Properties

Label 1275.2.a.m
Level $1275$
Weight $2$
Character orbit 1275.a
Self dual yes
Analytic conductor $10.181$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1275,2,Mod(1,1275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.1809262577\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 255)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} - q^{3} + (\beta - 1) q^{4} - \beta q^{6} + q^{7} + ( - 2 \beta + 1) q^{8} + q^{9} - 3 q^{11} + ( - \beta + 1) q^{12} - 2 q^{13} + \beta q^{14} - 3 \beta q^{16} + q^{17} + \beta q^{18} + \cdots - 3 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 2 q^{3} - q^{4} - q^{6} + 2 q^{7} + 2 q^{9} - 6 q^{11} + q^{12} - 4 q^{13} + q^{14} - 3 q^{16} + 2 q^{17} + q^{18} - 4 q^{19} - 2 q^{21} - 3 q^{22} + 8 q^{23} - 2 q^{26} - 2 q^{27} - q^{28}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
−0.618034 −1.00000 −1.61803 0 0.618034 1.00000 2.23607 1.00000 0
1.2 1.61803 −1.00000 0.618034 0 −1.61803 1.00000 −2.23607 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1275.2.a.m 2
3.b odd 2 1 3825.2.a.q 2
5.b even 2 1 1275.2.a.i 2
5.c odd 4 2 255.2.b.b 4
15.d odd 2 1 3825.2.a.w 2
15.e even 4 2 765.2.b.b 4
20.e even 4 2 4080.2.m.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
255.2.b.b 4 5.c odd 4 2
765.2.b.b 4 15.e even 4 2
1275.2.a.i 2 5.b even 2 1
1275.2.a.m 2 1.a even 1 1 trivial
3825.2.a.q 2 3.b odd 2 1
3825.2.a.w 2 15.d odd 2 1
4080.2.m.n 4 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1275))\):

\( T_{2}^{2} - T_{2} - 1 \) Copy content Toggle raw display
\( T_{7} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( (T + 3)^{2} \) Copy content Toggle raw display
$13$ \( (T + 2)^{2} \) Copy content Toggle raw display
$17$ \( (T - 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 4T - 1 \) Copy content Toggle raw display
$23$ \( T^{2} - 8T - 4 \) Copy content Toggle raw display
$29$ \( T^{2} + 8T + 11 \) Copy content Toggle raw display
$31$ \( T^{2} + 4T - 16 \) Copy content Toggle raw display
$37$ \( T^{2} - 4T - 41 \) Copy content Toggle raw display
$41$ \( T^{2} + 12T + 31 \) Copy content Toggle raw display
$43$ \( T^{2} + 8T - 4 \) Copy content Toggle raw display
$47$ \( T^{2} - 12T - 9 \) Copy content Toggle raw display
$53$ \( (T - 3)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 80 \) Copy content Toggle raw display
$61$ \( (T + 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 20T + 80 \) Copy content Toggle raw display
$71$ \( T^{2} - 8T - 64 \) Copy content Toggle raw display
$73$ \( T^{2} + 8T + 11 \) Copy content Toggle raw display
$79$ \( (T - 2)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 8T - 64 \) Copy content Toggle raw display
$89$ \( (T + 12)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 180 \) Copy content Toggle raw display
show more
show less