Properties

Label 1275.4.a.l
Level $1275$
Weight $4$
Character orbit 1275.a
Self dual yes
Analytic conductor $75.227$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1275,4,Mod(1,1275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1275.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.2274352573\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 255)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{33})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 1) q^{2} + 3 q^{3} + (3 \beta + 1) q^{4} + ( - 3 \beta - 3) q^{6} + 5 \beta q^{7} + (\beta - 17) q^{8} + 9 q^{9} + ( - 13 \beta - 4) q^{11} + (9 \beta + 3) q^{12} + (6 \beta + 22) q^{13}+ \cdots + ( - 117 \beta - 36) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} + 6 q^{3} + 5 q^{4} - 9 q^{6} + 5 q^{7} - 33 q^{8} + 18 q^{9} - 21 q^{11} + 15 q^{12} + 50 q^{13} - 90 q^{14} - 7 q^{16} - 34 q^{17} - 27 q^{18} + 67 q^{19} + 15 q^{21} + 246 q^{22} + 132 q^{23}+ \cdots - 189 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.37228
−2.37228
−4.37228 3.00000 11.1168 0 −13.1168 16.8614 −13.6277 9.00000 0
1.2 1.37228 3.00000 −6.11684 0 4.11684 −11.8614 −19.3723 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1275.4.a.l 2
5.b even 2 1 255.4.a.f 2
15.d odd 2 1 765.4.a.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
255.4.a.f 2 5.b even 2 1
765.4.a.f 2 15.d odd 2 1
1275.4.a.l 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1275))\):

\( T_{2}^{2} + 3T_{2} - 6 \) Copy content Toggle raw display
\( T_{7}^{2} - 5T_{7} - 200 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 3T - 6 \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 5T - 200 \) Copy content Toggle raw display
$11$ \( T^{2} + 21T - 1284 \) Copy content Toggle raw display
$13$ \( T^{2} - 50T + 328 \) Copy content Toggle raw display
$17$ \( (T + 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 67T + 124 \) Copy content Toggle raw display
$23$ \( T^{2} - 132T - 6336 \) Copy content Toggle raw display
$29$ \( T^{2} + 195T + 9102 \) Copy content Toggle raw display
$31$ \( T^{2} + 212T + 11104 \) Copy content Toggle raw display
$37$ \( T^{2} + 61T - 3434 \) Copy content Toggle raw display
$41$ \( T^{2} + 363T + 32538 \) Copy content Toggle raw display
$43$ \( T^{2} + 316T + 18496 \) Copy content Toggle raw display
$47$ \( T^{2} + 387T + 36048 \) Copy content Toggle raw display
$53$ \( T^{2} - 111T - 36198 \) Copy content Toggle raw display
$59$ \( T^{2} + 906T + 144192 \) Copy content Toggle raw display
$61$ \( T^{2} - 70T - 8312 \) Copy content Toggle raw display
$67$ \( T^{2} + 286T + 13024 \) Copy content Toggle raw display
$71$ \( T^{2} - 264T - 426624 \) Copy content Toggle raw display
$73$ \( T^{2} + 331T - 109898 \) Copy content Toggle raw display
$79$ \( T^{2} + 986T + 240376 \) Copy content Toggle raw display
$83$ \( T^{2} + 60T - 1684608 \) Copy content Toggle raw display
$89$ \( T^{2} + 2076 T + 1001412 \) Copy content Toggle raw display
$97$ \( T^{2} + 1492 T + 365908 \) Copy content Toggle raw display
show more
show less