.a.c 1
168.e odd 2 1 7488.2.a.v 1
168.i even 2 1 7488.2.a.w 1
273.g even 2 1 3042.2.a.l 1
273.o odd 4 2 3042.2.b.f 2
364.h even 2 1 2704.2.a.n 1
364.p odd 4 2 2704.2.f.j 2
455.h odd 2 1 8450.2.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.a.b 1 7.b odd 2 1
208.2.a.d 1 28.d even 2 1
234.2.a.b 1 21.c even 2 1
338.2.a.a 1 91.b odd 2 1
338.2.b.a 2 91.i even 4 2
338.2.c.c 2 91.n odd 6 2
338.2.c.g 2 91.t odd 6 2
338.2.e.d 4 91.bc even 12 4
650.2.a.g 1 35.c odd 2 1
650.2.b.a 2 35.f even 4 2
832.2.a.a 1 56.e even 2 1
832.2.a.j 1 56.h odd 2 1
1274.2.a.o 1 1.a even 1 1 trivial
1274.2.f.a 2 7.c even 3 2
1274.2.f.l 2 7.d odd 6 2
1872.2.a.m 1 84.h odd 2 1
2106.2.e.h 2 63.l odd 6 2
2106.2.e.t 2 63.o even 6 2
2704.2.a.n 1 364.h even 2 1
2704.2.f.j 2 364.p odd 4 2
3042.2.a.l 1 273.g even 2 1
3042.2.b.f 2 273.o odd 4 2
3146.2.a.a 1 77.b even 2 1
3328.2.b.g 2 112.l odd 4 2
3328.2.b.k 2 112.j even 4 2
5200.2.a.c 1 140.c even 2 1
5850.2.a.bn 1 105.g even 2 1
5850.2.e.v 2 105.k odd 4 2
7488.2.a.v 1 168.e odd 2 1
7488.2.a.w 1 168.i even 2 1
7514.2.a.i 1 119.d odd 2 1
8450.2.a.y 1 455.h odd 2 1
9386.2.a.f 1 133.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1274))\):

\( T_{3} - 3 \) Copy content Toggle raw display
\( T_{5} - 1 \) Copy content Toggle raw display
\( T_{11} + 2 \) Copy content Toggle raw display
\( T_{17} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 2 \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T - 3 \) Copy content Toggle raw display
$19$ \( T + 6 \) Copy content Toggle raw display
$23$ \( T + 4 \) Copy content Toggle raw display
$29$ \( T - 2 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T - 3 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 5 \) Copy content Toggle raw display
$47$ \( T + 13 \) Copy content Toggle raw display
$53$ \( T - 12 \) Copy content Toggle raw display
$59$ \( T - 10 \) Copy content Toggle raw display
$61$ \( T - 8 \) Copy content Toggle raw display
$67$ \( T + 2 \) Copy content Toggle raw display
$71$ \( T + 5 \) Copy content Toggle raw display
$73$ \( T - 10 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 6 \) Copy content Toggle raw display
$97$ \( T + 14 \) Copy content Toggle raw display
show more
show less