Properties

Label 1275.4.a.bf.1.6
Level $1275$
Weight $4$
Character 1275.1
Self dual yes
Analytic conductor $75.227$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1275,4,Mod(1,1275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1275.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.2274352573\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} - 88 x^{12} + 151 x^{11} + 2969 x^{10} - 4260 x^{9} - 48218 x^{8} + 56779 x^{7} + \cdots - 40000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 255)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.25969\) of defining polynomial
Character \(\chi\) \(=\) 1275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.25969 q^{2} -3.00000 q^{3} -6.41317 q^{4} +3.77908 q^{6} -12.7244 q^{7} +18.1562 q^{8} +9.00000 q^{9} -62.4899 q^{11} +19.2395 q^{12} +82.6391 q^{13} +16.0289 q^{14} +28.4341 q^{16} +17.0000 q^{17} -11.3373 q^{18} +80.2399 q^{19} +38.1733 q^{21} +78.7182 q^{22} -200.609 q^{23} -54.4686 q^{24} -104.100 q^{26} -27.0000 q^{27} +81.6040 q^{28} -188.476 q^{29} -11.0660 q^{31} -181.068 q^{32} +187.470 q^{33} -21.4148 q^{34} -57.7185 q^{36} -313.895 q^{37} -101.078 q^{38} -247.917 q^{39} +49.9679 q^{41} -48.0868 q^{42} +15.2173 q^{43} +400.758 q^{44} +252.706 q^{46} -311.467 q^{47} -85.3022 q^{48} -181.088 q^{49} -51.0000 q^{51} -529.979 q^{52} -244.318 q^{53} +34.0118 q^{54} -231.028 q^{56} -240.720 q^{57} +237.423 q^{58} +471.083 q^{59} +539.301 q^{61} +13.9397 q^{62} -114.520 q^{63} +0.617610 q^{64} -236.155 q^{66} -185.229 q^{67} -109.024 q^{68} +601.827 q^{69} +1013.09 q^{71} +163.406 q^{72} +167.726 q^{73} +395.411 q^{74} -514.592 q^{76} +795.149 q^{77} +312.300 q^{78} -883.216 q^{79} +81.0000 q^{81} -62.9444 q^{82} -760.655 q^{83} -244.812 q^{84} -19.1691 q^{86} +565.429 q^{87} -1134.58 q^{88} -1114.45 q^{89} -1051.54 q^{91} +1286.54 q^{92} +33.1979 q^{93} +392.354 q^{94} +543.204 q^{96} +21.6086 q^{97} +228.116 q^{98} -562.409 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{2} - 42 q^{3} + 68 q^{4} + 6 q^{6} - 8 q^{7} - 51 q^{8} + 126 q^{9} + 58 q^{11} - 204 q^{12} + 72 q^{13} + 257 q^{14} + 404 q^{16} + 238 q^{17} - 18 q^{18} + 282 q^{19} + 24 q^{21} - 361 q^{22}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.25969 −0.445369 −0.222685 0.974891i \(-0.571482\pi\)
−0.222685 + 0.974891i \(0.571482\pi\)
\(3\) −3.00000 −0.577350
\(4\) −6.41317 −0.801646
\(5\) 0 0
\(6\) 3.77908 0.257134
\(7\) −12.7244 −0.687056 −0.343528 0.939143i \(-0.611622\pi\)
−0.343528 + 0.939143i \(0.611622\pi\)
\(8\) 18.1562 0.802398
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −62.4899 −1.71285 −0.856427 0.516267i \(-0.827321\pi\)
−0.856427 + 0.516267i \(0.827321\pi\)
\(12\) 19.2395 0.462831
\(13\) 82.6391 1.76307 0.881537 0.472114i \(-0.156509\pi\)
0.881537 + 0.472114i \(0.156509\pi\)
\(14\) 16.0289 0.305994
\(15\) 0 0
\(16\) 28.4341 0.444282
\(17\) 17.0000 0.242536
\(18\) −11.3373 −0.148456
\(19\) 80.2399 0.968858 0.484429 0.874831i \(-0.339027\pi\)
0.484429 + 0.874831i \(0.339027\pi\)
\(20\) 0 0
\(21\) 38.1733 0.396672
\(22\) 78.7182 0.762853
\(23\) −200.609 −1.81869 −0.909345 0.416042i \(-0.863417\pi\)
−0.909345 + 0.416042i \(0.863417\pi\)
\(24\) −54.4686 −0.463265
\(25\) 0 0
\(26\) −104.100 −0.785220
\(27\) −27.0000 −0.192450
\(28\) 81.6040 0.550775
\(29\) −188.476 −1.20687 −0.603434 0.797413i \(-0.706201\pi\)
−0.603434 + 0.797413i \(0.706201\pi\)
\(30\) 0 0
\(31\) −11.0660 −0.0641130 −0.0320565 0.999486i \(-0.510206\pi\)
−0.0320565 + 0.999486i \(0.510206\pi\)
\(32\) −181.068 −1.00027
\(33\) 187.470 0.988917
\(34\) −21.4148 −0.108018
\(35\) 0 0
\(36\) −57.7185 −0.267215
\(37\) −313.895 −1.39470 −0.697351 0.716730i \(-0.745638\pi\)
−0.697351 + 0.716730i \(0.745638\pi\)
\(38\) −101.078 −0.431500
\(39\) −247.917 −1.01791
\(40\) 0 0
\(41\) 49.9679 0.190334 0.0951668 0.995461i \(-0.469662\pi\)
0.0951668 + 0.995461i \(0.469662\pi\)
\(42\) −48.0868 −0.176665
\(43\) 15.2173 0.0539678 0.0269839 0.999636i \(-0.491410\pi\)
0.0269839 + 0.999636i \(0.491410\pi\)
\(44\) 400.758 1.37310
\(45\) 0 0
\(46\) 252.706 0.809989
\(47\) −311.467 −0.966642 −0.483321 0.875443i \(-0.660570\pi\)
−0.483321 + 0.875443i \(0.660570\pi\)
\(48\) −85.3022 −0.256507
\(49\) −181.088 −0.527955
\(50\) 0 0
\(51\) −51.0000 −0.140028
\(52\) −529.979 −1.41336
\(53\) −244.318 −0.633202 −0.316601 0.948559i \(-0.602542\pi\)
−0.316601 + 0.948559i \(0.602542\pi\)
\(54\) 34.0118 0.0857114
\(55\) 0 0
\(56\) −231.028 −0.551292
\(57\) −240.720 −0.559370
\(58\) 237.423 0.537502
\(59\) 471.083 1.03949 0.519744 0.854322i \(-0.326027\pi\)
0.519744 + 0.854322i \(0.326027\pi\)
\(60\) 0 0
\(61\) 539.301 1.13197 0.565987 0.824414i \(-0.308495\pi\)
0.565987 + 0.824414i \(0.308495\pi\)
\(62\) 13.9397 0.0285540
\(63\) −114.520 −0.229019
\(64\) 0.617610 0.00120627
\(65\) 0 0
\(66\) −236.155 −0.440434
\(67\) −185.229 −0.337751 −0.168875 0.985637i \(-0.554014\pi\)
−0.168875 + 0.985637i \(0.554014\pi\)
\(68\) −109.024 −0.194428
\(69\) 601.827 1.05002
\(70\) 0 0
\(71\) 1013.09 1.69340 0.846698 0.532074i \(-0.178587\pi\)
0.846698 + 0.532074i \(0.178587\pi\)
\(72\) 163.406 0.267466
\(73\) 167.726 0.268915 0.134458 0.990919i \(-0.457071\pi\)
0.134458 + 0.990919i \(0.457071\pi\)
\(74\) 395.411 0.621157
\(75\) 0 0
\(76\) −514.592 −0.776681
\(77\) 795.149 1.17683
\(78\) 312.300 0.453347
\(79\) −883.216 −1.25784 −0.628921 0.777469i \(-0.716503\pi\)
−0.628921 + 0.777469i \(0.716503\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −62.9444 −0.0847688
\(83\) −760.655 −1.00594 −0.502968 0.864305i \(-0.667759\pi\)
−0.502968 + 0.864305i \(0.667759\pi\)
\(84\) −244.812 −0.317990
\(85\) 0 0
\(86\) −19.1691 −0.0240356
\(87\) 565.429 0.696785
\(88\) −1134.58 −1.37439
\(89\) −1114.45 −1.32732 −0.663659 0.748036i \(-0.730997\pi\)
−0.663659 + 0.748036i \(0.730997\pi\)
\(90\) 0 0
\(91\) −1051.54 −1.21133
\(92\) 1286.54 1.45795
\(93\) 33.1979 0.0370157
\(94\) 392.354 0.430513
\(95\) 0 0
\(96\) 543.204 0.577505
\(97\) 21.6086 0.0226187 0.0113094 0.999936i \(-0.496400\pi\)
0.0113094 + 0.999936i \(0.496400\pi\)
\(98\) 228.116 0.235135
\(99\) −562.409 −0.570952
\(100\) 0 0
\(101\) −368.472 −0.363013 −0.181507 0.983390i \(-0.558097\pi\)
−0.181507 + 0.983390i \(0.558097\pi\)
\(102\) 64.2444 0.0623642
\(103\) 271.410 0.259639 0.129820 0.991538i \(-0.458560\pi\)
0.129820 + 0.991538i \(0.458560\pi\)
\(104\) 1500.41 1.41469
\(105\) 0 0
\(106\) 307.766 0.282009
\(107\) −1486.02 −1.34260 −0.671302 0.741184i \(-0.734265\pi\)
−0.671302 + 0.741184i \(0.734265\pi\)
\(108\) 173.156 0.154277
\(109\) −1530.13 −1.34459 −0.672295 0.740284i \(-0.734691\pi\)
−0.672295 + 0.740284i \(0.734691\pi\)
\(110\) 0 0
\(111\) 941.684 0.805231
\(112\) −361.808 −0.305247
\(113\) −22.1792 −0.0184641 −0.00923206 0.999957i \(-0.502939\pi\)
−0.00923206 + 0.999957i \(0.502939\pi\)
\(114\) 303.233 0.249126
\(115\) 0 0
\(116\) 1208.73 0.967480
\(117\) 743.752 0.587692
\(118\) −593.421 −0.462956
\(119\) −216.316 −0.166635
\(120\) 0 0
\(121\) 2573.98 1.93387
\(122\) −679.355 −0.504147
\(123\) −149.904 −0.109889
\(124\) 70.9678 0.0513960
\(125\) 0 0
\(126\) 144.260 0.101998
\(127\) −416.040 −0.290690 −0.145345 0.989381i \(-0.546429\pi\)
−0.145345 + 0.989381i \(0.546429\pi\)
\(128\) 1447.76 0.999731
\(129\) −45.6518 −0.0311583
\(130\) 0 0
\(131\) −668.770 −0.446036 −0.223018 0.974814i \(-0.571591\pi\)
−0.223018 + 0.974814i \(0.571591\pi\)
\(132\) −1202.27 −0.792762
\(133\) −1021.01 −0.665659
\(134\) 233.332 0.150424
\(135\) 0 0
\(136\) 308.655 0.194610
\(137\) 1744.43 1.08786 0.543931 0.839130i \(-0.316935\pi\)
0.543931 + 0.839130i \(0.316935\pi\)
\(138\) −758.119 −0.467648
\(139\) 2952.05 1.80136 0.900682 0.434479i \(-0.143067\pi\)
0.900682 + 0.434479i \(0.143067\pi\)
\(140\) 0 0
\(141\) 934.402 0.558091
\(142\) −1276.18 −0.754187
\(143\) −5164.11 −3.01989
\(144\) 255.907 0.148094
\(145\) 0 0
\(146\) −211.283 −0.119767
\(147\) 543.265 0.304815
\(148\) 2013.06 1.11806
\(149\) 1973.80 1.08524 0.542618 0.839979i \(-0.317433\pi\)
0.542618 + 0.839979i \(0.317433\pi\)
\(150\) 0 0
\(151\) 1959.35 1.05596 0.527980 0.849257i \(-0.322950\pi\)
0.527980 + 0.849257i \(0.322950\pi\)
\(152\) 1456.85 0.777410
\(153\) 153.000 0.0808452
\(154\) −1001.65 −0.524123
\(155\) 0 0
\(156\) 1589.94 0.816005
\(157\) 2470.75 1.25597 0.627986 0.778224i \(-0.283879\pi\)
0.627986 + 0.778224i \(0.283879\pi\)
\(158\) 1112.58 0.560204
\(159\) 732.955 0.365579
\(160\) 0 0
\(161\) 2552.64 1.24954
\(162\) −102.035 −0.0494855
\(163\) −2422.36 −1.16401 −0.582005 0.813185i \(-0.697731\pi\)
−0.582005 + 0.813185i \(0.697731\pi\)
\(164\) −320.453 −0.152580
\(165\) 0 0
\(166\) 958.193 0.448013
\(167\) 870.144 0.403196 0.201598 0.979468i \(-0.435386\pi\)
0.201598 + 0.979468i \(0.435386\pi\)
\(168\) 693.083 0.318289
\(169\) 4632.23 2.10843
\(170\) 0 0
\(171\) 722.159 0.322953
\(172\) −97.5910 −0.0432630
\(173\) 739.243 0.324876 0.162438 0.986719i \(-0.448064\pi\)
0.162438 + 0.986719i \(0.448064\pi\)
\(174\) −712.268 −0.310327
\(175\) 0 0
\(176\) −1776.84 −0.760991
\(177\) −1413.25 −0.600149
\(178\) 1403.86 0.591147
\(179\) 3780.32 1.57852 0.789258 0.614062i \(-0.210465\pi\)
0.789258 + 0.614062i \(0.210465\pi\)
\(180\) 0 0
\(181\) 1240.89 0.509583 0.254792 0.966996i \(-0.417993\pi\)
0.254792 + 0.966996i \(0.417993\pi\)
\(182\) 1324.62 0.539489
\(183\) −1617.90 −0.653545
\(184\) −3642.30 −1.45931
\(185\) 0 0
\(186\) −41.8192 −0.0164857
\(187\) −1062.33 −0.415428
\(188\) 1997.49 0.774905
\(189\) 343.560 0.132224
\(190\) 0 0
\(191\) −343.172 −0.130006 −0.0650028 0.997885i \(-0.520706\pi\)
−0.0650028 + 0.997885i \(0.520706\pi\)
\(192\) −1.85283 −0.000696440 0
\(193\) −252.881 −0.0943148 −0.0471574 0.998887i \(-0.515016\pi\)
−0.0471574 + 0.998887i \(0.515016\pi\)
\(194\) −27.2202 −0.0100737
\(195\) 0 0
\(196\) 1161.35 0.423233
\(197\) 2036.95 0.736685 0.368343 0.929690i \(-0.379925\pi\)
0.368343 + 0.929690i \(0.379925\pi\)
\(198\) 708.464 0.254284
\(199\) 329.405 0.117341 0.0586707 0.998277i \(-0.481314\pi\)
0.0586707 + 0.998277i \(0.481314\pi\)
\(200\) 0 0
\(201\) 555.687 0.195001
\(202\) 464.163 0.161675
\(203\) 2398.26 0.829185
\(204\) 327.072 0.112253
\(205\) 0 0
\(206\) −341.894 −0.115635
\(207\) −1805.48 −0.606230
\(208\) 2349.77 0.783303
\(209\) −5014.18 −1.65951
\(210\) 0 0
\(211\) 233.272 0.0761096 0.0380548 0.999276i \(-0.487884\pi\)
0.0380548 + 0.999276i \(0.487884\pi\)
\(212\) 1566.85 0.507604
\(213\) −3039.26 −0.977683
\(214\) 1871.93 0.597955
\(215\) 0 0
\(216\) −490.217 −0.154422
\(217\) 140.808 0.0440492
\(218\) 1927.50 0.598839
\(219\) −503.177 −0.155258
\(220\) 0 0
\(221\) 1404.87 0.427608
\(222\) −1186.23 −0.358625
\(223\) −311.137 −0.0934317 −0.0467158 0.998908i \(-0.514876\pi\)
−0.0467158 + 0.998908i \(0.514876\pi\)
\(224\) 2303.99 0.687240
\(225\) 0 0
\(226\) 27.9391 0.00822335
\(227\) −5854.93 −1.71192 −0.855959 0.517044i \(-0.827032\pi\)
−0.855959 + 0.517044i \(0.827032\pi\)
\(228\) 1543.78 0.448417
\(229\) 3167.85 0.914136 0.457068 0.889432i \(-0.348900\pi\)
0.457068 + 0.889432i \(0.348900\pi\)
\(230\) 0 0
\(231\) −2385.45 −0.679441
\(232\) −3422.01 −0.968388
\(233\) 3726.78 1.04785 0.523926 0.851764i \(-0.324467\pi\)
0.523926 + 0.851764i \(0.324467\pi\)
\(234\) −936.901 −0.261740
\(235\) 0 0
\(236\) −3021.14 −0.833302
\(237\) 2649.65 0.726215
\(238\) 272.492 0.0742143
\(239\) −2335.34 −0.632054 −0.316027 0.948750i \(-0.602349\pi\)
−0.316027 + 0.948750i \(0.602349\pi\)
\(240\) 0 0
\(241\) 5424.08 1.44977 0.724887 0.688867i \(-0.241892\pi\)
0.724887 + 0.688867i \(0.241892\pi\)
\(242\) −3242.43 −0.861287
\(243\) −243.000 −0.0641500
\(244\) −3458.63 −0.907442
\(245\) 0 0
\(246\) 188.833 0.0489413
\(247\) 6630.96 1.70817
\(248\) −200.916 −0.0514442
\(249\) 2281.96 0.580778
\(250\) 0 0
\(251\) 1283.75 0.322828 0.161414 0.986887i \(-0.448395\pi\)
0.161414 + 0.986887i \(0.448395\pi\)
\(252\) 734.436 0.183592
\(253\) 12536.0 3.11515
\(254\) 524.083 0.129464
\(255\) 0 0
\(256\) −1828.68 −0.446456
\(257\) −4082.27 −0.990838 −0.495419 0.868654i \(-0.664985\pi\)
−0.495419 + 0.868654i \(0.664985\pi\)
\(258\) 57.5074 0.0138770
\(259\) 3994.13 0.958237
\(260\) 0 0
\(261\) −1696.29 −0.402289
\(262\) 842.447 0.198651
\(263\) −3450.41 −0.808979 −0.404490 0.914543i \(-0.632551\pi\)
−0.404490 + 0.914543i \(0.632551\pi\)
\(264\) 3403.73 0.793505
\(265\) 0 0
\(266\) 1286.16 0.296464
\(267\) 3343.34 0.766327
\(268\) 1187.90 0.270757
\(269\) 269.468 0.0610771 0.0305386 0.999534i \(-0.490278\pi\)
0.0305386 + 0.999534i \(0.490278\pi\)
\(270\) 0 0
\(271\) −2713.52 −0.608246 −0.304123 0.952633i \(-0.598363\pi\)
−0.304123 + 0.952633i \(0.598363\pi\)
\(272\) 483.379 0.107754
\(273\) 3154.61 0.699362
\(274\) −2197.45 −0.484500
\(275\) 0 0
\(276\) −3859.62 −0.841746
\(277\) −749.213 −0.162512 −0.0812560 0.996693i \(-0.525893\pi\)
−0.0812560 + 0.996693i \(0.525893\pi\)
\(278\) −3718.68 −0.802272
\(279\) −99.5936 −0.0213710
\(280\) 0 0
\(281\) 3890.04 0.825837 0.412918 0.910768i \(-0.364509\pi\)
0.412918 + 0.910768i \(0.364509\pi\)
\(282\) −1177.06 −0.248557
\(283\) −2355.55 −0.494780 −0.247390 0.968916i \(-0.579573\pi\)
−0.247390 + 0.968916i \(0.579573\pi\)
\(284\) −6497.09 −1.35750
\(285\) 0 0
\(286\) 6505.20 1.34497
\(287\) −635.814 −0.130770
\(288\) −1629.61 −0.333423
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) −64.8257 −0.0130589
\(292\) −1075.65 −0.215575
\(293\) −1280.74 −0.255365 −0.127682 0.991815i \(-0.540754\pi\)
−0.127682 + 0.991815i \(0.540754\pi\)
\(294\) −684.349 −0.135755
\(295\) 0 0
\(296\) −5699.13 −1.11911
\(297\) 1687.23 0.329639
\(298\) −2486.39 −0.483331
\(299\) −16578.2 −3.20649
\(300\) 0 0
\(301\) −193.631 −0.0370788
\(302\) −2468.19 −0.470292
\(303\) 1105.42 0.209586
\(304\) 2281.55 0.430447
\(305\) 0 0
\(306\) −192.733 −0.0360060
\(307\) −5433.85 −1.01018 −0.505092 0.863066i \(-0.668541\pi\)
−0.505092 + 0.863066i \(0.668541\pi\)
\(308\) −5099.42 −0.943398
\(309\) −814.231 −0.149903
\(310\) 0 0
\(311\) 6485.11 1.18243 0.591217 0.806512i \(-0.298648\pi\)
0.591217 + 0.806512i \(0.298648\pi\)
\(312\) −4501.24 −0.816770
\(313\) 4842.72 0.874526 0.437263 0.899334i \(-0.355948\pi\)
0.437263 + 0.899334i \(0.355948\pi\)
\(314\) −3112.40 −0.559372
\(315\) 0 0
\(316\) 5664.21 1.00834
\(317\) 413.344 0.0732357 0.0366179 0.999329i \(-0.488342\pi\)
0.0366179 + 0.999329i \(0.488342\pi\)
\(318\) −923.299 −0.162818
\(319\) 11777.9 2.06719
\(320\) 0 0
\(321\) 4458.05 0.775153
\(322\) −3215.55 −0.556508
\(323\) 1364.08 0.234983
\(324\) −519.467 −0.0890718
\(325\) 0 0
\(326\) 3051.43 0.518414
\(327\) 4590.40 0.776299
\(328\) 907.228 0.152723
\(329\) 3963.25 0.664137
\(330\) 0 0
\(331\) −8712.38 −1.44675 −0.723377 0.690453i \(-0.757411\pi\)
−0.723377 + 0.690453i \(0.757411\pi\)
\(332\) 4878.21 0.806405
\(333\) −2825.05 −0.464900
\(334\) −1096.12 −0.179571
\(335\) 0 0
\(336\) 1085.42 0.176234
\(337\) 9425.37 1.52354 0.761769 0.647848i \(-0.224331\pi\)
0.761769 + 0.647848i \(0.224331\pi\)
\(338\) −5835.19 −0.939031
\(339\) 66.5377 0.0106603
\(340\) 0 0
\(341\) 691.510 0.109816
\(342\) −909.700 −0.143833
\(343\) 6668.74 1.04979
\(344\) 276.288 0.0433036
\(345\) 0 0
\(346\) −931.221 −0.144690
\(347\) 6135.13 0.949139 0.474570 0.880218i \(-0.342604\pi\)
0.474570 + 0.880218i \(0.342604\pi\)
\(348\) −3626.19 −0.558575
\(349\) 7271.83 1.11533 0.557667 0.830064i \(-0.311696\pi\)
0.557667 + 0.830064i \(0.311696\pi\)
\(350\) 0 0
\(351\) −2231.26 −0.339304
\(352\) 11314.9 1.71331
\(353\) 433.170 0.0653126 0.0326563 0.999467i \(-0.489603\pi\)
0.0326563 + 0.999467i \(0.489603\pi\)
\(354\) 1780.26 0.267288
\(355\) 0 0
\(356\) 7147.14 1.06404
\(357\) 648.947 0.0962070
\(358\) −4762.05 −0.703023
\(359\) 2063.42 0.303352 0.151676 0.988430i \(-0.451533\pi\)
0.151676 + 0.988430i \(0.451533\pi\)
\(360\) 0 0
\(361\) −420.554 −0.0613142
\(362\) −1563.14 −0.226953
\(363\) −7721.95 −1.11652
\(364\) 6743.68 0.971058
\(365\) 0 0
\(366\) 2038.06 0.291069
\(367\) 5283.59 0.751501 0.375751 0.926721i \(-0.377385\pi\)
0.375751 + 0.926721i \(0.377385\pi\)
\(368\) −5704.14 −0.808013
\(369\) 449.711 0.0634446
\(370\) 0 0
\(371\) 3108.81 0.435045
\(372\) −212.903 −0.0296735
\(373\) 9240.42 1.28271 0.641355 0.767244i \(-0.278372\pi\)
0.641355 + 0.767244i \(0.278372\pi\)
\(374\) 1338.21 0.185019
\(375\) 0 0
\(376\) −5655.06 −0.775631
\(377\) −15575.5 −2.12780
\(378\) −432.781 −0.0588885
\(379\) −14148.2 −1.91753 −0.958765 0.284200i \(-0.908272\pi\)
−0.958765 + 0.284200i \(0.908272\pi\)
\(380\) 0 0
\(381\) 1248.12 0.167830
\(382\) 432.292 0.0579005
\(383\) 55.5041 0.00740503 0.00370252 0.999993i \(-0.498821\pi\)
0.00370252 + 0.999993i \(0.498821\pi\)
\(384\) −4343.29 −0.577195
\(385\) 0 0
\(386\) 318.553 0.0420049
\(387\) 136.956 0.0179893
\(388\) −138.579 −0.0181322
\(389\) −5020.91 −0.654422 −0.327211 0.944951i \(-0.606109\pi\)
−0.327211 + 0.944951i \(0.606109\pi\)
\(390\) 0 0
\(391\) −3410.35 −0.441097
\(392\) −3287.88 −0.423630
\(393\) 2006.31 0.257519
\(394\) −2565.94 −0.328097
\(395\) 0 0
\(396\) 3606.82 0.457701
\(397\) 7924.10 1.00176 0.500881 0.865516i \(-0.333010\pi\)
0.500881 + 0.865516i \(0.333010\pi\)
\(398\) −414.950 −0.0522602
\(399\) 3063.03 0.384319
\(400\) 0 0
\(401\) −4752.42 −0.591832 −0.295916 0.955214i \(-0.595625\pi\)
−0.295916 + 0.955214i \(0.595625\pi\)
\(402\) −699.996 −0.0868473
\(403\) −914.481 −0.113036
\(404\) 2363.07 0.291008
\(405\) 0 0
\(406\) −3021.07 −0.369294
\(407\) 19615.2 2.38892
\(408\) −925.966 −0.112358
\(409\) −9089.47 −1.09889 −0.549444 0.835530i \(-0.685161\pi\)
−0.549444 + 0.835530i \(0.685161\pi\)
\(410\) 0 0
\(411\) −5233.30 −0.628077
\(412\) −1740.60 −0.208139
\(413\) −5994.27 −0.714186
\(414\) 2274.36 0.269996
\(415\) 0 0
\(416\) −14963.3 −1.76355
\(417\) −8856.15 −1.04002
\(418\) 6316.34 0.739096
\(419\) 1867.23 0.217710 0.108855 0.994058i \(-0.465282\pi\)
0.108855 + 0.994058i \(0.465282\pi\)
\(420\) 0 0
\(421\) −7820.00 −0.905282 −0.452641 0.891693i \(-0.649518\pi\)
−0.452641 + 0.891693i \(0.649518\pi\)
\(422\) −293.852 −0.0338969
\(423\) −2803.20 −0.322214
\(424\) −4435.89 −0.508080
\(425\) 0 0
\(426\) 3828.54 0.435430
\(427\) −6862.31 −0.777729
\(428\) 9530.08 1.07629
\(429\) 15492.3 1.74353
\(430\) 0 0
\(431\) 7389.33 0.825827 0.412913 0.910770i \(-0.364511\pi\)
0.412913 + 0.910770i \(0.364511\pi\)
\(432\) −767.720 −0.0855022
\(433\) −6231.69 −0.691630 −0.345815 0.938303i \(-0.612398\pi\)
−0.345815 + 0.938303i \(0.612398\pi\)
\(434\) −177.375 −0.0196182
\(435\) 0 0
\(436\) 9813.01 1.07788
\(437\) −16096.9 −1.76205
\(438\) 633.849 0.0691473
\(439\) −10096.9 −1.09772 −0.548859 0.835915i \(-0.684937\pi\)
−0.548859 + 0.835915i \(0.684937\pi\)
\(440\) 0 0
\(441\) −1629.80 −0.175985
\(442\) −1769.70 −0.190444
\(443\) −5125.14 −0.549668 −0.274834 0.961492i \(-0.588623\pi\)
−0.274834 + 0.961492i \(0.588623\pi\)
\(444\) −6039.18 −0.645510
\(445\) 0 0
\(446\) 391.938 0.0416116
\(447\) −5921.41 −0.626562
\(448\) −7.85875 −0.000828775 0
\(449\) 15122.0 1.58942 0.794711 0.606987i \(-0.207622\pi\)
0.794711 + 0.606987i \(0.207622\pi\)
\(450\) 0 0
\(451\) −3122.49 −0.326014
\(452\) 142.239 0.0148017
\(453\) −5878.06 −0.609659
\(454\) 7375.43 0.762436
\(455\) 0 0
\(456\) −4370.56 −0.448838
\(457\) 10562.0 1.08112 0.540560 0.841306i \(-0.318213\pi\)
0.540560 + 0.841306i \(0.318213\pi\)
\(458\) −3990.52 −0.407128
\(459\) −459.000 −0.0466760
\(460\) 0 0
\(461\) 11262.7 1.13787 0.568936 0.822382i \(-0.307355\pi\)
0.568936 + 0.822382i \(0.307355\pi\)
\(462\) 3004.94 0.302602
\(463\) 4669.94 0.468749 0.234374 0.972146i \(-0.424696\pi\)
0.234374 + 0.972146i \(0.424696\pi\)
\(464\) −5359.15 −0.536190
\(465\) 0 0
\(466\) −4694.61 −0.466681
\(467\) −11972.4 −1.18633 −0.593166 0.805080i \(-0.702122\pi\)
−0.593166 + 0.805080i \(0.702122\pi\)
\(468\) −4769.81 −0.471121
\(469\) 2356.94 0.232054
\(470\) 0 0
\(471\) −7412.26 −0.725136
\(472\) 8553.08 0.834083
\(473\) −950.926 −0.0924389
\(474\) −3337.75 −0.323434
\(475\) 0 0
\(476\) 1387.27 0.133583
\(477\) −2198.86 −0.211067
\(478\) 2941.82 0.281498
\(479\) −9807.66 −0.935540 −0.467770 0.883850i \(-0.654942\pi\)
−0.467770 + 0.883850i \(0.654942\pi\)
\(480\) 0 0
\(481\) −25940.0 −2.45896
\(482\) −6832.69 −0.645685
\(483\) −7657.92 −0.721423
\(484\) −16507.4 −1.55028
\(485\) 0 0
\(486\) 306.106 0.0285705
\(487\) −19150.5 −1.78192 −0.890959 0.454084i \(-0.849967\pi\)
−0.890959 + 0.454084i \(0.849967\pi\)
\(488\) 9791.65 0.908294
\(489\) 7267.07 0.672041
\(490\) 0 0
\(491\) 18563.3 1.70621 0.853107 0.521736i \(-0.174716\pi\)
0.853107 + 0.521736i \(0.174716\pi\)
\(492\) 961.358 0.0880923
\(493\) −3204.10 −0.292708
\(494\) −8352.98 −0.760766
\(495\) 0 0
\(496\) −314.650 −0.0284843
\(497\) −12891.0 −1.16346
\(498\) −2874.58 −0.258661
\(499\) −4574.89 −0.410421 −0.205211 0.978718i \(-0.565788\pi\)
−0.205211 + 0.978718i \(0.565788\pi\)
\(500\) 0 0
\(501\) −2610.43 −0.232786
\(502\) −1617.14 −0.143778
\(503\) 16704.8 1.48077 0.740387 0.672181i \(-0.234642\pi\)
0.740387 + 0.672181i \(0.234642\pi\)
\(504\) −2079.25 −0.183764
\(505\) 0 0
\(506\) −15791.6 −1.38739
\(507\) −13896.7 −1.21730
\(508\) 2668.13 0.233030
\(509\) 12612.8 1.09833 0.549166 0.835713i \(-0.314945\pi\)
0.549166 + 0.835713i \(0.314945\pi\)
\(510\) 0 0
\(511\) −2134.22 −0.184760
\(512\) −9278.53 −0.800893
\(513\) −2166.48 −0.186457
\(514\) 5142.42 0.441289
\(515\) 0 0
\(516\) 292.773 0.0249779
\(517\) 19463.5 1.65572
\(518\) −5031.39 −0.426770
\(519\) −2217.73 −0.187568
\(520\) 0 0
\(521\) −14198.7 −1.19397 −0.596983 0.802254i \(-0.703634\pi\)
−0.596983 + 0.802254i \(0.703634\pi\)
\(522\) 2136.80 0.179167
\(523\) 6550.31 0.547658 0.273829 0.961778i \(-0.411710\pi\)
0.273829 + 0.961778i \(0.411710\pi\)
\(524\) 4288.94 0.357563
\(525\) 0 0
\(526\) 4346.47 0.360295
\(527\) −188.121 −0.0155497
\(528\) 5330.53 0.439359
\(529\) 28077.0 2.30764
\(530\) 0 0
\(531\) 4239.75 0.346496
\(532\) 6547.90 0.533623
\(533\) 4129.31 0.335572
\(534\) −4211.59 −0.341299
\(535\) 0 0
\(536\) −3363.05 −0.271011
\(537\) −11341.0 −0.911357
\(538\) −339.447 −0.0272019
\(539\) 11316.2 0.904310
\(540\) 0 0
\(541\) 12735.0 1.01205 0.506027 0.862518i \(-0.331114\pi\)
0.506027 + 0.862518i \(0.331114\pi\)
\(542\) 3418.21 0.270894
\(543\) −3722.67 −0.294208
\(544\) −3078.15 −0.242601
\(545\) 0 0
\(546\) −3973.85 −0.311474
\(547\) 6526.99 0.510190 0.255095 0.966916i \(-0.417893\pi\)
0.255095 + 0.966916i \(0.417893\pi\)
\(548\) −11187.3 −0.872080
\(549\) 4853.71 0.377325
\(550\) 0 0
\(551\) −15123.3 −1.16928
\(552\) 10926.9 0.842535
\(553\) 11238.4 0.864207
\(554\) 943.780 0.0723779
\(555\) 0 0
\(556\) −18932.0 −1.44406
\(557\) 12318.8 0.937099 0.468550 0.883437i \(-0.344777\pi\)
0.468550 + 0.883437i \(0.344777\pi\)
\(558\) 125.458 0.00951799
\(559\) 1257.54 0.0951492
\(560\) 0 0
\(561\) 3186.98 0.239848
\(562\) −4900.26 −0.367802
\(563\) −23933.5 −1.79161 −0.895805 0.444448i \(-0.853400\pi\)
−0.895805 + 0.444448i \(0.853400\pi\)
\(564\) −5992.48 −0.447391
\(565\) 0 0
\(566\) 2967.27 0.220360
\(567\) −1030.68 −0.0763395
\(568\) 18393.8 1.35878
\(569\) −7904.74 −0.582397 −0.291199 0.956663i \(-0.594054\pi\)
−0.291199 + 0.956663i \(0.594054\pi\)
\(570\) 0 0
\(571\) 15930.7 1.16756 0.583782 0.811911i \(-0.301572\pi\)
0.583782 + 0.811911i \(0.301572\pi\)
\(572\) 33118.3 2.42088
\(573\) 1029.52 0.0750588
\(574\) 800.932 0.0582409
\(575\) 0 0
\(576\) 5.55849 0.000402090 0
\(577\) −12078.8 −0.871483 −0.435742 0.900072i \(-0.643514\pi\)
−0.435742 + 0.900072i \(0.643514\pi\)
\(578\) −364.052 −0.0261982
\(579\) 758.642 0.0544527
\(580\) 0 0
\(581\) 9678.91 0.691134
\(582\) 81.6606 0.00581605
\(583\) 15267.4 1.08458
\(584\) 3045.26 0.215777
\(585\) 0 0
\(586\) 1613.35 0.113732
\(587\) 6424.82 0.451756 0.225878 0.974156i \(-0.427475\pi\)
0.225878 + 0.974156i \(0.427475\pi\)
\(588\) −3484.05 −0.244354
\(589\) −887.931 −0.0621164
\(590\) 0 0
\(591\) −6110.86 −0.425325
\(592\) −8925.30 −0.619641
\(593\) 24448.4 1.69305 0.846523 0.532352i \(-0.178692\pi\)
0.846523 + 0.532352i \(0.178692\pi\)
\(594\) −2125.39 −0.146811
\(595\) 0 0
\(596\) −12658.3 −0.869976
\(597\) −988.216 −0.0677470
\(598\) 20883.4 1.42807
\(599\) 5099.60 0.347853 0.173926 0.984759i \(-0.444354\pi\)
0.173926 + 0.984759i \(0.444354\pi\)
\(600\) 0 0
\(601\) −25127.3 −1.70543 −0.852715 0.522377i \(-0.825045\pi\)
−0.852715 + 0.522377i \(0.825045\pi\)
\(602\) 243.917 0.0165138
\(603\) −1667.06 −0.112584
\(604\) −12565.7 −0.846507
\(605\) 0 0
\(606\) −1392.49 −0.0933432
\(607\) 12725.4 0.850921 0.425460 0.904977i \(-0.360112\pi\)
0.425460 + 0.904977i \(0.360112\pi\)
\(608\) −14528.9 −0.969118
\(609\) −7194.77 −0.478730
\(610\) 0 0
\(611\) −25739.4 −1.70426
\(612\) −981.215 −0.0648092
\(613\) 4997.30 0.329264 0.164632 0.986355i \(-0.447356\pi\)
0.164632 + 0.986355i \(0.447356\pi\)
\(614\) 6844.99 0.449905
\(615\) 0 0
\(616\) 14436.9 0.944283
\(617\) 23828.5 1.55478 0.777390 0.629019i \(-0.216543\pi\)
0.777390 + 0.629019i \(0.216543\pi\)
\(618\) 1025.68 0.0667622
\(619\) 3551.58 0.230614 0.115307 0.993330i \(-0.463215\pi\)
0.115307 + 0.993330i \(0.463215\pi\)
\(620\) 0 0
\(621\) 5416.45 0.350007
\(622\) −8169.26 −0.526620
\(623\) 14180.7 0.911941
\(624\) −7049.30 −0.452240
\(625\) 0 0
\(626\) −6100.35 −0.389487
\(627\) 15042.5 0.958120
\(628\) −15845.4 −1.00685
\(629\) −5336.21 −0.338265
\(630\) 0 0
\(631\) 29200.1 1.84222 0.921109 0.389305i \(-0.127285\pi\)
0.921109 + 0.389305i \(0.127285\pi\)
\(632\) −16035.8 −1.00929
\(633\) −699.817 −0.0439419
\(634\) −520.688 −0.0326170
\(635\) 0 0
\(636\) −4700.56 −0.293065
\(637\) −14965.0 −0.930824
\(638\) −14836.5 −0.920663
\(639\) 9117.77 0.564465
\(640\) 0 0
\(641\) −26828.1 −1.65311 −0.826557 0.562853i \(-0.809704\pi\)
−0.826557 + 0.562853i \(0.809704\pi\)
\(642\) −5615.78 −0.345229
\(643\) −9467.48 −0.580655 −0.290327 0.956927i \(-0.593764\pi\)
−0.290327 + 0.956927i \(0.593764\pi\)
\(644\) −16370.5 −1.00169
\(645\) 0 0
\(646\) −1718.32 −0.104654
\(647\) −14497.3 −0.880906 −0.440453 0.897776i \(-0.645182\pi\)
−0.440453 + 0.897776i \(0.645182\pi\)
\(648\) 1470.65 0.0891553
\(649\) −29437.9 −1.78049
\(650\) 0 0
\(651\) −422.424 −0.0254318
\(652\) 15535.0 0.933124
\(653\) −11678.8 −0.699889 −0.349944 0.936770i \(-0.613800\pi\)
−0.349944 + 0.936770i \(0.613800\pi\)
\(654\) −5782.51 −0.345740
\(655\) 0 0
\(656\) 1420.79 0.0845619
\(657\) 1509.53 0.0896384
\(658\) −4992.48 −0.295786
\(659\) 5738.86 0.339233 0.169616 0.985510i \(-0.445747\pi\)
0.169616 + 0.985510i \(0.445747\pi\)
\(660\) 0 0
\(661\) 7047.04 0.414672 0.207336 0.978270i \(-0.433521\pi\)
0.207336 + 0.978270i \(0.433521\pi\)
\(662\) 10974.9 0.644340
\(663\) −4214.60 −0.246880
\(664\) −13810.6 −0.807162
\(665\) 0 0
\(666\) 3558.70 0.207052
\(667\) 37810.0 2.19492
\(668\) −5580.38 −0.323221
\(669\) 933.411 0.0539428
\(670\) 0 0
\(671\) −33700.8 −1.93891
\(672\) −6911.96 −0.396778
\(673\) 3737.64 0.214080 0.107040 0.994255i \(-0.465863\pi\)
0.107040 + 0.994255i \(0.465863\pi\)
\(674\) −11873.1 −0.678538
\(675\) 0 0
\(676\) −29707.2 −1.69022
\(677\) −21346.3 −1.21182 −0.605911 0.795532i \(-0.707191\pi\)
−0.605911 + 0.795532i \(0.707191\pi\)
\(678\) −83.8172 −0.00474776
\(679\) −274.957 −0.0155403
\(680\) 0 0
\(681\) 17564.8 0.988376
\(682\) −871.092 −0.0489088
\(683\) −15238.4 −0.853707 −0.426854 0.904321i \(-0.640378\pi\)
−0.426854 + 0.904321i \(0.640378\pi\)
\(684\) −4631.33 −0.258894
\(685\) 0 0
\(686\) −8400.57 −0.467544
\(687\) −9503.54 −0.527777
\(688\) 432.689 0.0239769
\(689\) −20190.2 −1.11638
\(690\) 0 0
\(691\) −9114.57 −0.501787 −0.250893 0.968015i \(-0.580724\pi\)
−0.250893 + 0.968015i \(0.580724\pi\)
\(692\) −4740.89 −0.260436
\(693\) 7156.34 0.392275
\(694\) −7728.40 −0.422718
\(695\) 0 0
\(696\) 10266.0 0.559099
\(697\) 849.455 0.0461627
\(698\) −9160.28 −0.496736
\(699\) −11180.3 −0.604978
\(700\) 0 0
\(701\) −7625.96 −0.410882 −0.205441 0.978669i \(-0.565863\pi\)
−0.205441 + 0.978669i \(0.565863\pi\)
\(702\) 2810.70 0.151116
\(703\) −25186.9 −1.35127
\(704\) −38.5944 −0.00206617
\(705\) 0 0
\(706\) −545.662 −0.0290882
\(707\) 4688.61 0.249410
\(708\) 9063.41 0.481107
\(709\) −11352.5 −0.601343 −0.300672 0.953728i \(-0.597211\pi\)
−0.300672 + 0.953728i \(0.597211\pi\)
\(710\) 0 0
\(711\) −7948.94 −0.419281
\(712\) −20234.1 −1.06504
\(713\) 2219.93 0.116602
\(714\) −817.475 −0.0428477
\(715\) 0 0
\(716\) −24243.8 −1.26541
\(717\) 7006.03 0.364917
\(718\) −2599.29 −0.135104
\(719\) 10470.9 0.543111 0.271556 0.962423i \(-0.412462\pi\)
0.271556 + 0.962423i \(0.412462\pi\)
\(720\) 0 0
\(721\) −3453.55 −0.178387
\(722\) 529.770 0.0273075
\(723\) −16272.2 −0.837028
\(724\) −7958.03 −0.408505
\(725\) 0 0
\(726\) 9727.30 0.497265
\(727\) 9894.05 0.504746 0.252373 0.967630i \(-0.418789\pi\)
0.252373 + 0.967630i \(0.418789\pi\)
\(728\) −19091.9 −0.971969
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 258.694 0.0130891
\(732\) 10375.9 0.523912
\(733\) 20969.4 1.05665 0.528323 0.849044i \(-0.322821\pi\)
0.528323 + 0.849044i \(0.322821\pi\)
\(734\) −6655.71 −0.334696
\(735\) 0 0
\(736\) 36323.9 1.81918
\(737\) 11574.9 0.578518
\(738\) −566.499 −0.0282563
\(739\) 34627.8 1.72369 0.861843 0.507175i \(-0.169310\pi\)
0.861843 + 0.507175i \(0.169310\pi\)
\(740\) 0 0
\(741\) −19892.9 −0.986212
\(742\) −3916.16 −0.193756
\(743\) −29823.9 −1.47259 −0.736295 0.676661i \(-0.763426\pi\)
−0.736295 + 0.676661i \(0.763426\pi\)
\(744\) 602.747 0.0297013
\(745\) 0 0
\(746\) −11640.1 −0.571280
\(747\) −6845.89 −0.335312
\(748\) 6812.89 0.333026
\(749\) 18908.7 0.922444
\(750\) 0 0
\(751\) 28027.3 1.36183 0.680913 0.732365i \(-0.261583\pi\)
0.680913 + 0.732365i \(0.261583\pi\)
\(752\) −8856.28 −0.429462
\(753\) −3851.26 −0.186385
\(754\) 19620.4 0.947656
\(755\) 0 0
\(756\) −2203.31 −0.105997
\(757\) −19086.0 −0.916369 −0.458185 0.888857i \(-0.651500\pi\)
−0.458185 + 0.888857i \(0.651500\pi\)
\(758\) 17822.4 0.854009
\(759\) −37608.1 −1.79853
\(760\) 0 0
\(761\) 41604.6 1.98182 0.990910 0.134524i \(-0.0429504\pi\)
0.990910 + 0.134524i \(0.0429504\pi\)
\(762\) −1572.25 −0.0747462
\(763\) 19470.1 0.923808
\(764\) 2200.82 0.104218
\(765\) 0 0
\(766\) −69.9182 −0.00329797
\(767\) 38929.9 1.83270
\(768\) 5486.05 0.257761
\(769\) 10647.1 0.499278 0.249639 0.968339i \(-0.419688\pi\)
0.249639 + 0.968339i \(0.419688\pi\)
\(770\) 0 0
\(771\) 12246.8 0.572060
\(772\) 1621.77 0.0756071
\(773\) −33674.9 −1.56688 −0.783442 0.621465i \(-0.786538\pi\)
−0.783442 + 0.621465i \(0.786538\pi\)
\(774\) −172.522 −0.00801186
\(775\) 0 0
\(776\) 392.329 0.0181492
\(777\) −11982.4 −0.553238
\(778\) 6324.81 0.291459
\(779\) 4009.42 0.184406
\(780\) 0 0
\(781\) −63307.6 −2.90054
\(782\) 4296.01 0.196451
\(783\) 5088.86 0.232262
\(784\) −5149.08 −0.234561
\(785\) 0 0
\(786\) −2527.34 −0.114691
\(787\) 9870.65 0.447079 0.223539 0.974695i \(-0.428239\pi\)
0.223539 + 0.974695i \(0.428239\pi\)
\(788\) −13063.3 −0.590561
\(789\) 10351.2 0.467064
\(790\) 0 0
\(791\) 282.218 0.0126859
\(792\) −10211.2 −0.458131
\(793\) 44567.4 1.99575
\(794\) −9981.95 −0.446154
\(795\) 0 0
\(796\) −2112.53 −0.0940662
\(797\) −33355.5 −1.48245 −0.741225 0.671256i \(-0.765755\pi\)
−0.741225 + 0.671256i \(0.765755\pi\)
\(798\) −3858.48 −0.171164
\(799\) −5294.94 −0.234445
\(800\) 0 0
\(801\) −10030.0 −0.442439
\(802\) 5986.60 0.263584
\(803\) −10481.2 −0.460613
\(804\) −3563.71 −0.156321
\(805\) 0 0
\(806\) 1151.97 0.0503428
\(807\) −808.403 −0.0352629
\(808\) −6690.05 −0.291281
\(809\) 11930.1 0.518467 0.259233 0.965815i \(-0.416530\pi\)
0.259233 + 0.965815i \(0.416530\pi\)
\(810\) 0 0
\(811\) 40278.5 1.74398 0.871991 0.489522i \(-0.162829\pi\)
0.871991 + 0.489522i \(0.162829\pi\)
\(812\) −15380.4 −0.664713
\(813\) 8140.56 0.351171
\(814\) −24709.2 −1.06395
\(815\) 0 0
\(816\) −1450.14 −0.0622120
\(817\) 1221.03 0.0522871
\(818\) 11450.0 0.489412
\(819\) −9463.83 −0.403777
\(820\) 0 0
\(821\) 14099.1 0.599345 0.299672 0.954042i \(-0.403123\pi\)
0.299672 + 0.954042i \(0.403123\pi\)
\(822\) 6592.36 0.279726
\(823\) −42568.6 −1.80297 −0.901487 0.432805i \(-0.857524\pi\)
−0.901487 + 0.432805i \(0.857524\pi\)
\(824\) 4927.78 0.208334
\(825\) 0 0
\(826\) 7550.95 0.318077
\(827\) −333.622 −0.0140280 −0.00701401 0.999975i \(-0.502233\pi\)
−0.00701401 + 0.999975i \(0.502233\pi\)
\(828\) 11578.9 0.485982
\(829\) −39151.8 −1.64029 −0.820143 0.572159i \(-0.806106\pi\)
−0.820143 + 0.572159i \(0.806106\pi\)
\(830\) 0 0
\(831\) 2247.64 0.0938264
\(832\) 51.0388 0.00212674
\(833\) −3078.50 −0.128048
\(834\) 11156.0 0.463192
\(835\) 0 0
\(836\) 32156.8 1.33034
\(837\) 298.781 0.0123386
\(838\) −2352.14 −0.0969612
\(839\) 32928.1 1.35495 0.677477 0.735544i \(-0.263074\pi\)
0.677477 + 0.735544i \(0.263074\pi\)
\(840\) 0 0
\(841\) 11134.3 0.456529
\(842\) 9850.82 0.403185
\(843\) −11670.1 −0.476797
\(844\) −1496.01 −0.0610130
\(845\) 0 0
\(846\) 3531.18 0.143504
\(847\) −32752.5 −1.32868
\(848\) −6946.96 −0.281320
\(849\) 7066.64 0.285661
\(850\) 0 0
\(851\) 62970.1 2.53653
\(852\) 19491.3 0.783756
\(853\) 40373.8 1.62060 0.810300 0.586015i \(-0.199304\pi\)
0.810300 + 0.586015i \(0.199304\pi\)
\(854\) 8644.41 0.346377
\(855\) 0 0
\(856\) −26980.4 −1.07730
\(857\) 18125.7 0.722477 0.361238 0.932473i \(-0.382354\pi\)
0.361238 + 0.932473i \(0.382354\pi\)
\(858\) −19515.6 −0.776517
\(859\) 22072.2 0.876710 0.438355 0.898802i \(-0.355561\pi\)
0.438355 + 0.898802i \(0.355561\pi\)
\(860\) 0 0
\(861\) 1907.44 0.0755000
\(862\) −9308.30 −0.367798
\(863\) 7038.85 0.277642 0.138821 0.990317i \(-0.455669\pi\)
0.138821 + 0.990317i \(0.455669\pi\)
\(864\) 4888.83 0.192502
\(865\) 0 0
\(866\) 7850.03 0.308031
\(867\) −867.000 −0.0339618
\(868\) −903.026 −0.0353119
\(869\) 55192.0 2.15450
\(870\) 0 0
\(871\) −15307.2 −0.595480
\(872\) −27781.4 −1.07890
\(873\) 194.477 0.00753957
\(874\) 20277.1 0.784765
\(875\) 0 0
\(876\) 3226.96 0.124462
\(877\) −23593.1 −0.908420 −0.454210 0.890895i \(-0.650078\pi\)
−0.454210 + 0.890895i \(0.650078\pi\)
\(878\) 12719.0 0.488890
\(879\) 3842.23 0.147435
\(880\) 0 0
\(881\) 20302.0 0.776380 0.388190 0.921579i \(-0.373100\pi\)
0.388190 + 0.921579i \(0.373100\pi\)
\(882\) 2053.05 0.0783783
\(883\) 17644.1 0.672448 0.336224 0.941782i \(-0.390850\pi\)
0.336224 + 0.941782i \(0.390850\pi\)
\(884\) −9009.64 −0.342791
\(885\) 0 0
\(886\) 6456.12 0.244805
\(887\) 21960.5 0.831298 0.415649 0.909525i \(-0.363555\pi\)
0.415649 + 0.909525i \(0.363555\pi\)
\(888\) 17097.4 0.646116
\(889\) 5293.88 0.199720
\(890\) 0 0
\(891\) −5061.68 −0.190317
\(892\) 1995.37 0.0748991
\(893\) −24992.1 −0.936539
\(894\) 7459.17 0.279051
\(895\) 0 0
\(896\) −18422.0 −0.686870
\(897\) 49734.5 1.85127
\(898\) −19049.1 −0.707880
\(899\) 2085.67 0.0773759
\(900\) 0 0
\(901\) −4153.41 −0.153574
\(902\) 3933.39 0.145197
\(903\) 580.894 0.0214075
\(904\) −402.690 −0.0148156
\(905\) 0 0
\(906\) 7404.57 0.271523
\(907\) 32773.5 1.19981 0.599904 0.800072i \(-0.295205\pi\)
0.599904 + 0.800072i \(0.295205\pi\)
\(908\) 37548.7 1.37235
\(909\) −3316.25 −0.121004
\(910\) 0 0
\(911\) 17733.6 0.644942 0.322471 0.946579i \(-0.395487\pi\)
0.322471 + 0.946579i \(0.395487\pi\)
\(912\) −6844.65 −0.248518
\(913\) 47533.2 1.72302
\(914\) −13305.0 −0.481497
\(915\) 0 0
\(916\) −20315.9 −0.732814
\(917\) 8509.73 0.306452
\(918\) 578.200 0.0207881
\(919\) −6048.55 −0.217109 −0.108555 0.994090i \(-0.534622\pi\)
−0.108555 + 0.994090i \(0.534622\pi\)
\(920\) 0 0
\(921\) 16301.6 0.583230
\(922\) −14187.6 −0.506773
\(923\) 83720.5 2.98558
\(924\) 15298.3 0.544671
\(925\) 0 0
\(926\) −5882.71 −0.208766
\(927\) 2442.69 0.0865465
\(928\) 34127.0 1.20719
\(929\) −31468.8 −1.11137 −0.555683 0.831394i \(-0.687543\pi\)
−0.555683 + 0.831394i \(0.687543\pi\)
\(930\) 0 0
\(931\) −14530.5 −0.511513
\(932\) −23900.5 −0.840007
\(933\) −19455.3 −0.682679
\(934\) 15081.6 0.528356
\(935\) 0 0
\(936\) 13503.7 0.471563
\(937\) 29463.7 1.02725 0.513627 0.858014i \(-0.328302\pi\)
0.513627 + 0.858014i \(0.328302\pi\)
\(938\) −2969.02 −0.103350
\(939\) −14528.2 −0.504908
\(940\) 0 0
\(941\) 4529.95 0.156931 0.0784655 0.996917i \(-0.474998\pi\)
0.0784655 + 0.996917i \(0.474998\pi\)
\(942\) 9337.19 0.322953
\(943\) −10024.0 −0.346158
\(944\) 13394.8 0.461826
\(945\) 0 0
\(946\) 1197.88 0.0411695
\(947\) −38985.6 −1.33776 −0.668882 0.743369i \(-0.733227\pi\)
−0.668882 + 0.743369i \(0.733227\pi\)
\(948\) −16992.6 −0.582168
\(949\) 13860.7 0.474117
\(950\) 0 0
\(951\) −1240.03 −0.0422827
\(952\) −3927.47 −0.133708
\(953\) −18133.6 −0.616376 −0.308188 0.951325i \(-0.599723\pi\)
−0.308188 + 0.951325i \(0.599723\pi\)
\(954\) 2769.90 0.0940029
\(955\) 0 0
\(956\) 14977.0 0.506684
\(957\) −35333.6 −1.19349
\(958\) 12354.7 0.416661
\(959\) −22196.9 −0.747421
\(960\) 0 0
\(961\) −29668.5 −0.995890
\(962\) 32676.4 1.09515
\(963\) −13374.2 −0.447535
\(964\) −34785.5 −1.16221
\(965\) 0 0
\(966\) 9646.64 0.321300
\(967\) 18377.4 0.611145 0.305572 0.952169i \(-0.401152\pi\)
0.305572 + 0.952169i \(0.401152\pi\)
\(968\) 46733.8 1.55174
\(969\) −4092.24 −0.135667
\(970\) 0 0
\(971\) −25113.2 −0.829992 −0.414996 0.909823i \(-0.636217\pi\)
−0.414996 + 0.909823i \(0.636217\pi\)
\(972\) 1558.40 0.0514256
\(973\) −37563.2 −1.23764
\(974\) 24123.8 0.793612
\(975\) 0 0
\(976\) 15334.5 0.502916
\(977\) 2528.49 0.0827978 0.0413989 0.999143i \(-0.486819\pi\)
0.0413989 + 0.999143i \(0.486819\pi\)
\(978\) −9154.29 −0.299307
\(979\) 69641.7 2.27350
\(980\) 0 0
\(981\) −13771.2 −0.448197
\(982\) −23384.1 −0.759895
\(983\) 28913.4 0.938143 0.469072 0.883160i \(-0.344589\pi\)
0.469072 + 0.883160i \(0.344589\pi\)
\(984\) −2721.68 −0.0881749
\(985\) 0 0
\(986\) 4036.18 0.130363
\(987\) −11889.7 −0.383439
\(988\) −42525.4 −1.36935
\(989\) −3052.73 −0.0981507
\(990\) 0 0
\(991\) 13310.7 0.426670 0.213335 0.976979i \(-0.431567\pi\)
0.213335 + 0.976979i \(0.431567\pi\)
\(992\) 2003.69 0.0641302
\(993\) 26137.1 0.835284
\(994\) 16238.7 0.518168
\(995\) 0 0
\(996\) −14634.6 −0.465578
\(997\) 32942.2 1.04643 0.523215 0.852201i \(-0.324732\pi\)
0.523215 + 0.852201i \(0.324732\pi\)
\(998\) 5762.97 0.182789
\(999\) 8475.15 0.268410
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.4.a.bf.1.6 14
5.2 odd 4 255.4.b.b.154.12 28
5.3 odd 4 255.4.b.b.154.17 yes 28
5.4 even 2 1275.4.a.bg.1.9 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
255.4.b.b.154.12 28 5.2 odd 4
255.4.b.b.154.17 yes 28 5.3 odd 4
1275.4.a.bf.1.6 14 1.1 even 1 trivial
1275.4.a.bg.1.9 14 5.4 even 2