Properties

Label 1275.2.b.f.1174.1
Level $1275$
Weight $2$
Character 1275.1174
Analytic conductor $10.181$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1275,2,Mod(1174,1275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1275.1174");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1275.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1809262577\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 255)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1174.1
Root \(-2.30278i\) of defining polynomial
Character \(\chi\) \(=\) 1275.1174
Dual form 1275.2.b.f.1174.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.30278i q^{2} -1.00000i q^{3} -3.30278 q^{4} -2.30278 q^{6} -3.60555i q^{7} +3.00000i q^{8} -1.00000 q^{9} +5.00000 q^{11} +3.30278i q^{12} -6.60555i q^{13} -8.30278 q^{14} +0.302776 q^{16} -1.00000i q^{17} +2.30278i q^{18} +5.60555 q^{19} -3.60555 q^{21} -11.5139i q^{22} -2.60555i q^{23} +3.00000 q^{24} -15.2111 q^{26} +1.00000i q^{27} +11.9083i q^{28} -0.394449 q^{29} -6.60555 q^{31} +5.30278i q^{32} -5.00000i q^{33} -2.30278 q^{34} +3.30278 q^{36} +6.21110i q^{37} -12.9083i q^{38} -6.60555 q^{39} +9.60555 q^{41} +8.30278i q^{42} +9.21110i q^{43} -16.5139 q^{44} -6.00000 q^{46} -2.21110i q^{47} -0.302776i q^{48} -6.00000 q^{49} -1.00000 q^{51} +21.8167i q^{52} -3.60555i q^{53} +2.30278 q^{54} +10.8167 q^{56} -5.60555i q^{57} +0.908327i q^{58} -4.60555 q^{59} +6.60555 q^{61} +15.2111i q^{62} +3.60555i q^{63} +12.8167 q^{64} -11.5139 q^{66} +12.6056i q^{67} +3.30278i q^{68} -2.60555 q^{69} -1.21110 q^{71} -3.00000i q^{72} +13.0000i q^{73} +14.3028 q^{74} -18.5139 q^{76} -18.0278i q^{77} +15.2111i q^{78} -3.21110 q^{79} +1.00000 q^{81} -22.1194i q^{82} -1.21110i q^{83} +11.9083 q^{84} +21.2111 q^{86} +0.394449i q^{87} +15.0000i q^{88} -8.60555 q^{89} -23.8167 q^{91} +8.60555i q^{92} +6.60555i q^{93} -5.09167 q^{94} +5.30278 q^{96} +3.21110i q^{97} +13.8167i q^{98} -5.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{4} - 2 q^{6} - 4 q^{9} + 20 q^{11} - 26 q^{14} - 6 q^{16} + 8 q^{19} + 12 q^{24} - 32 q^{26} - 16 q^{29} - 12 q^{31} - 2 q^{34} + 6 q^{36} - 12 q^{39} + 24 q^{41} - 30 q^{44} - 24 q^{46} - 24 q^{49}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1275\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(751\) \(851\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.30278i − 1.62831i −0.580649 0.814154i \(-0.697201\pi\)
0.580649 0.814154i \(-0.302799\pi\)
\(3\) − 1.00000i − 0.577350i
\(4\) −3.30278 −1.65139
\(5\) 0 0
\(6\) −2.30278 −0.940104
\(7\) − 3.60555i − 1.36277i −0.731925 0.681385i \(-0.761378\pi\)
0.731925 0.681385i \(-0.238622\pi\)
\(8\) 3.00000i 1.06066i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 3.30278i 0.953429i
\(13\) − 6.60555i − 1.83205i −0.401121 0.916025i \(-0.631379\pi\)
0.401121 0.916025i \(-0.368621\pi\)
\(14\) −8.30278 −2.21901
\(15\) 0 0
\(16\) 0.302776 0.0756939
\(17\) − 1.00000i − 0.242536i
\(18\) 2.30278i 0.542769i
\(19\) 5.60555 1.28600 0.643001 0.765865i \(-0.277689\pi\)
0.643001 + 0.765865i \(0.277689\pi\)
\(20\) 0 0
\(21\) −3.60555 −0.786796
\(22\) − 11.5139i − 2.45477i
\(23\) − 2.60555i − 0.543295i −0.962397 0.271647i \(-0.912432\pi\)
0.962397 0.271647i \(-0.0875685\pi\)
\(24\) 3.00000 0.612372
\(25\) 0 0
\(26\) −15.2111 −2.98314
\(27\) 1.00000i 0.192450i
\(28\) 11.9083i 2.25046i
\(29\) −0.394449 −0.0732473 −0.0366236 0.999329i \(-0.511660\pi\)
−0.0366236 + 0.999329i \(0.511660\pi\)
\(30\) 0 0
\(31\) −6.60555 −1.18639 −0.593196 0.805058i \(-0.702134\pi\)
−0.593196 + 0.805058i \(0.702134\pi\)
\(32\) 5.30278i 0.937407i
\(33\) − 5.00000i − 0.870388i
\(34\) −2.30278 −0.394923
\(35\) 0 0
\(36\) 3.30278 0.550463
\(37\) 6.21110i 1.02110i 0.859848 + 0.510549i \(0.170558\pi\)
−0.859848 + 0.510549i \(0.829442\pi\)
\(38\) − 12.9083i − 2.09401i
\(39\) −6.60555 −1.05773
\(40\) 0 0
\(41\) 9.60555 1.50014 0.750068 0.661361i \(-0.230021\pi\)
0.750068 + 0.661361i \(0.230021\pi\)
\(42\) 8.30278i 1.28115i
\(43\) 9.21110i 1.40468i 0.711842 + 0.702340i \(0.247861\pi\)
−0.711842 + 0.702340i \(0.752139\pi\)
\(44\) −16.5139 −2.48956
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) − 2.21110i − 0.322522i −0.986912 0.161261i \(-0.948444\pi\)
0.986912 0.161261i \(-0.0515562\pi\)
\(48\) − 0.302776i − 0.0437019i
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 21.8167i 3.02543i
\(53\) − 3.60555i − 0.495261i −0.968855 0.247630i \(-0.920348\pi\)
0.968855 0.247630i \(-0.0796518\pi\)
\(54\) 2.30278 0.313368
\(55\) 0 0
\(56\) 10.8167 1.44544
\(57\) − 5.60555i − 0.742473i
\(58\) 0.908327i 0.119269i
\(59\) −4.60555 −0.599592 −0.299796 0.954003i \(-0.596919\pi\)
−0.299796 + 0.954003i \(0.596919\pi\)
\(60\) 0 0
\(61\) 6.60555 0.845754 0.422877 0.906187i \(-0.361020\pi\)
0.422877 + 0.906187i \(0.361020\pi\)
\(62\) 15.2111i 1.93181i
\(63\) 3.60555i 0.454257i
\(64\) 12.8167 1.60208
\(65\) 0 0
\(66\) −11.5139 −1.41726
\(67\) 12.6056i 1.54001i 0.638036 + 0.770007i \(0.279747\pi\)
−0.638036 + 0.770007i \(0.720253\pi\)
\(68\) 3.30278i 0.400520i
\(69\) −2.60555 −0.313672
\(70\) 0 0
\(71\) −1.21110 −0.143731 −0.0718657 0.997414i \(-0.522895\pi\)
−0.0718657 + 0.997414i \(0.522895\pi\)
\(72\) − 3.00000i − 0.353553i
\(73\) 13.0000i 1.52153i 0.649025 + 0.760767i \(0.275177\pi\)
−0.649025 + 0.760767i \(0.724823\pi\)
\(74\) 14.3028 1.66266
\(75\) 0 0
\(76\) −18.5139 −2.12369
\(77\) − 18.0278i − 2.05445i
\(78\) 15.2111i 1.72232i
\(79\) −3.21110 −0.361277 −0.180639 0.983550i \(-0.557816\pi\)
−0.180639 + 0.983550i \(0.557816\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 22.1194i − 2.44268i
\(83\) − 1.21110i − 0.132936i −0.997789 0.0664679i \(-0.978827\pi\)
0.997789 0.0664679i \(-0.0211730\pi\)
\(84\) 11.9083 1.29930
\(85\) 0 0
\(86\) 21.2111 2.28725
\(87\) 0.394449i 0.0422893i
\(88\) 15.0000i 1.59901i
\(89\) −8.60555 −0.912187 −0.456093 0.889932i \(-0.650752\pi\)
−0.456093 + 0.889932i \(0.650752\pi\)
\(90\) 0 0
\(91\) −23.8167 −2.49666
\(92\) 8.60555i 0.897191i
\(93\) 6.60555i 0.684964i
\(94\) −5.09167 −0.525166
\(95\) 0 0
\(96\) 5.30278 0.541212
\(97\) 3.21110i 0.326038i 0.986623 + 0.163019i \(0.0521232\pi\)
−0.986623 + 0.163019i \(0.947877\pi\)
\(98\) 13.8167i 1.39569i
\(99\) −5.00000 −0.502519
\(100\) 0 0
\(101\) 11.2111 1.11555 0.557773 0.829993i \(-0.311656\pi\)
0.557773 + 0.829993i \(0.311656\pi\)
\(102\) 2.30278i 0.228009i
\(103\) − 12.0000i − 1.18240i −0.806527 0.591198i \(-0.798655\pi\)
0.806527 0.591198i \(-0.201345\pi\)
\(104\) 19.8167 1.94318
\(105\) 0 0
\(106\) −8.30278 −0.806437
\(107\) 9.21110i 0.890471i 0.895414 + 0.445235i \(0.146880\pi\)
−0.895414 + 0.445235i \(0.853120\pi\)
\(108\) − 3.30278i − 0.317810i
\(109\) −7.21110 −0.690698 −0.345349 0.938474i \(-0.612240\pi\)
−0.345349 + 0.938474i \(0.612240\pi\)
\(110\) 0 0
\(111\) 6.21110 0.589532
\(112\) − 1.09167i − 0.103153i
\(113\) − 7.81665i − 0.735329i −0.929959 0.367664i \(-0.880157\pi\)
0.929959 0.367664i \(-0.119843\pi\)
\(114\) −12.9083 −1.20898
\(115\) 0 0
\(116\) 1.30278 0.120960
\(117\) 6.60555i 0.610683i
\(118\) 10.6056i 0.976320i
\(119\) −3.60555 −0.330520
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) − 15.2111i − 1.37715i
\(123\) − 9.60555i − 0.866103i
\(124\) 21.8167 1.95919
\(125\) 0 0
\(126\) 8.30278 0.739670
\(127\) − 0.183346i − 0.0162693i −0.999967 0.00813467i \(-0.997411\pi\)
0.999967 0.00813467i \(-0.00258937\pi\)
\(128\) − 18.9083i − 1.67128i
\(129\) 9.21110 0.810992
\(130\) 0 0
\(131\) 5.21110 0.455296 0.227648 0.973743i \(-0.426896\pi\)
0.227648 + 0.973743i \(0.426896\pi\)
\(132\) 16.5139i 1.43735i
\(133\) − 20.2111i − 1.75252i
\(134\) 29.0278 2.50762
\(135\) 0 0
\(136\) 3.00000 0.257248
\(137\) − 10.3944i − 0.888058i −0.896012 0.444029i \(-0.853549\pi\)
0.896012 0.444029i \(-0.146451\pi\)
\(138\) 6.00000i 0.510754i
\(139\) 8.42221 0.714362 0.357181 0.934035i \(-0.383738\pi\)
0.357181 + 0.934035i \(0.383738\pi\)
\(140\) 0 0
\(141\) −2.21110 −0.186208
\(142\) 2.78890i 0.234039i
\(143\) − 33.0278i − 2.76192i
\(144\) −0.302776 −0.0252313
\(145\) 0 0
\(146\) 29.9361 2.47753
\(147\) 6.00000i 0.494872i
\(148\) − 20.5139i − 1.68623i
\(149\) 9.39445 0.769623 0.384812 0.922995i \(-0.374266\pi\)
0.384812 + 0.922995i \(0.374266\pi\)
\(150\) 0 0
\(151\) 11.6056 0.944446 0.472223 0.881479i \(-0.343452\pi\)
0.472223 + 0.881479i \(0.343452\pi\)
\(152\) 16.8167i 1.36401i
\(153\) 1.00000i 0.0808452i
\(154\) −41.5139 −3.34528
\(155\) 0 0
\(156\) 21.8167 1.74673
\(157\) 10.4222i 0.831783i 0.909414 + 0.415891i \(0.136530\pi\)
−0.909414 + 0.415891i \(0.863470\pi\)
\(158\) 7.39445i 0.588271i
\(159\) −3.60555 −0.285939
\(160\) 0 0
\(161\) −9.39445 −0.740386
\(162\) − 2.30278i − 0.180923i
\(163\) 14.8167i 1.16053i 0.814428 + 0.580265i \(0.197051\pi\)
−0.814428 + 0.580265i \(0.802949\pi\)
\(164\) −31.7250 −2.47730
\(165\) 0 0
\(166\) −2.78890 −0.216460
\(167\) − 12.4222i − 0.961259i −0.876924 0.480630i \(-0.840408\pi\)
0.876924 0.480630i \(-0.159592\pi\)
\(168\) − 10.8167i − 0.834523i
\(169\) −30.6333 −2.35641
\(170\) 0 0
\(171\) −5.60555 −0.428667
\(172\) − 30.4222i − 2.31967i
\(173\) − 3.39445i − 0.258075i −0.991640 0.129038i \(-0.958811\pi\)
0.991640 0.129038i \(-0.0411888\pi\)
\(174\) 0.908327 0.0688601
\(175\) 0 0
\(176\) 1.51388 0.114113
\(177\) 4.60555i 0.346174i
\(178\) 19.8167i 1.48532i
\(179\) −6.00000 −0.448461 −0.224231 0.974536i \(-0.571987\pi\)
−0.224231 + 0.974536i \(0.571987\pi\)
\(180\) 0 0
\(181\) 3.81665 0.283690 0.141845 0.989889i \(-0.454697\pi\)
0.141845 + 0.989889i \(0.454697\pi\)
\(182\) 54.8444i 4.06534i
\(183\) − 6.60555i − 0.488296i
\(184\) 7.81665 0.576251
\(185\) 0 0
\(186\) 15.2111 1.11533
\(187\) − 5.00000i − 0.365636i
\(188\) 7.30278i 0.532610i
\(189\) 3.60555 0.262265
\(190\) 0 0
\(191\) 11.3944 0.824473 0.412237 0.911077i \(-0.364748\pi\)
0.412237 + 0.911077i \(0.364748\pi\)
\(192\) − 12.8167i − 0.924962i
\(193\) 6.00000i 0.431889i 0.976406 + 0.215945i \(0.0692831\pi\)
−0.976406 + 0.215945i \(0.930717\pi\)
\(194\) 7.39445 0.530890
\(195\) 0 0
\(196\) 19.8167 1.41548
\(197\) − 13.2111i − 0.941252i −0.882333 0.470626i \(-0.844028\pi\)
0.882333 0.470626i \(-0.155972\pi\)
\(198\) 11.5139i 0.818256i
\(199\) −4.42221 −0.313482 −0.156741 0.987640i \(-0.550099\pi\)
−0.156741 + 0.987640i \(0.550099\pi\)
\(200\) 0 0
\(201\) 12.6056 0.889127
\(202\) − 25.8167i − 1.81645i
\(203\) 1.42221i 0.0998192i
\(204\) 3.30278 0.231241
\(205\) 0 0
\(206\) −27.6333 −1.92530
\(207\) 2.60555i 0.181098i
\(208\) − 2.00000i − 0.138675i
\(209\) 28.0278 1.93872
\(210\) 0 0
\(211\) −10.7889 −0.742738 −0.371369 0.928485i \(-0.621112\pi\)
−0.371369 + 0.928485i \(0.621112\pi\)
\(212\) 11.9083i 0.817867i
\(213\) 1.21110i 0.0829834i
\(214\) 21.2111 1.44996
\(215\) 0 0
\(216\) −3.00000 −0.204124
\(217\) 23.8167i 1.61678i
\(218\) 16.6056i 1.12467i
\(219\) 13.0000 0.878459
\(220\) 0 0
\(221\) −6.60555 −0.444337
\(222\) − 14.3028i − 0.959939i
\(223\) − 26.0000i − 1.74109i −0.492090 0.870544i \(-0.663767\pi\)
0.492090 0.870544i \(-0.336233\pi\)
\(224\) 19.1194 1.27747
\(225\) 0 0
\(226\) −18.0000 −1.19734
\(227\) 3.81665i 0.253320i 0.991946 + 0.126660i \(0.0404257\pi\)
−0.991946 + 0.126660i \(0.959574\pi\)
\(228\) 18.5139i 1.22611i
\(229\) −0.211103 −0.0139500 −0.00697502 0.999976i \(-0.502220\pi\)
−0.00697502 + 0.999976i \(0.502220\pi\)
\(230\) 0 0
\(231\) −18.0278 −1.18614
\(232\) − 1.18335i − 0.0776905i
\(233\) − 10.6056i − 0.694793i −0.937718 0.347396i \(-0.887066\pi\)
0.937718 0.347396i \(-0.112934\pi\)
\(234\) 15.2111 0.994381
\(235\) 0 0
\(236\) 15.2111 0.990158
\(237\) 3.21110i 0.208584i
\(238\) 8.30278i 0.538189i
\(239\) 10.6056 0.686016 0.343008 0.939332i \(-0.388554\pi\)
0.343008 + 0.939332i \(0.388554\pi\)
\(240\) 0 0
\(241\) 14.6056 0.940826 0.470413 0.882446i \(-0.344105\pi\)
0.470413 + 0.882446i \(0.344105\pi\)
\(242\) − 32.2389i − 2.07239i
\(243\) − 1.00000i − 0.0641500i
\(244\) −21.8167 −1.39667
\(245\) 0 0
\(246\) −22.1194 −1.41028
\(247\) − 37.0278i − 2.35602i
\(248\) − 19.8167i − 1.25836i
\(249\) −1.21110 −0.0767505
\(250\) 0 0
\(251\) 0.605551 0.0382221 0.0191110 0.999817i \(-0.493916\pi\)
0.0191110 + 0.999817i \(0.493916\pi\)
\(252\) − 11.9083i − 0.750154i
\(253\) − 13.0278i − 0.819048i
\(254\) −0.422205 −0.0264915
\(255\) 0 0
\(256\) −17.9083 −1.11927
\(257\) 24.4222i 1.52342i 0.647921 + 0.761708i \(0.275639\pi\)
−0.647921 + 0.761708i \(0.724361\pi\)
\(258\) − 21.2111i − 1.32055i
\(259\) 22.3944 1.39152
\(260\) 0 0
\(261\) 0.394449 0.0244158
\(262\) − 12.0000i − 0.741362i
\(263\) 5.42221i 0.334347i 0.985927 + 0.167174i \(0.0534641\pi\)
−0.985927 + 0.167174i \(0.946536\pi\)
\(264\) 15.0000 0.923186
\(265\) 0 0
\(266\) −46.5416 −2.85365
\(267\) 8.60555i 0.526651i
\(268\) − 41.6333i − 2.54316i
\(269\) −22.3944 −1.36541 −0.682707 0.730692i \(-0.739197\pi\)
−0.682707 + 0.730692i \(0.739197\pi\)
\(270\) 0 0
\(271\) −9.21110 −0.559535 −0.279767 0.960068i \(-0.590257\pi\)
−0.279767 + 0.960068i \(0.590257\pi\)
\(272\) − 0.302776i − 0.0183585i
\(273\) 23.8167i 1.44145i
\(274\) −23.9361 −1.44603
\(275\) 0 0
\(276\) 8.60555 0.517993
\(277\) 12.7889i 0.768410i 0.923248 + 0.384205i \(0.125524\pi\)
−0.923248 + 0.384205i \(0.874476\pi\)
\(278\) − 19.3944i − 1.16320i
\(279\) 6.60555 0.395464
\(280\) 0 0
\(281\) −32.8444 −1.95933 −0.979667 0.200632i \(-0.935700\pi\)
−0.979667 + 0.200632i \(0.935700\pi\)
\(282\) 5.09167i 0.303205i
\(283\) − 28.0278i − 1.66608i −0.553215 0.833039i \(-0.686599\pi\)
0.553215 0.833039i \(-0.313401\pi\)
\(284\) 4.00000 0.237356
\(285\) 0 0
\(286\) −76.0555 −4.49726
\(287\) − 34.6333i − 2.04434i
\(288\) − 5.30278i − 0.312469i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 3.21110 0.188238
\(292\) − 42.9361i − 2.51264i
\(293\) 33.2389i 1.94183i 0.239415 + 0.970917i \(0.423045\pi\)
−0.239415 + 0.970917i \(0.576955\pi\)
\(294\) 13.8167 0.805804
\(295\) 0 0
\(296\) −18.6333 −1.08304
\(297\) 5.00000i 0.290129i
\(298\) − 21.6333i − 1.25318i
\(299\) −17.2111 −0.995344
\(300\) 0 0
\(301\) 33.2111 1.91426
\(302\) − 26.7250i − 1.53785i
\(303\) − 11.2111i − 0.644061i
\(304\) 1.69722 0.0973425
\(305\) 0 0
\(306\) 2.30278 0.131641
\(307\) − 8.00000i − 0.456584i −0.973593 0.228292i \(-0.926686\pi\)
0.973593 0.228292i \(-0.0733141\pi\)
\(308\) 59.5416i 3.39270i
\(309\) −12.0000 −0.682656
\(310\) 0 0
\(311\) −1.42221 −0.0806459 −0.0403229 0.999187i \(-0.512839\pi\)
−0.0403229 + 0.999187i \(0.512839\pi\)
\(312\) − 19.8167i − 1.12190i
\(313\) 10.2111i 0.577166i 0.957455 + 0.288583i \(0.0931841\pi\)
−0.957455 + 0.288583i \(0.906816\pi\)
\(314\) 24.0000 1.35440
\(315\) 0 0
\(316\) 10.6056 0.596609
\(317\) 15.8167i 0.888352i 0.895940 + 0.444176i \(0.146503\pi\)
−0.895940 + 0.444176i \(0.853497\pi\)
\(318\) 8.30278i 0.465597i
\(319\) −1.97224 −0.110424
\(320\) 0 0
\(321\) 9.21110 0.514114
\(322\) 21.6333i 1.20558i
\(323\) − 5.60555i − 0.311901i
\(324\) −3.30278 −0.183488
\(325\) 0 0
\(326\) 34.1194 1.88970
\(327\) 7.21110i 0.398775i
\(328\) 28.8167i 1.59113i
\(329\) −7.97224 −0.439524
\(330\) 0 0
\(331\) −30.8167 −1.69384 −0.846918 0.531723i \(-0.821545\pi\)
−0.846918 + 0.531723i \(0.821545\pi\)
\(332\) 4.00000i 0.219529i
\(333\) − 6.21110i − 0.340366i
\(334\) −28.6056 −1.56523
\(335\) 0 0
\(336\) −1.09167 −0.0595556
\(337\) − 14.2111i − 0.774128i −0.922053 0.387064i \(-0.873489\pi\)
0.922053 0.387064i \(-0.126511\pi\)
\(338\) 70.5416i 3.83696i
\(339\) −7.81665 −0.424542
\(340\) 0 0
\(341\) −33.0278 −1.78855
\(342\) 12.9083i 0.698002i
\(343\) − 3.60555i − 0.194681i
\(344\) −27.6333 −1.48989
\(345\) 0 0
\(346\) −7.81665 −0.420226
\(347\) − 28.2389i − 1.51594i −0.652289 0.757971i \(-0.726191\pi\)
0.652289 0.757971i \(-0.273809\pi\)
\(348\) − 1.30278i − 0.0698361i
\(349\) 32.6333 1.74682 0.873410 0.486985i \(-0.161903\pi\)
0.873410 + 0.486985i \(0.161903\pi\)
\(350\) 0 0
\(351\) 6.60555 0.352578
\(352\) 26.5139i 1.41319i
\(353\) − 8.39445i − 0.446791i −0.974728 0.223396i \(-0.928286\pi\)
0.974728 0.223396i \(-0.0717142\pi\)
\(354\) 10.6056 0.563679
\(355\) 0 0
\(356\) 28.4222 1.50637
\(357\) 3.60555i 0.190826i
\(358\) 13.8167i 0.730233i
\(359\) 7.39445 0.390264 0.195132 0.980777i \(-0.437486\pi\)
0.195132 + 0.980777i \(0.437486\pi\)
\(360\) 0 0
\(361\) 12.4222 0.653800
\(362\) − 8.78890i − 0.461934i
\(363\) − 14.0000i − 0.734809i
\(364\) 78.6611 4.12296
\(365\) 0 0
\(366\) −15.2111 −0.795097
\(367\) 2.42221i 0.126438i 0.998000 + 0.0632190i \(0.0201367\pi\)
−0.998000 + 0.0632190i \(0.979863\pi\)
\(368\) − 0.788897i − 0.0411241i
\(369\) −9.60555 −0.500045
\(370\) 0 0
\(371\) −13.0000 −0.674926
\(372\) − 21.8167i − 1.13114i
\(373\) 26.4222i 1.36809i 0.729440 + 0.684045i \(0.239781\pi\)
−0.729440 + 0.684045i \(0.760219\pi\)
\(374\) −11.5139 −0.595368
\(375\) 0 0
\(376\) 6.63331 0.342087
\(377\) 2.60555i 0.134193i
\(378\) − 8.30278i − 0.427049i
\(379\) −2.42221 −0.124420 −0.0622102 0.998063i \(-0.519815\pi\)
−0.0622102 + 0.998063i \(0.519815\pi\)
\(380\) 0 0
\(381\) −0.183346 −0.00939311
\(382\) − 26.2389i − 1.34250i
\(383\) − 7.42221i − 0.379257i −0.981856 0.189628i \(-0.939272\pi\)
0.981856 0.189628i \(-0.0607284\pi\)
\(384\) −18.9083 −0.964912
\(385\) 0 0
\(386\) 13.8167 0.703249
\(387\) − 9.21110i − 0.468227i
\(388\) − 10.6056i − 0.538415i
\(389\) 5.57779 0.282805 0.141403 0.989952i \(-0.454839\pi\)
0.141403 + 0.989952i \(0.454839\pi\)
\(390\) 0 0
\(391\) −2.60555 −0.131768
\(392\) − 18.0000i − 0.909137i
\(393\) − 5.21110i − 0.262865i
\(394\) −30.4222 −1.53265
\(395\) 0 0
\(396\) 16.5139 0.829854
\(397\) − 27.8444i − 1.39747i −0.715380 0.698735i \(-0.753746\pi\)
0.715380 0.698735i \(-0.246254\pi\)
\(398\) 10.1833i 0.510445i
\(399\) −20.2111 −1.01182
\(400\) 0 0
\(401\) 1.18335 0.0590935 0.0295467 0.999563i \(-0.490594\pi\)
0.0295467 + 0.999563i \(0.490594\pi\)
\(402\) − 29.0278i − 1.44777i
\(403\) 43.6333i 2.17353i
\(404\) −37.0278 −1.84220
\(405\) 0 0
\(406\) 3.27502 0.162536
\(407\) 31.0555i 1.53936i
\(408\) − 3.00000i − 0.148522i
\(409\) −1.00000 −0.0494468 −0.0247234 0.999694i \(-0.507871\pi\)
−0.0247234 + 0.999694i \(0.507871\pi\)
\(410\) 0 0
\(411\) −10.3944 −0.512720
\(412\) 39.6333i 1.95259i
\(413\) 16.6056i 0.817106i
\(414\) 6.00000 0.294884
\(415\) 0 0
\(416\) 35.0278 1.71738
\(417\) − 8.42221i − 0.412437i
\(418\) − 64.5416i − 3.15683i
\(419\) 36.6333 1.78965 0.894827 0.446413i \(-0.147299\pi\)
0.894827 + 0.446413i \(0.147299\pi\)
\(420\) 0 0
\(421\) −12.2111 −0.595133 −0.297566 0.954701i \(-0.596175\pi\)
−0.297566 + 0.954701i \(0.596175\pi\)
\(422\) 24.8444i 1.20941i
\(423\) 2.21110i 0.107507i
\(424\) 10.8167 0.525303
\(425\) 0 0
\(426\) 2.78890 0.135123
\(427\) − 23.8167i − 1.15257i
\(428\) − 30.4222i − 1.47051i
\(429\) −33.0278 −1.59460
\(430\) 0 0
\(431\) 29.4222 1.41722 0.708609 0.705601i \(-0.249323\pi\)
0.708609 + 0.705601i \(0.249323\pi\)
\(432\) 0.302776i 0.0145673i
\(433\) 31.2111i 1.49991i 0.661489 + 0.749955i \(0.269925\pi\)
−0.661489 + 0.749955i \(0.730075\pi\)
\(434\) 54.8444 2.63262
\(435\) 0 0
\(436\) 23.8167 1.14061
\(437\) − 14.6056i − 0.698678i
\(438\) − 29.9361i − 1.43040i
\(439\) −35.4500 −1.69193 −0.845967 0.533235i \(-0.820976\pi\)
−0.845967 + 0.533235i \(0.820976\pi\)
\(440\) 0 0
\(441\) 6.00000 0.285714
\(442\) 15.2111i 0.723518i
\(443\) − 12.0000i − 0.570137i −0.958507 0.285069i \(-0.907984\pi\)
0.958507 0.285069i \(-0.0920164\pi\)
\(444\) −20.5139 −0.973546
\(445\) 0 0
\(446\) −59.8722 −2.83503
\(447\) − 9.39445i − 0.444342i
\(448\) − 46.2111i − 2.18327i
\(449\) 21.6333 1.02094 0.510469 0.859896i \(-0.329472\pi\)
0.510469 + 0.859896i \(0.329472\pi\)
\(450\) 0 0
\(451\) 48.0278 2.26154
\(452\) 25.8167i 1.21431i
\(453\) − 11.6056i − 0.545276i
\(454\) 8.78890 0.412483
\(455\) 0 0
\(456\) 16.8167 0.787512
\(457\) − 8.60555i − 0.402551i −0.979535 0.201275i \(-0.935491\pi\)
0.979535 0.201275i \(-0.0645086\pi\)
\(458\) 0.486122i 0.0227150i
\(459\) 1.00000 0.0466760
\(460\) 0 0
\(461\) −27.0278 −1.25881 −0.629404 0.777078i \(-0.716701\pi\)
−0.629404 + 0.777078i \(0.716701\pi\)
\(462\) 41.5139i 1.93140i
\(463\) 0.788897i 0.0366632i 0.999832 + 0.0183316i \(0.00583545\pi\)
−0.999832 + 0.0183316i \(0.994165\pi\)
\(464\) −0.119429 −0.00554437
\(465\) 0 0
\(466\) −24.4222 −1.13134
\(467\) − 36.2111i − 1.67565i −0.545939 0.837825i \(-0.683827\pi\)
0.545939 0.837825i \(-0.316173\pi\)
\(468\) − 21.8167i − 1.00848i
\(469\) 45.4500 2.09868
\(470\) 0 0
\(471\) 10.4222 0.480230
\(472\) − 13.8167i − 0.635963i
\(473\) 46.0555i 2.11763i
\(474\) 7.39445 0.339638
\(475\) 0 0
\(476\) 11.9083 0.545817
\(477\) 3.60555i 0.165087i
\(478\) − 24.4222i − 1.11705i
\(479\) 10.4222 0.476203 0.238101 0.971240i \(-0.423475\pi\)
0.238101 + 0.971240i \(0.423475\pi\)
\(480\) 0 0
\(481\) 41.0278 1.87070
\(482\) − 33.6333i − 1.53196i
\(483\) 9.39445i 0.427462i
\(484\) −46.2389 −2.10177
\(485\) 0 0
\(486\) −2.30278 −0.104456
\(487\) 16.8444i 0.763293i 0.924308 + 0.381647i \(0.124643\pi\)
−0.924308 + 0.381647i \(0.875357\pi\)
\(488\) 19.8167i 0.897058i
\(489\) 14.8167 0.670032
\(490\) 0 0
\(491\) 24.4222 1.10216 0.551079 0.834453i \(-0.314216\pi\)
0.551079 + 0.834453i \(0.314216\pi\)
\(492\) 31.7250i 1.43027i
\(493\) 0.394449i 0.0177651i
\(494\) −85.2666 −3.83633
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) 4.36669i 0.195873i
\(498\) 2.78890i 0.124973i
\(499\) 37.4500 1.67649 0.838245 0.545293i \(-0.183582\pi\)
0.838245 + 0.545293i \(0.183582\pi\)
\(500\) 0 0
\(501\) −12.4222 −0.554983
\(502\) − 1.39445i − 0.0622373i
\(503\) − 12.7889i − 0.570229i −0.958494 0.285114i \(-0.907968\pi\)
0.958494 0.285114i \(-0.0920316\pi\)
\(504\) −10.8167 −0.481812
\(505\) 0 0
\(506\) −30.0000 −1.33366
\(507\) 30.6333i 1.36047i
\(508\) 0.605551i 0.0268670i
\(509\) −3.81665 −0.169170 −0.0845851 0.996416i \(-0.526956\pi\)
−0.0845851 + 0.996416i \(0.526956\pi\)
\(510\) 0 0
\(511\) 46.8722 2.07350
\(512\) 3.42221i 0.151242i
\(513\) 5.60555i 0.247491i
\(514\) 56.2389 2.48059
\(515\) 0 0
\(516\) −30.4222 −1.33926
\(517\) − 11.0555i − 0.486221i
\(518\) − 51.5694i − 2.26583i
\(519\) −3.39445 −0.149000
\(520\) 0 0
\(521\) 32.4500 1.42166 0.710829 0.703365i \(-0.248320\pi\)
0.710829 + 0.703365i \(0.248320\pi\)
\(522\) − 0.908327i − 0.0397564i
\(523\) 34.8444i 1.52364i 0.647789 + 0.761820i \(0.275694\pi\)
−0.647789 + 0.761820i \(0.724306\pi\)
\(524\) −17.2111 −0.751871
\(525\) 0 0
\(526\) 12.4861 0.544421
\(527\) 6.60555i 0.287742i
\(528\) − 1.51388i − 0.0658831i
\(529\) 16.2111 0.704831
\(530\) 0 0
\(531\) 4.60555 0.199864
\(532\) 66.7527i 2.89410i
\(533\) − 63.4500i − 2.74832i
\(534\) 19.8167 0.857550
\(535\) 0 0
\(536\) −37.8167 −1.63343
\(537\) 6.00000i 0.258919i
\(538\) 51.5694i 2.22331i
\(539\) −30.0000 −1.29219
\(540\) 0 0
\(541\) 1.39445 0.0599520 0.0299760 0.999551i \(-0.490457\pi\)
0.0299760 + 0.999551i \(0.490457\pi\)
\(542\) 21.2111i 0.911095i
\(543\) − 3.81665i − 0.163788i
\(544\) 5.30278 0.227355
\(545\) 0 0
\(546\) 54.8444 2.34712
\(547\) − 12.8167i − 0.548001i −0.961730 0.274000i \(-0.911653\pi\)
0.961730 0.274000i \(-0.0883469\pi\)
\(548\) 34.3305i 1.46653i
\(549\) −6.60555 −0.281918
\(550\) 0 0
\(551\) −2.21110 −0.0941961
\(552\) − 7.81665i − 0.332699i
\(553\) 11.5778i 0.492338i
\(554\) 29.4500 1.25121
\(555\) 0 0
\(556\) −27.8167 −1.17969
\(557\) 16.7889i 0.711368i 0.934606 + 0.355684i \(0.115752\pi\)
−0.934606 + 0.355684i \(0.884248\pi\)
\(558\) − 15.2111i − 0.643937i
\(559\) 60.8444 2.57344
\(560\) 0 0
\(561\) −5.00000 −0.211100
\(562\) 75.6333i 3.19040i
\(563\) 6.21110i 0.261767i 0.991398 + 0.130883i \(0.0417813\pi\)
−0.991398 + 0.130883i \(0.958219\pi\)
\(564\) 7.30278 0.307502
\(565\) 0 0
\(566\) −64.5416 −2.71289
\(567\) − 3.60555i − 0.151419i
\(568\) − 3.63331i − 0.152450i
\(569\) −9.21110 −0.386150 −0.193075 0.981184i \(-0.561846\pi\)
−0.193075 + 0.981184i \(0.561846\pi\)
\(570\) 0 0
\(571\) −25.0278 −1.04738 −0.523690 0.851909i \(-0.675445\pi\)
−0.523690 + 0.851909i \(0.675445\pi\)
\(572\) 109.083i 4.56100i
\(573\) − 11.3944i − 0.476010i
\(574\) −79.7527 −3.32881
\(575\) 0 0
\(576\) −12.8167 −0.534027
\(577\) 12.0000i 0.499567i 0.968302 + 0.249783i \(0.0803594\pi\)
−0.968302 + 0.249783i \(0.919641\pi\)
\(578\) 2.30278i 0.0957828i
\(579\) 6.00000 0.249351
\(580\) 0 0
\(581\) −4.36669 −0.181161
\(582\) − 7.39445i − 0.306510i
\(583\) − 18.0278i − 0.746633i
\(584\) −39.0000 −1.61383
\(585\) 0 0
\(586\) 76.5416 3.16191
\(587\) 7.42221i 0.306347i 0.988199 + 0.153174i \(0.0489494\pi\)
−0.988199 + 0.153174i \(0.951051\pi\)
\(588\) − 19.8167i − 0.817225i
\(589\) −37.0278 −1.52570
\(590\) 0 0
\(591\) −13.2111 −0.543432
\(592\) 1.88057i 0.0772910i
\(593\) − 22.8167i − 0.936968i −0.883472 0.468484i \(-0.844800\pi\)
0.883472 0.468484i \(-0.155200\pi\)
\(594\) 11.5139 0.472420
\(595\) 0 0
\(596\) −31.0278 −1.27095
\(597\) 4.42221i 0.180989i
\(598\) 39.6333i 1.62073i
\(599\) −15.2111 −0.621509 −0.310754 0.950490i \(-0.600582\pi\)
−0.310754 + 0.950490i \(0.600582\pi\)
\(600\) 0 0
\(601\) 1.39445 0.0568807 0.0284404 0.999595i \(-0.490946\pi\)
0.0284404 + 0.999595i \(0.490946\pi\)
\(602\) − 76.4777i − 3.11700i
\(603\) − 12.6056i − 0.513338i
\(604\) −38.3305 −1.55965
\(605\) 0 0
\(606\) −25.8167 −1.04873
\(607\) 0.394449i 0.0160102i 0.999968 + 0.00800509i \(0.00254813\pi\)
−0.999968 + 0.00800509i \(0.997452\pi\)
\(608\) 29.7250i 1.20551i
\(609\) 1.42221 0.0576307
\(610\) 0 0
\(611\) −14.6056 −0.590877
\(612\) − 3.30278i − 0.133507i
\(613\) 7.63331i 0.308306i 0.988047 + 0.154153i \(0.0492649\pi\)
−0.988047 + 0.154153i \(0.950735\pi\)
\(614\) −18.4222 −0.743460
\(615\) 0 0
\(616\) 54.0833 2.17908
\(617\) − 43.8167i − 1.76399i −0.471257 0.881996i \(-0.656200\pi\)
0.471257 0.881996i \(-0.343800\pi\)
\(618\) 27.6333i 1.11157i
\(619\) 7.21110 0.289839 0.144919 0.989443i \(-0.453708\pi\)
0.144919 + 0.989443i \(0.453708\pi\)
\(620\) 0 0
\(621\) 2.60555 0.104557
\(622\) 3.27502i 0.131316i
\(623\) 31.0278i 1.24310i
\(624\) −2.00000 −0.0800641
\(625\) 0 0
\(626\) 23.5139 0.939804
\(627\) − 28.0278i − 1.11932i
\(628\) − 34.4222i − 1.37360i
\(629\) 6.21110 0.247653
\(630\) 0 0
\(631\) −30.4500 −1.21219 −0.606097 0.795391i \(-0.707266\pi\)
−0.606097 + 0.795391i \(0.707266\pi\)
\(632\) − 9.63331i − 0.383192i
\(633\) 10.7889i 0.428820i
\(634\) 36.4222 1.44651
\(635\) 0 0
\(636\) 11.9083 0.472196
\(637\) 39.6333i 1.57033i
\(638\) 4.54163i 0.179805i
\(639\) 1.21110 0.0479105
\(640\) 0 0
\(641\) 44.4500 1.75567 0.877834 0.478965i \(-0.158988\pi\)
0.877834 + 0.478965i \(0.158988\pi\)
\(642\) − 21.2111i − 0.837135i
\(643\) − 15.1833i − 0.598773i −0.954132 0.299386i \(-0.903218\pi\)
0.954132 0.299386i \(-0.0967819\pi\)
\(644\) 31.0278 1.22266
\(645\) 0 0
\(646\) −12.9083 −0.507871
\(647\) 37.2111i 1.46292i 0.681885 + 0.731460i \(0.261161\pi\)
−0.681885 + 0.731460i \(0.738839\pi\)
\(648\) 3.00000i 0.117851i
\(649\) −23.0278 −0.903919
\(650\) 0 0
\(651\) 23.8167 0.933448
\(652\) − 48.9361i − 1.91648i
\(653\) − 28.0555i − 1.09790i −0.835856 0.548949i \(-0.815028\pi\)
0.835856 0.548949i \(-0.184972\pi\)
\(654\) 16.6056 0.649328
\(655\) 0 0
\(656\) 2.90833 0.113551
\(657\) − 13.0000i − 0.507178i
\(658\) 18.3583i 0.715681i
\(659\) 34.8444 1.35735 0.678673 0.734441i \(-0.262555\pi\)
0.678673 + 0.734441i \(0.262555\pi\)
\(660\) 0 0
\(661\) 17.4222 0.677645 0.338823 0.940850i \(-0.389971\pi\)
0.338823 + 0.940850i \(0.389971\pi\)
\(662\) 70.9638i 2.75809i
\(663\) 6.60555i 0.256538i
\(664\) 3.63331 0.141000
\(665\) 0 0
\(666\) −14.3028 −0.554221
\(667\) 1.02776i 0.0397949i
\(668\) 41.0278i 1.58741i
\(669\) −26.0000 −1.00522
\(670\) 0 0
\(671\) 33.0278 1.27502
\(672\) − 19.1194i − 0.737548i
\(673\) 10.0000i 0.385472i 0.981251 + 0.192736i \(0.0617360\pi\)
−0.981251 + 0.192736i \(0.938264\pi\)
\(674\) −32.7250 −1.26052
\(675\) 0 0
\(676\) 101.175 3.89134
\(677\) 30.0000i 1.15299i 0.817099 + 0.576497i \(0.195581\pi\)
−0.817099 + 0.576497i \(0.804419\pi\)
\(678\) 18.0000i 0.691286i
\(679\) 11.5778 0.444315
\(680\) 0 0
\(681\) 3.81665 0.146254
\(682\) 76.0555i 2.91232i
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 18.5139 0.707896
\(685\) 0 0
\(686\) −8.30278 −0.317001
\(687\) 0.211103i 0.00805406i
\(688\) 2.78890i 0.106326i
\(689\) −23.8167 −0.907342
\(690\) 0 0
\(691\) 1.21110 0.0460725 0.0230363 0.999735i \(-0.492667\pi\)
0.0230363 + 0.999735i \(0.492667\pi\)
\(692\) 11.2111i 0.426182i
\(693\) 18.0278i 0.684818i
\(694\) −65.0278 −2.46842
\(695\) 0 0
\(696\) −1.18335 −0.0448546
\(697\) − 9.60555i − 0.363836i
\(698\) − 75.1472i − 2.84436i
\(699\) −10.6056 −0.401139
\(700\) 0 0
\(701\) −13.8167 −0.521848 −0.260924 0.965359i \(-0.584027\pi\)
−0.260924 + 0.965359i \(0.584027\pi\)
\(702\) − 15.2111i − 0.574106i
\(703\) 34.8167i 1.31313i
\(704\) 64.0833 2.41523
\(705\) 0 0
\(706\) −19.3305 −0.727514
\(707\) − 40.4222i − 1.52023i
\(708\) − 15.2111i − 0.571668i
\(709\) −36.7889 −1.38164 −0.690818 0.723029i \(-0.742749\pi\)
−0.690818 + 0.723029i \(0.742749\pi\)
\(710\) 0 0
\(711\) 3.21110 0.120426
\(712\) − 25.8167i − 0.967520i
\(713\) 17.2111i 0.644561i
\(714\) 8.30278 0.310724
\(715\) 0 0
\(716\) 19.8167 0.740583
\(717\) − 10.6056i − 0.396072i
\(718\) − 17.0278i − 0.635470i
\(719\) −4.21110 −0.157048 −0.0785238 0.996912i \(-0.525021\pi\)
−0.0785238 + 0.996912i \(0.525021\pi\)
\(720\) 0 0
\(721\) −43.2666 −1.61133
\(722\) − 28.6056i − 1.06459i
\(723\) − 14.6056i − 0.543186i
\(724\) −12.6056 −0.468482
\(725\) 0 0
\(726\) −32.2389 −1.19650
\(727\) 44.0555i 1.63393i 0.576688 + 0.816964i \(0.304345\pi\)
−0.576688 + 0.816964i \(0.695655\pi\)
\(728\) − 71.4500i − 2.64811i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 9.21110 0.340685
\(732\) 21.8167i 0.806367i
\(733\) 37.3944i 1.38120i 0.723239 + 0.690598i \(0.242652\pi\)
−0.723239 + 0.690598i \(0.757348\pi\)
\(734\) 5.57779 0.205880
\(735\) 0 0
\(736\) 13.8167 0.509289
\(737\) 63.0278i 2.32166i
\(738\) 22.1194i 0.814227i
\(739\) 6.42221 0.236245 0.118122 0.992999i \(-0.462313\pi\)
0.118122 + 0.992999i \(0.462313\pi\)
\(740\) 0 0
\(741\) −37.0278 −1.36025
\(742\) 29.9361i 1.09899i
\(743\) − 50.8444i − 1.86530i −0.360782 0.932650i \(-0.617490\pi\)
0.360782 0.932650i \(-0.382510\pi\)
\(744\) −19.8167 −0.726514
\(745\) 0 0
\(746\) 60.8444 2.22767
\(747\) 1.21110i 0.0443119i
\(748\) 16.5139i 0.603807i
\(749\) 33.2111 1.21351
\(750\) 0 0
\(751\) −53.8722 −1.96582 −0.982912 0.184078i \(-0.941070\pi\)
−0.982912 + 0.184078i \(0.941070\pi\)
\(752\) − 0.669468i − 0.0244130i
\(753\) − 0.605551i − 0.0220675i
\(754\) 6.00000 0.218507
\(755\) 0 0
\(756\) −11.9083 −0.433102
\(757\) − 8.00000i − 0.290765i −0.989376 0.145382i \(-0.953559\pi\)
0.989376 0.145382i \(-0.0464413\pi\)
\(758\) 5.57779i 0.202595i
\(759\) −13.0278 −0.472878
\(760\) 0 0
\(761\) −47.4500 −1.72006 −0.860030 0.510244i \(-0.829555\pi\)
−0.860030 + 0.510244i \(0.829555\pi\)
\(762\) 0.422205i 0.0152949i
\(763\) 26.0000i 0.941263i
\(764\) −37.6333 −1.36153
\(765\) 0 0
\(766\) −17.0917 −0.617547
\(767\) 30.4222i 1.09848i
\(768\) 17.9083i 0.646211i
\(769\) 19.4222 0.700383 0.350191 0.936678i \(-0.386117\pi\)
0.350191 + 0.936678i \(0.386117\pi\)
\(770\) 0 0
\(771\) 24.4222 0.879544
\(772\) − 19.8167i − 0.713217i
\(773\) 44.4500i 1.59875i 0.600830 + 0.799377i \(0.294837\pi\)
−0.600830 + 0.799377i \(0.705163\pi\)
\(774\) −21.2111 −0.762417
\(775\) 0 0
\(776\) −9.63331 −0.345816
\(777\) − 22.3944i − 0.803396i
\(778\) − 12.8444i − 0.460494i
\(779\) 53.8444 1.92918
\(780\) 0 0
\(781\) −6.05551 −0.216683
\(782\) 6.00000i 0.214560i
\(783\) − 0.394449i − 0.0140964i
\(784\) −1.81665 −0.0648805
\(785\) 0 0
\(786\) −12.0000 −0.428026
\(787\) 34.8167i 1.24108i 0.784175 + 0.620540i \(0.213086\pi\)
−0.784175 + 0.620540i \(0.786914\pi\)
\(788\) 43.6333i 1.55437i
\(789\) 5.42221 0.193036
\(790\) 0 0
\(791\) −28.1833 −1.00208
\(792\) − 15.0000i − 0.533002i
\(793\) − 43.6333i − 1.54946i
\(794\) −64.1194 −2.27551
\(795\) 0 0
\(796\) 14.6056 0.517680
\(797\) 54.8167i 1.94171i 0.239677 + 0.970853i \(0.422959\pi\)
−0.239677 + 0.970853i \(0.577041\pi\)
\(798\) 46.5416i 1.64756i
\(799\) −2.21110 −0.0782232
\(800\) 0 0
\(801\) 8.60555 0.304062
\(802\) − 2.72498i − 0.0962224i
\(803\) 65.0000i 2.29380i
\(804\) −41.6333 −1.46829
\(805\) 0 0
\(806\) 100.478 3.53918
\(807\) 22.3944i 0.788322i
\(808\) 33.6333i 1.18322i
\(809\) −12.4222 −0.436741 −0.218371 0.975866i \(-0.570074\pi\)
−0.218371 + 0.975866i \(0.570074\pi\)
\(810\) 0 0
\(811\) −23.3944 −0.821490 −0.410745 0.911750i \(-0.634731\pi\)
−0.410745 + 0.911750i \(0.634731\pi\)
\(812\) − 4.69722i − 0.164840i
\(813\) 9.21110i 0.323047i
\(814\) 71.5139 2.50656
\(815\) 0 0
\(816\) −0.302776 −0.0105993
\(817\) 51.6333i 1.80642i
\(818\) 2.30278i 0.0805147i
\(819\) 23.8167 0.832221
\(820\) 0 0
\(821\) −3.21110 −0.112068 −0.0560341 0.998429i \(-0.517846\pi\)
−0.0560341 + 0.998429i \(0.517846\pi\)
\(822\) 23.9361i 0.834867i
\(823\) − 8.81665i − 0.307329i −0.988123 0.153665i \(-0.950892\pi\)
0.988123 0.153665i \(-0.0491075\pi\)
\(824\) 36.0000 1.25412
\(825\) 0 0
\(826\) 38.2389 1.33050
\(827\) − 34.6611i − 1.20528i −0.798012 0.602642i \(-0.794115\pi\)
0.798012 0.602642i \(-0.205885\pi\)
\(828\) − 8.60555i − 0.299064i
\(829\) 4.21110 0.146258 0.0731288 0.997323i \(-0.476702\pi\)
0.0731288 + 0.997323i \(0.476702\pi\)
\(830\) 0 0
\(831\) 12.7889 0.443642
\(832\) − 84.6611i − 2.93509i
\(833\) 6.00000i 0.207888i
\(834\) −19.3944 −0.671575
\(835\) 0 0
\(836\) −92.5694 −3.20158
\(837\) − 6.60555i − 0.228321i
\(838\) − 84.3583i − 2.91411i
\(839\) 33.8444 1.16844 0.584219 0.811596i \(-0.301401\pi\)
0.584219 + 0.811596i \(0.301401\pi\)
\(840\) 0 0
\(841\) −28.8444 −0.994635
\(842\) 28.1194i 0.969060i
\(843\) 32.8444i 1.13122i
\(844\) 35.6333 1.22655
\(845\) 0 0
\(846\) 5.09167 0.175055
\(847\) − 50.4777i − 1.73443i
\(848\) − 1.09167i − 0.0374882i
\(849\) −28.0278 −0.961910
\(850\) 0 0
\(851\) 16.1833 0.554758
\(852\) − 4.00000i − 0.137038i
\(853\) − 46.8444i − 1.60392i −0.597376 0.801961i \(-0.703790\pi\)
0.597376 0.801961i \(-0.296210\pi\)
\(854\) −54.8444 −1.87674
\(855\) 0 0
\(856\) −27.6333 −0.944487
\(857\) − 30.0555i − 1.02668i −0.858186 0.513338i \(-0.828409\pi\)
0.858186 0.513338i \(-0.171591\pi\)
\(858\) 76.0555i 2.59649i
\(859\) −41.6056 −1.41956 −0.709782 0.704422i \(-0.751206\pi\)
−0.709782 + 0.704422i \(0.751206\pi\)
\(860\) 0 0
\(861\) −34.6333 −1.18030
\(862\) − 67.7527i − 2.30767i
\(863\) 38.6333i 1.31509i 0.753414 + 0.657547i \(0.228406\pi\)
−0.753414 + 0.657547i \(0.771594\pi\)
\(864\) −5.30278 −0.180404
\(865\) 0 0
\(866\) 71.8722 2.44232
\(867\) 1.00000i 0.0339618i
\(868\) − 78.6611i − 2.66993i
\(869\) −16.0555 −0.544646
\(870\) 0 0
\(871\) 83.2666 2.82138
\(872\) − 21.6333i − 0.732596i
\(873\) − 3.21110i − 0.108679i
\(874\) −33.6333 −1.13766
\(875\) 0 0
\(876\) −42.9361 −1.45068
\(877\) 6.57779i 0.222116i 0.993814 + 0.111058i \(0.0354240\pi\)
−0.993814 + 0.111058i \(0.964576\pi\)
\(878\) 81.6333i 2.75499i
\(879\) 33.2389 1.12112
\(880\) 0 0
\(881\) −13.1833 −0.444158 −0.222079 0.975029i \(-0.571284\pi\)
−0.222079 + 0.975029i \(0.571284\pi\)
\(882\) − 13.8167i − 0.465231i
\(883\) 28.2389i 0.950313i 0.879901 + 0.475157i \(0.157609\pi\)
−0.879901 + 0.475157i \(0.842391\pi\)
\(884\) 21.8167 0.733773
\(885\) 0 0
\(886\) −27.6333 −0.928359
\(887\) − 42.4222i − 1.42440i −0.701978 0.712199i \(-0.747699\pi\)
0.701978 0.712199i \(-0.252301\pi\)
\(888\) 18.6333i 0.625293i
\(889\) −0.661064 −0.0221714
\(890\) 0 0
\(891\) 5.00000 0.167506
\(892\) 85.8722i 2.87521i
\(893\) − 12.3944i − 0.414764i
\(894\) −21.6333 −0.723526
\(895\) 0 0
\(896\) −68.1749 −2.27756
\(897\) 17.2111i 0.574662i
\(898\) − 49.8167i − 1.66240i
\(899\) 2.60555 0.0869000
\(900\) 0 0
\(901\) −3.60555 −0.120118
\(902\) − 110.597i − 3.68248i
\(903\) − 33.2111i − 1.10520i
\(904\) 23.4500 0.779934
\(905\) 0 0
\(906\) −26.7250 −0.887878
\(907\) − 23.6056i − 0.783809i −0.920006 0.391905i \(-0.871816\pi\)
0.920006 0.391905i \(-0.128184\pi\)
\(908\) − 12.6056i − 0.418330i
\(909\) −11.2111 −0.371849
\(910\) 0 0
\(911\) −16.2111 −0.537098 −0.268549 0.963266i \(-0.586544\pi\)
−0.268549 + 0.963266i \(0.586544\pi\)
\(912\) − 1.69722i − 0.0562007i
\(913\) − 6.05551i − 0.200408i
\(914\) −19.8167 −0.655477
\(915\) 0 0
\(916\) 0.697224 0.0230369
\(917\) − 18.7889i − 0.620464i
\(918\) − 2.30278i − 0.0760029i
\(919\) 3.18335 0.105009 0.0525045 0.998621i \(-0.483280\pi\)
0.0525045 + 0.998621i \(0.483280\pi\)
\(920\) 0 0
\(921\) −8.00000 −0.263609
\(922\) 62.2389i 2.04973i
\(923\) 8.00000i 0.263323i
\(924\) 59.5416 1.95878
\(925\) 0 0
\(926\) 1.81665 0.0596989
\(927\) 12.0000i 0.394132i
\(928\) − 2.09167i − 0.0686625i
\(929\) −40.3944 −1.32530 −0.662649 0.748930i \(-0.730568\pi\)
−0.662649 + 0.748930i \(0.730568\pi\)
\(930\) 0 0
\(931\) −33.6333 −1.10229
\(932\) 35.0278i 1.14737i
\(933\) 1.42221i 0.0465609i
\(934\) −83.3860 −2.72847
\(935\) 0 0
\(936\) −19.8167 −0.647728
\(937\) 5.39445i 0.176229i 0.996110 + 0.0881145i \(0.0280841\pi\)
−0.996110 + 0.0881145i \(0.971916\pi\)
\(938\) − 104.661i − 3.41730i
\(939\) 10.2111 0.333227
\(940\) 0 0
\(941\) 25.6333 0.835622 0.417811 0.908534i \(-0.362797\pi\)
0.417811 + 0.908534i \(0.362797\pi\)
\(942\) − 24.0000i − 0.781962i
\(943\) − 25.0278i − 0.815016i
\(944\) −1.39445 −0.0453854
\(945\) 0 0
\(946\) 106.056 3.44816
\(947\) − 59.6333i − 1.93782i −0.247409 0.968911i \(-0.579579\pi\)
0.247409 0.968911i \(-0.420421\pi\)
\(948\) − 10.6056i − 0.344452i
\(949\) 85.8722 2.78753
\(950\) 0 0
\(951\) 15.8167 0.512890
\(952\) − 10.8167i − 0.350570i
\(953\) − 7.18335i − 0.232691i −0.993209 0.116346i \(-0.962882\pi\)
0.993209 0.116346i \(-0.0371181\pi\)
\(954\) 8.30278 0.268812
\(955\) 0 0
\(956\) −35.0278 −1.13288
\(957\) 1.97224i 0.0637536i
\(958\) − 24.0000i − 0.775405i
\(959\) −37.4777 −1.21022
\(960\) 0 0
\(961\) 12.6333 0.407526
\(962\) − 94.4777i − 3.04608i
\(963\) − 9.21110i − 0.296824i
\(964\) −48.2389 −1.55367
\(965\) 0 0
\(966\) 21.6333 0.696040
\(967\) 2.18335i 0.0702117i 0.999384 + 0.0351058i \(0.0111768\pi\)
−0.999384 + 0.0351058i \(0.988823\pi\)
\(968\) 42.0000i 1.34993i
\(969\) −5.60555 −0.180076
\(970\) 0 0
\(971\) 45.4500 1.45856 0.729279 0.684216i \(-0.239855\pi\)
0.729279 + 0.684216i \(0.239855\pi\)
\(972\) 3.30278i 0.105937i
\(973\) − 30.3667i − 0.973511i
\(974\) 38.7889 1.24288
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) 40.0555i 1.28149i 0.767754 + 0.640745i \(0.221374\pi\)
−0.767754 + 0.640745i \(0.778626\pi\)
\(978\) − 34.1194i − 1.09102i
\(979\) −43.0278 −1.37517
\(980\) 0 0
\(981\) 7.21110 0.230233
\(982\) − 56.2389i − 1.79465i
\(983\) − 26.6056i − 0.848585i −0.905525 0.424293i \(-0.860523\pi\)
0.905525 0.424293i \(-0.139477\pi\)
\(984\) 28.8167 0.918641
\(985\) 0 0
\(986\) 0.908327 0.0289270
\(987\) 7.97224i 0.253759i
\(988\) 122.294i 3.89070i
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) −39.4500 −1.25317 −0.626585 0.779353i \(-0.715548\pi\)
−0.626585 + 0.779353i \(0.715548\pi\)
\(992\) − 35.0278i − 1.11213i
\(993\) 30.8167i 0.977937i
\(994\) 10.0555 0.318941
\(995\) 0 0
\(996\) 4.00000 0.126745
\(997\) 23.0000i 0.728417i 0.931317 + 0.364209i \(0.118661\pi\)
−0.931317 + 0.364209i \(0.881339\pi\)
\(998\) − 86.2389i − 2.72984i
\(999\) −6.21110 −0.196511
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.2.b.f.1174.1 4
5.2 odd 4 255.2.a.a.1.2 2
5.3 odd 4 1275.2.a.j.1.1 2
5.4 even 2 inner 1275.2.b.f.1174.4 4
15.2 even 4 765.2.a.f.1.1 2
15.8 even 4 3825.2.a.y.1.2 2
20.7 even 4 4080.2.a.bl.1.1 2
85.67 odd 4 4335.2.a.l.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
255.2.a.a.1.2 2 5.2 odd 4
765.2.a.f.1.1 2 15.2 even 4
1275.2.a.j.1.1 2 5.3 odd 4
1275.2.b.f.1174.1 4 1.1 even 1 trivial
1275.2.b.f.1174.4 4 5.4 even 2 inner
3825.2.a.y.1.2 2 15.8 even 4
4080.2.a.bl.1.1 2 20.7 even 4
4335.2.a.l.1.2 2 85.67 odd 4