Properties

Label 1280.2.l.a.961.3
Level $1280$
Weight $2$
Character 1280.961
Analytic conductor $10.221$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,2,Mod(321,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.321");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 961.3
Root \(-0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 1280.961
Dual form 1280.2.l.a.321.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.341081 + 0.341081i) q^{3} +(0.707107 + 0.707107i) q^{5} +1.89658i q^{7} +2.76733i q^{9} +(3.24969 + 3.24969i) q^{11} +(-2.93185 + 2.93185i) q^{13} -0.482362 q^{15} -8.00997 q^{17} +(3.98174 - 3.98174i) q^{19} +(-0.646887 - 0.646887i) q^{21} -5.61401i q^{23} +1.00000i q^{25} +(-1.96713 - 1.96713i) q^{27} +(-1.39960 + 1.39960i) q^{29} -6.29253 q^{31} -2.21682 q^{33} +(-1.34108 + 1.34108i) q^{35} +(-1.69677 - 1.69677i) q^{37} -2.00000i q^{39} -3.16088i q^{41} +(3.40923 + 3.40923i) q^{43} +(-1.95680 + 1.95680i) q^{45} -5.99635 q^{47} +3.40300 q^{49} +(2.73205 - 2.73205i) q^{51} +(1.42126 + 1.42126i) q^{53} +4.59575i q^{55} +2.71619i q^{57} +(9.70915 + 9.70915i) q^{59} +(-7.04524 + 7.04524i) q^{61} -5.24844 q^{63} -4.14626 q^{65} +(5.84802 - 5.84802i) q^{67} +(1.91484 + 1.91484i) q^{69} +4.49938i q^{71} +9.77389i q^{73} +(-0.341081 - 0.341081i) q^{75} +(-6.16328 + 6.16328i) q^{77} -13.0353 q^{79} -6.96008 q^{81} +(4.23766 - 4.23766i) q^{83} +(-5.66390 - 5.66390i) q^{85} -0.954756i q^{87} +5.24213i q^{89} +(-5.56048 - 5.56048i) q^{91} +(2.14626 - 2.14626i) q^{93} +5.63103 q^{95} -5.34706 q^{97} +(-8.99295 + 8.99295i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 8 q^{11} - 8 q^{13} - 8 q^{15} - 8 q^{17} - 16 q^{21} + 8 q^{27} - 8 q^{29} + 24 q^{33} - 12 q^{35} - 8 q^{37} + 44 q^{43} + 8 q^{45} - 8 q^{47} + 8 q^{51} + 16 q^{53} - 16 q^{59} + 8 q^{61}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.341081 + 0.341081i −0.196923 + 0.196923i −0.798680 0.601756i \(-0.794468\pi\)
0.601756 + 0.798680i \(0.294468\pi\)
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) 1.89658i 0.716838i 0.933561 + 0.358419i \(0.116684\pi\)
−0.933561 + 0.358419i \(0.883316\pi\)
\(8\) 0 0
\(9\) 2.76733i 0.922442i
\(10\) 0 0
\(11\) 3.24969 + 3.24969i 0.979818 + 0.979818i 0.999800 0.0199823i \(-0.00636098\pi\)
−0.0199823 + 0.999800i \(0.506361\pi\)
\(12\) 0 0
\(13\) −2.93185 + 2.93185i −0.813149 + 0.813149i −0.985105 0.171955i \(-0.944992\pi\)
0.171955 + 0.985105i \(0.444992\pi\)
\(14\) 0 0
\(15\) −0.482362 −0.124545
\(16\) 0 0
\(17\) −8.00997 −1.94270 −0.971351 0.237648i \(-0.923623\pi\)
−0.971351 + 0.237648i \(0.923623\pi\)
\(18\) 0 0
\(19\) 3.98174 3.98174i 0.913474 0.913474i −0.0830700 0.996544i \(-0.526473\pi\)
0.996544 + 0.0830700i \(0.0264725\pi\)
\(20\) 0 0
\(21\) −0.646887 0.646887i −0.141162 0.141162i
\(22\) 0 0
\(23\) 5.61401i 1.17060i −0.810816 0.585301i \(-0.800976\pi\)
0.810816 0.585301i \(-0.199024\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) −1.96713 1.96713i −0.378574 0.378574i
\(28\) 0 0
\(29\) −1.39960 + 1.39960i −0.259900 + 0.259900i −0.825013 0.565114i \(-0.808832\pi\)
0.565114 + 0.825013i \(0.308832\pi\)
\(30\) 0 0
\(31\) −6.29253 −1.13017 −0.565086 0.825032i \(-0.691157\pi\)
−0.565086 + 0.825032i \(0.691157\pi\)
\(32\) 0 0
\(33\) −2.21682 −0.385898
\(34\) 0 0
\(35\) −1.34108 + 1.34108i −0.226684 + 0.226684i
\(36\) 0 0
\(37\) −1.69677 1.69677i −0.278948 0.278948i 0.553741 0.832689i \(-0.313200\pi\)
−0.832689 + 0.553741i \(0.813200\pi\)
\(38\) 0 0
\(39\) 2.00000i 0.320256i
\(40\) 0 0
\(41\) 3.16088i 0.493646i −0.969061 0.246823i \(-0.920613\pi\)
0.969061 0.246823i \(-0.0793866\pi\)
\(42\) 0 0
\(43\) 3.40923 + 3.40923i 0.519903 + 0.519903i 0.917542 0.397639i \(-0.130170\pi\)
−0.397639 + 0.917542i \(0.630170\pi\)
\(44\) 0 0
\(45\) −1.95680 + 1.95680i −0.291702 + 0.291702i
\(46\) 0 0
\(47\) −5.99635 −0.874658 −0.437329 0.899302i \(-0.644075\pi\)
−0.437329 + 0.899302i \(0.644075\pi\)
\(48\) 0 0
\(49\) 3.40300 0.486143
\(50\) 0 0
\(51\) 2.73205 2.73205i 0.382564 0.382564i
\(52\) 0 0
\(53\) 1.42126 + 1.42126i 0.195225 + 0.195225i 0.797950 0.602724i \(-0.205918\pi\)
−0.602724 + 0.797950i \(0.705918\pi\)
\(54\) 0 0
\(55\) 4.59575i 0.619691i
\(56\) 0 0
\(57\) 2.71619i 0.359769i
\(58\) 0 0
\(59\) 9.70915 + 9.70915i 1.26402 + 1.26402i 0.949126 + 0.314898i \(0.101970\pi\)
0.314898 + 0.949126i \(0.398030\pi\)
\(60\) 0 0
\(61\) −7.04524 + 7.04524i −0.902051 + 0.902051i −0.995613 0.0935624i \(-0.970175\pi\)
0.0935624 + 0.995613i \(0.470175\pi\)
\(62\) 0 0
\(63\) −5.24844 −0.661242
\(64\) 0 0
\(65\) −4.14626 −0.514281
\(66\) 0 0
\(67\) 5.84802 5.84802i 0.714450 0.714450i −0.253013 0.967463i \(-0.581422\pi\)
0.967463 + 0.253013i \(0.0814216\pi\)
\(68\) 0 0
\(69\) 1.91484 + 1.91484i 0.230519 + 0.230519i
\(70\) 0 0
\(71\) 4.49938i 0.533978i 0.963700 + 0.266989i \(0.0860287\pi\)
−0.963700 + 0.266989i \(0.913971\pi\)
\(72\) 0 0
\(73\) 9.77389i 1.14395i 0.820272 + 0.571974i \(0.193822\pi\)
−0.820272 + 0.571974i \(0.806178\pi\)
\(74\) 0 0
\(75\) −0.341081 0.341081i −0.0393847 0.0393847i
\(76\) 0 0
\(77\) −6.16328 + 6.16328i −0.702371 + 0.702371i
\(78\) 0 0
\(79\) −13.0353 −1.46658 −0.733292 0.679914i \(-0.762017\pi\)
−0.733292 + 0.679914i \(0.762017\pi\)
\(80\) 0 0
\(81\) −6.96008 −0.773342
\(82\) 0 0
\(83\) 4.23766 4.23766i 0.465143 0.465143i −0.435194 0.900337i \(-0.643320\pi\)
0.900337 + 0.435194i \(0.143320\pi\)
\(84\) 0 0
\(85\) −5.66390 5.66390i −0.614336 0.614336i
\(86\) 0 0
\(87\) 0.954756i 0.102361i
\(88\) 0 0
\(89\) 5.24213i 0.555664i 0.960630 + 0.277832i \(0.0896159\pi\)
−0.960630 + 0.277832i \(0.910384\pi\)
\(90\) 0 0
\(91\) −5.56048 5.56048i −0.582896 0.582896i
\(92\) 0 0
\(93\) 2.14626 2.14626i 0.222557 0.222557i
\(94\) 0 0
\(95\) 5.63103 0.577732
\(96\) 0 0
\(97\) −5.34706 −0.542912 −0.271456 0.962451i \(-0.587505\pi\)
−0.271456 + 0.962451i \(0.587505\pi\)
\(98\) 0 0
\(99\) −8.99295 + 8.99295i −0.903826 + 0.903826i
\(100\) 0 0
\(101\) −0.863703 0.863703i −0.0859417 0.0859417i 0.662829 0.748771i \(-0.269356\pi\)
−0.748771 + 0.662829i \(0.769356\pi\)
\(102\) 0 0
\(103\) 5.02166i 0.494799i 0.968914 + 0.247399i \(0.0795760\pi\)
−0.968914 + 0.247399i \(0.920424\pi\)
\(104\) 0 0
\(105\) 0.914836i 0.0892788i
\(106\) 0 0
\(107\) −1.92222 1.92222i −0.185828 0.185828i 0.608062 0.793890i \(-0.291947\pi\)
−0.793890 + 0.608062i \(0.791947\pi\)
\(108\) 0 0
\(109\) 9.84304 9.84304i 0.942792 0.942792i −0.0556578 0.998450i \(-0.517726\pi\)
0.998450 + 0.0556578i \(0.0177256\pi\)
\(110\) 0 0
\(111\) 1.15748 0.109863
\(112\) 0 0
\(113\) 6.39230 0.601337 0.300669 0.953729i \(-0.402790\pi\)
0.300669 + 0.953729i \(0.402790\pi\)
\(114\) 0 0
\(115\) 3.96971 3.96971i 0.370177 0.370177i
\(116\) 0 0
\(117\) −8.11339 8.11339i −0.750083 0.750083i
\(118\) 0 0
\(119\) 15.1915i 1.39260i
\(120\) 0 0
\(121\) 10.1210i 0.920087i
\(122\) 0 0
\(123\) 1.07812 + 1.07812i 0.0972104 + 0.0972104i
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 21.5823 1.91512 0.957560 0.288235i \(-0.0930683\pi\)
0.957560 + 0.288235i \(0.0930683\pi\)
\(128\) 0 0
\(129\) −2.32565 −0.204762
\(130\) 0 0
\(131\) −3.83548 + 3.83548i −0.335107 + 0.335107i −0.854522 0.519415i \(-0.826150\pi\)
0.519415 + 0.854522i \(0.326150\pi\)
\(132\) 0 0
\(133\) 7.55167 + 7.55167i 0.654813 + 0.654813i
\(134\) 0 0
\(135\) 2.78194i 0.239431i
\(136\) 0 0
\(137\) 0.277401i 0.0237000i −0.999930 0.0118500i \(-0.996228\pi\)
0.999930 0.0118500i \(-0.00377206\pi\)
\(138\) 0 0
\(139\) 9.23043 + 9.23043i 0.782915 + 0.782915i 0.980322 0.197407i \(-0.0632519\pi\)
−0.197407 + 0.980322i \(0.563252\pi\)
\(140\) 0 0
\(141\) 2.04524 2.04524i 0.172241 0.172241i
\(142\) 0 0
\(143\) −19.0552 −1.59348
\(144\) 0 0
\(145\) −1.97934 −0.164375
\(146\) 0 0
\(147\) −1.16070 + 1.16070i −0.0957330 + 0.0957330i
\(148\) 0 0
\(149\) 6.57509 + 6.57509i 0.538652 + 0.538652i 0.923133 0.384481i \(-0.125619\pi\)
−0.384481 + 0.923133i \(0.625619\pi\)
\(150\) 0 0
\(151\) 15.0917i 1.22815i −0.789249 0.614074i \(-0.789530\pi\)
0.789249 0.614074i \(-0.210470\pi\)
\(152\) 0 0
\(153\) 22.1662i 1.79203i
\(154\) 0 0
\(155\) −4.44949 4.44949i −0.357392 0.357392i
\(156\) 0 0
\(157\) −15.5997 + 15.5997i −1.24499 + 1.24499i −0.287084 + 0.957906i \(0.592686\pi\)
−0.957906 + 0.287084i \(0.907314\pi\)
\(158\) 0 0
\(159\) −0.969532 −0.0768889
\(160\) 0 0
\(161\) 10.6474 0.839133
\(162\) 0 0
\(163\) −4.91617 + 4.91617i −0.385064 + 0.385064i −0.872923 0.487858i \(-0.837778\pi\)
0.487858 + 0.872923i \(0.337778\pi\)
\(164\) 0 0
\(165\) −1.56753 1.56753i −0.122032 0.122032i
\(166\) 0 0
\(167\) 23.2051i 1.79567i 0.440336 + 0.897833i \(0.354859\pi\)
−0.440336 + 0.897833i \(0.645141\pi\)
\(168\) 0 0
\(169\) 4.19151i 0.322424i
\(170\) 0 0
\(171\) 11.0188 + 11.0188i 0.842627 + 0.842627i
\(172\) 0 0
\(173\) 0.732051 0.732051i 0.0556568 0.0556568i −0.678731 0.734387i \(-0.737470\pi\)
0.734387 + 0.678731i \(0.237470\pi\)
\(174\) 0 0
\(175\) −1.89658 −0.143368
\(176\) 0 0
\(177\) −6.62322 −0.497832
\(178\) 0 0
\(179\) −0.619174 + 0.619174i −0.0462792 + 0.0462792i −0.729868 0.683588i \(-0.760418\pi\)
0.683588 + 0.729868i \(0.260418\pi\)
\(180\) 0 0
\(181\) 13.5558 + 13.5558i 1.00760 + 1.00760i 0.999971 + 0.00762627i \(0.00242754\pi\)
0.00762627 + 0.999971i \(0.497572\pi\)
\(182\) 0 0
\(183\) 4.80600i 0.355270i
\(184\) 0 0
\(185\) 2.39960i 0.176422i
\(186\) 0 0
\(187\) −26.0299 26.0299i −1.90350 1.90350i
\(188\) 0 0
\(189\) 3.73081 3.73081i 0.271376 0.271376i
\(190\) 0 0
\(191\) 6.70142 0.484898 0.242449 0.970164i \(-0.422049\pi\)
0.242449 + 0.970164i \(0.422049\pi\)
\(192\) 0 0
\(193\) 10.7527 0.773997 0.386999 0.922080i \(-0.373512\pi\)
0.386999 + 0.922080i \(0.373512\pi\)
\(194\) 0 0
\(195\) 1.41421 1.41421i 0.101274 0.101274i
\(196\) 0 0
\(197\) −18.3960 18.3960i −1.31066 1.31066i −0.920930 0.389727i \(-0.872569\pi\)
−0.389727 0.920930i \(-0.627431\pi\)
\(198\) 0 0
\(199\) 13.2713i 0.940781i 0.882458 + 0.470390i \(0.155887\pi\)
−0.882458 + 0.470390i \(0.844113\pi\)
\(200\) 0 0
\(201\) 3.98930i 0.281384i
\(202\) 0 0
\(203\) −2.65445 2.65445i −0.186306 0.186306i
\(204\) 0 0
\(205\) 2.23508 2.23508i 0.156105 0.156105i
\(206\) 0 0
\(207\) 15.5358 1.07981
\(208\) 0 0
\(209\) 25.8788 1.79008
\(210\) 0 0
\(211\) −1.28548 + 1.28548i −0.0884961 + 0.0884961i −0.749969 0.661473i \(-0.769932\pi\)
0.661473 + 0.749969i \(0.269932\pi\)
\(212\) 0 0
\(213\) −1.53465 1.53465i −0.105153 0.105153i
\(214\) 0 0
\(215\) 4.82138i 0.328815i
\(216\) 0 0
\(217\) 11.9343i 0.810150i
\(218\) 0 0
\(219\) −3.33369 3.33369i −0.225270 0.225270i
\(220\) 0 0
\(221\) 23.4840 23.4840i 1.57971 1.57971i
\(222\) 0 0
\(223\) 22.8640 1.53108 0.765542 0.643386i \(-0.222471\pi\)
0.765542 + 0.643386i \(0.222471\pi\)
\(224\) 0 0
\(225\) −2.76733 −0.184488
\(226\) 0 0
\(227\) −7.11305 + 7.11305i −0.472110 + 0.472110i −0.902597 0.430487i \(-0.858342\pi\)
0.430487 + 0.902597i \(0.358342\pi\)
\(228\) 0 0
\(229\) 14.1915 + 14.1915i 0.937801 + 0.937801i 0.998176 0.0603745i \(-0.0192295\pi\)
−0.0603745 + 0.998176i \(0.519230\pi\)
\(230\) 0 0
\(231\) 4.20436i 0.276627i
\(232\) 0 0
\(233\) 5.30855i 0.347775i −0.984766 0.173887i \(-0.944367\pi\)
0.984766 0.173887i \(-0.0556328\pi\)
\(234\) 0 0
\(235\) −4.24006 4.24006i −0.276591 0.276591i
\(236\) 0 0
\(237\) 4.44609 4.44609i 0.288805 0.288805i
\(238\) 0 0
\(239\) 8.62838 0.558123 0.279062 0.960273i \(-0.409977\pi\)
0.279062 + 0.960273i \(0.409977\pi\)
\(240\) 0 0
\(241\) 2.10118 0.135349 0.0676746 0.997707i \(-0.478442\pi\)
0.0676746 + 0.997707i \(0.478442\pi\)
\(242\) 0 0
\(243\) 8.27534 8.27534i 0.530863 0.530863i
\(244\) 0 0
\(245\) 2.40629 + 2.40629i 0.153732 + 0.153732i
\(246\) 0 0
\(247\) 23.3477i 1.48558i
\(248\) 0 0
\(249\) 2.89077i 0.183195i
\(250\) 0 0
\(251\) −10.6140 10.6140i −0.669951 0.669951i 0.287754 0.957704i \(-0.407092\pi\)
−0.957704 + 0.287754i \(0.907092\pi\)
\(252\) 0 0
\(253\) 18.2438 18.2438i 1.14698 1.14698i
\(254\) 0 0
\(255\) 3.86370 0.241954
\(256\) 0 0
\(257\) −29.3064 −1.82808 −0.914042 0.405620i \(-0.867056\pi\)
−0.914042 + 0.405620i \(0.867056\pi\)
\(258\) 0 0
\(259\) 3.21806 3.21806i 0.199961 0.199961i
\(260\) 0 0
\(261\) −3.87316 3.87316i −0.239742 0.239742i
\(262\) 0 0
\(263\) 23.8659i 1.47163i −0.677180 0.735817i \(-0.736798\pi\)
0.677180 0.735817i \(-0.263202\pi\)
\(264\) 0 0
\(265\) 2.00997i 0.123471i
\(266\) 0 0
\(267\) −1.78799 1.78799i −0.109423 0.109423i
\(268\) 0 0
\(269\) 5.07447 5.07447i 0.309396 0.309396i −0.535279 0.844675i \(-0.679794\pi\)
0.844675 + 0.535279i \(0.179794\pi\)
\(270\) 0 0
\(271\) 2.68483 0.163092 0.0815460 0.996670i \(-0.474014\pi\)
0.0815460 + 0.996670i \(0.474014\pi\)
\(272\) 0 0
\(273\) 3.79315 0.229572
\(274\) 0 0
\(275\) −3.24969 + 3.24969i −0.195964 + 0.195964i
\(276\) 0 0
\(277\) 6.65221 + 6.65221i 0.399693 + 0.399693i 0.878125 0.478432i \(-0.158795\pi\)
−0.478432 + 0.878125i \(0.658795\pi\)
\(278\) 0 0
\(279\) 17.4135i 1.04252i
\(280\) 0 0
\(281\) 20.0506i 1.19612i −0.801453 0.598058i \(-0.795939\pi\)
0.801453 0.598058i \(-0.204061\pi\)
\(282\) 0 0
\(283\) 13.0897 + 13.0897i 0.778100 + 0.778100i 0.979508 0.201408i \(-0.0645516\pi\)
−0.201408 + 0.979508i \(0.564552\pi\)
\(284\) 0 0
\(285\) −1.92064 + 1.92064i −0.113769 + 0.113769i
\(286\) 0 0
\(287\) 5.99484 0.353864
\(288\) 0 0
\(289\) 47.1596 2.77409
\(290\) 0 0
\(291\) 1.82378 1.82378i 0.106912 0.106912i
\(292\) 0 0
\(293\) −6.59059 6.59059i −0.385027 0.385027i 0.487883 0.872909i \(-0.337769\pi\)
−0.872909 + 0.487883i \(0.837769\pi\)
\(294\) 0 0
\(295\) 13.7308i 0.799438i
\(296\) 0 0
\(297\) 12.7851i 0.741867i
\(298\) 0 0
\(299\) 16.4595 + 16.4595i 0.951875 + 0.951875i
\(300\) 0 0
\(301\) −6.46586 + 6.46586i −0.372686 + 0.372686i
\(302\) 0 0
\(303\) 0.589186 0.0338479
\(304\) 0 0
\(305\) −9.96348 −0.570507
\(306\) 0 0
\(307\) −3.70176 + 3.70176i −0.211271 + 0.211271i −0.804807 0.593537i \(-0.797731\pi\)
0.593537 + 0.804807i \(0.297731\pi\)
\(308\) 0 0
\(309\) −1.71279 1.71279i −0.0974375 0.0974375i
\(310\) 0 0
\(311\) 7.61553i 0.431837i −0.976411 0.215918i \(-0.930725\pi\)
0.976411 0.215918i \(-0.0692745\pi\)
\(312\) 0 0
\(313\) 26.0058i 1.46994i 0.678101 + 0.734968i \(0.262803\pi\)
−0.678101 + 0.734968i \(0.737197\pi\)
\(314\) 0 0
\(315\) −3.71121 3.71121i −0.209103 0.209103i
\(316\) 0 0
\(317\) 5.63128 5.63128i 0.316284 0.316284i −0.531054 0.847338i \(-0.678204\pi\)
0.847338 + 0.531054i \(0.178204\pi\)
\(318\) 0 0
\(319\) −9.09654 −0.509308
\(320\) 0 0
\(321\) 1.31127 0.0731879
\(322\) 0 0
\(323\) −31.8936 + 31.8936i −1.77461 + 1.77461i
\(324\) 0 0
\(325\) −2.93185 2.93185i −0.162630 0.162630i
\(326\) 0 0
\(327\) 6.71455i 0.371316i
\(328\) 0 0
\(329\) 11.3725i 0.626988i
\(330\) 0 0
\(331\) −10.1232 10.1232i −0.556421 0.556421i 0.371865 0.928287i \(-0.378718\pi\)
−0.928287 + 0.371865i \(0.878718\pi\)
\(332\) 0 0
\(333\) 4.69553 4.69553i 0.257313 0.257313i
\(334\) 0 0
\(335\) 8.27035 0.451858
\(336\) 0 0
\(337\) −1.45929 −0.0794928 −0.0397464 0.999210i \(-0.512655\pi\)
−0.0397464 + 0.999210i \(0.512655\pi\)
\(338\) 0 0
\(339\) −2.18030 + 2.18030i −0.118417 + 0.118417i
\(340\) 0 0
\(341\) −20.4488 20.4488i −1.10736 1.10736i
\(342\) 0 0
\(343\) 19.7301i 1.06532i
\(344\) 0 0
\(345\) 2.70799i 0.145793i
\(346\) 0 0
\(347\) −14.9246 14.9246i −0.801196 0.801196i 0.182087 0.983283i \(-0.441715\pi\)
−0.983283 + 0.182087i \(0.941715\pi\)
\(348\) 0 0
\(349\) 10.2621 10.2621i 0.549316 0.549316i −0.376927 0.926243i \(-0.623019\pi\)
0.926243 + 0.376927i \(0.123019\pi\)
\(350\) 0 0
\(351\) 11.5347 0.615674
\(352\) 0 0
\(353\) 21.5332 1.14610 0.573048 0.819522i \(-0.305761\pi\)
0.573048 + 0.819522i \(0.305761\pi\)
\(354\) 0 0
\(355\) −3.18154 + 3.18154i −0.168859 + 0.168859i
\(356\) 0 0
\(357\) 5.18154 + 5.18154i 0.274236 + 0.274236i
\(358\) 0 0
\(359\) 23.7108i 1.25141i −0.780060 0.625705i \(-0.784812\pi\)
0.780060 0.625705i \(-0.215188\pi\)
\(360\) 0 0
\(361\) 12.7085i 0.668869i
\(362\) 0 0
\(363\) −3.45207 3.45207i −0.181187 0.181187i
\(364\) 0 0
\(365\) −6.91119 + 6.91119i −0.361748 + 0.361748i
\(366\) 0 0
\(367\) −2.46583 −0.128715 −0.0643575 0.997927i \(-0.520500\pi\)
−0.0643575 + 0.997927i \(0.520500\pi\)
\(368\) 0 0
\(369\) 8.74718 0.455360
\(370\) 0 0
\(371\) −2.69553 + 2.69553i −0.139945 + 0.139945i
\(372\) 0 0
\(373\) 16.5817 + 16.5817i 0.858566 + 0.858566i 0.991169 0.132603i \(-0.0423337\pi\)
−0.132603 + 0.991169i \(0.542334\pi\)
\(374\) 0 0
\(375\) 0.482362i 0.0249091i
\(376\) 0 0
\(377\) 8.20685i 0.422674i
\(378\) 0 0
\(379\) −12.7530 12.7530i −0.655077 0.655077i 0.299134 0.954211i \(-0.403302\pi\)
−0.954211 + 0.299134i \(0.903302\pi\)
\(380\) 0 0
\(381\) −7.36132 + 7.36132i −0.377132 + 0.377132i
\(382\) 0 0
\(383\) 27.7761 1.41929 0.709646 0.704559i \(-0.248855\pi\)
0.709646 + 0.704559i \(0.248855\pi\)
\(384\) 0 0
\(385\) −8.71619 −0.444218
\(386\) 0 0
\(387\) −9.43445 + 9.43445i −0.479580 + 0.479580i
\(388\) 0 0
\(389\) 10.1238 + 10.1238i 0.513299 + 0.513299i 0.915536 0.402237i \(-0.131767\pi\)
−0.402237 + 0.915536i \(0.631767\pi\)
\(390\) 0 0
\(391\) 44.9681i 2.27413i
\(392\) 0 0
\(393\) 2.61642i 0.131981i
\(394\) 0 0
\(395\) −9.21733 9.21733i −0.463774 0.463774i
\(396\) 0 0
\(397\) 2.63932 2.63932i 0.132464 0.132464i −0.637766 0.770230i \(-0.720141\pi\)
0.770230 + 0.637766i \(0.220141\pi\)
\(398\) 0 0
\(399\) −5.15147 −0.257896
\(400\) 0 0
\(401\) 5.33261 0.266298 0.133149 0.991096i \(-0.457491\pi\)
0.133149 + 0.991096i \(0.457491\pi\)
\(402\) 0 0
\(403\) 18.4488 18.4488i 0.918998 0.918998i
\(404\) 0 0
\(405\) −4.92152 4.92152i −0.244552 0.244552i
\(406\) 0 0
\(407\) 11.0280i 0.546637i
\(408\) 0 0
\(409\) 6.82984i 0.337714i 0.985641 + 0.168857i \(0.0540075\pi\)
−0.985641 + 0.168857i \(0.945992\pi\)
\(410\) 0 0
\(411\) 0.0946165 + 0.0946165i 0.00466709 + 0.00466709i
\(412\) 0 0
\(413\) −18.4141 + 18.4141i −0.906100 + 0.906100i
\(414\) 0 0
\(415\) 5.99295 0.294182
\(416\) 0 0
\(417\) −6.29666 −0.308349
\(418\) 0 0
\(419\) 1.43728 1.43728i 0.0702158 0.0702158i −0.671127 0.741343i \(-0.734189\pi\)
0.741343 + 0.671127i \(0.234189\pi\)
\(420\) 0 0
\(421\) 18.4728 + 18.4728i 0.900310 + 0.900310i 0.995463 0.0951523i \(-0.0303338\pi\)
−0.0951523 + 0.995463i \(0.530334\pi\)
\(422\) 0 0
\(423\) 16.5939i 0.806821i
\(424\) 0 0
\(425\) 8.00997i 0.388541i
\(426\) 0 0
\(427\) −13.3618 13.3618i −0.646625 0.646625i
\(428\) 0 0
\(429\) 6.49938 6.49938i 0.313793 0.313793i
\(430\) 0 0
\(431\) −12.9282 −0.622730 −0.311365 0.950290i \(-0.600786\pi\)
−0.311365 + 0.950290i \(0.600786\pi\)
\(432\) 0 0
\(433\) 8.32389 0.400021 0.200010 0.979794i \(-0.435902\pi\)
0.200010 + 0.979794i \(0.435902\pi\)
\(434\) 0 0
\(435\) 0.675115 0.675115i 0.0323693 0.0323693i
\(436\) 0 0
\(437\) −22.3535 22.3535i −1.06932 1.06932i
\(438\) 0 0
\(439\) 27.3117i 1.30352i −0.758427 0.651759i \(-0.774032\pi\)
0.758427 0.651759i \(-0.225968\pi\)
\(440\) 0 0
\(441\) 9.41722i 0.448439i
\(442\) 0 0
\(443\) 6.07846 + 6.07846i 0.288796 + 0.288796i 0.836604 0.547808i \(-0.184538\pi\)
−0.547808 + 0.836604i \(0.684538\pi\)
\(444\) 0 0
\(445\) −3.70674 + 3.70674i −0.175716 + 0.175716i
\(446\) 0 0
\(447\) −4.48528 −0.212147
\(448\) 0 0
\(449\) −34.8989 −1.64698 −0.823491 0.567329i \(-0.807977\pi\)
−0.823491 + 0.567329i \(0.807977\pi\)
\(450\) 0 0
\(451\) 10.2719 10.2719i 0.483683 0.483683i
\(452\) 0 0
\(453\) 5.14751 + 5.14751i 0.241851 + 0.241851i
\(454\) 0 0
\(455\) 7.86370i 0.368656i
\(456\) 0 0
\(457\) 33.5191i 1.56796i 0.620788 + 0.783979i \(0.286813\pi\)
−0.620788 + 0.783979i \(0.713187\pi\)
\(458\) 0 0
\(459\) 15.7566 + 15.7566i 0.735457 + 0.735457i
\(460\) 0 0
\(461\) 3.13630 3.13630i 0.146072 0.146072i −0.630289 0.776361i \(-0.717064\pi\)
0.776361 + 0.630289i \(0.217064\pi\)
\(462\) 0 0
\(463\) −39.4736 −1.83449 −0.917247 0.398320i \(-0.869593\pi\)
−0.917247 + 0.398320i \(0.869593\pi\)
\(464\) 0 0
\(465\) 3.03528 0.140758
\(466\) 0 0
\(467\) 28.8755 28.8755i 1.33620 1.33620i 0.436491 0.899708i \(-0.356221\pi\)
0.899708 0.436491i \(-0.143779\pi\)
\(468\) 0 0
\(469\) 11.0912 + 11.0912i 0.512145 + 0.512145i
\(470\) 0 0
\(471\) 10.6415i 0.490335i
\(472\) 0 0
\(473\) 22.1579i 1.01882i
\(474\) 0 0
\(475\) 3.98174 + 3.98174i 0.182695 + 0.182695i
\(476\) 0 0
\(477\) −3.93310 + 3.93310i −0.180084 + 0.180084i
\(478\) 0 0
\(479\) −13.3911 −0.611853 −0.305927 0.952055i \(-0.598966\pi\)
−0.305927 + 0.952055i \(0.598966\pi\)
\(480\) 0 0
\(481\) 9.94938 0.453653
\(482\) 0 0
\(483\) −3.63163 + 3.63163i −0.165245 + 0.165245i
\(484\) 0 0
\(485\) −3.78094 3.78094i −0.171684 0.171684i
\(486\) 0 0
\(487\) 23.4804i 1.06400i 0.846745 + 0.531999i \(0.178559\pi\)
−0.846745 + 0.531999i \(0.821441\pi\)
\(488\) 0 0
\(489\) 3.35363i 0.151656i
\(490\) 0 0
\(491\) 27.3346 + 27.3346i 1.23360 + 1.23360i 0.962573 + 0.271022i \(0.0873616\pi\)
0.271022 + 0.962573i \(0.412638\pi\)
\(492\) 0 0
\(493\) 11.2108 11.2108i 0.504907 0.504907i
\(494\) 0 0
\(495\) −12.7180 −0.571630
\(496\) 0 0
\(497\) −8.53341 −0.382776
\(498\) 0 0
\(499\) −9.25966 + 9.25966i −0.414519 + 0.414519i −0.883309 0.468790i \(-0.844690\pi\)
0.468790 + 0.883309i \(0.344690\pi\)
\(500\) 0 0
\(501\) −7.91484 7.91484i −0.353609 0.353609i
\(502\) 0 0
\(503\) 5.58582i 0.249059i 0.992216 + 0.124530i \(0.0397422\pi\)
−0.992216 + 0.124530i \(0.960258\pi\)
\(504\) 0 0
\(505\) 1.22146i 0.0543543i
\(506\) 0 0
\(507\) 1.42965 + 1.42965i 0.0634928 + 0.0634928i
\(508\) 0 0
\(509\) 5.41473 5.41473i 0.240004 0.240004i −0.576848 0.816852i \(-0.695717\pi\)
0.816852 + 0.576848i \(0.195717\pi\)
\(510\) 0 0
\(511\) −18.5369 −0.820025
\(512\) 0 0
\(513\) −15.6652 −0.691635
\(514\) 0 0
\(515\) −3.55085 + 3.55085i −0.156469 + 0.156469i
\(516\) 0 0
\(517\) −19.4863 19.4863i −0.857005 0.857005i
\(518\) 0 0
\(519\) 0.499378i 0.0219203i
\(520\) 0 0
\(521\) 14.9310i 0.654140i 0.945000 + 0.327070i \(0.106061\pi\)
−0.945000 + 0.327070i \(0.893939\pi\)
\(522\) 0 0
\(523\) −8.28050 8.28050i −0.362081 0.362081i 0.502498 0.864579i \(-0.332415\pi\)
−0.864579 + 0.502498i \(0.832415\pi\)
\(524\) 0 0
\(525\) 0.646887 0.646887i 0.0282324 0.0282324i
\(526\) 0 0
\(527\) 50.4030 2.19559
\(528\) 0 0
\(529\) −8.51716 −0.370311
\(530\) 0 0
\(531\) −26.8684 + 26.8684i −1.16599 + 1.16599i
\(532\) 0 0
\(533\) 9.26722 + 9.26722i 0.401408 + 0.401408i
\(534\) 0 0
\(535\) 2.71843i 0.117528i
\(536\) 0 0
\(537\) 0.422377i 0.0182269i
\(538\) 0 0
\(539\) 11.0587 + 11.0587i 0.476332 + 0.476332i
\(540\) 0 0
\(541\) 5.37718 5.37718i 0.231183 0.231183i −0.582003 0.813186i \(-0.697731\pi\)
0.813186 + 0.582003i \(0.197731\pi\)
\(542\) 0 0
\(543\) −9.24728 −0.396839
\(544\) 0 0
\(545\) 13.9202 0.596274
\(546\) 0 0
\(547\) 20.8797 20.8797i 0.892749 0.892749i −0.102032 0.994781i \(-0.532534\pi\)
0.994781 + 0.102032i \(0.0325343\pi\)
\(548\) 0 0
\(549\) −19.4965 19.4965i −0.832090 0.832090i
\(550\) 0 0
\(551\) 11.1457i 0.474823i
\(552\) 0 0
\(553\) 24.7224i 1.05130i
\(554\) 0 0
\(555\) 0.818459 + 0.818459i 0.0347417 + 0.0347417i
\(556\) 0 0
\(557\) −28.3039 + 28.3039i −1.19927 + 1.19927i −0.224891 + 0.974384i \(0.572203\pi\)
−0.974384 + 0.224891i \(0.927797\pi\)
\(558\) 0 0
\(559\) −19.9907 −0.845517
\(560\) 0 0
\(561\) 17.7566 0.749686
\(562\) 0 0
\(563\) −0.679067 + 0.679067i −0.0286193 + 0.0286193i −0.721272 0.692652i \(-0.756442\pi\)
0.692652 + 0.721272i \(0.256442\pi\)
\(564\) 0 0
\(565\) 4.52004 + 4.52004i 0.190160 + 0.190160i
\(566\) 0 0
\(567\) 13.2003i 0.554361i
\(568\) 0 0
\(569\) 31.8870i 1.33677i −0.743814 0.668387i \(-0.766985\pi\)
0.743814 0.668387i \(-0.233015\pi\)
\(570\) 0 0
\(571\) 17.7856 + 17.7856i 0.744304 + 0.744304i 0.973403 0.229099i \(-0.0735781\pi\)
−0.229099 + 0.973403i \(0.573578\pi\)
\(572\) 0 0
\(573\) −2.28573 + 2.28573i −0.0954877 + 0.0954877i
\(574\) 0 0
\(575\) 5.61401 0.234121
\(576\) 0 0
\(577\) −17.9504 −0.747286 −0.373643 0.927573i \(-0.621891\pi\)
−0.373643 + 0.927573i \(0.621891\pi\)
\(578\) 0 0
\(579\) −3.66755 + 3.66755i −0.152418 + 0.152418i
\(580\) 0 0
\(581\) 8.03704 + 8.03704i 0.333432 + 0.333432i
\(582\) 0 0
\(583\) 9.23732i 0.382571i
\(584\) 0 0
\(585\) 11.4741i 0.474394i
\(586\) 0 0
\(587\) 3.13183 + 3.13183i 0.129264 + 0.129264i 0.768779 0.639515i \(-0.220865\pi\)
−0.639515 + 0.768779i \(0.720865\pi\)
\(588\) 0 0
\(589\) −25.0552 + 25.0552i −1.03238 + 1.03238i
\(590\) 0 0
\(591\) 12.5490 0.516198
\(592\) 0 0
\(593\) −33.1681 −1.36205 −0.681026 0.732259i \(-0.738466\pi\)
−0.681026 + 0.732259i \(0.738466\pi\)
\(594\) 0 0
\(595\) 10.7420 10.7420i 0.440380 0.440380i
\(596\) 0 0
\(597\) −4.52661 4.52661i −0.185262 0.185262i
\(598\) 0 0
\(599\) 37.7284i 1.54154i 0.637112 + 0.770771i \(0.280129\pi\)
−0.637112 + 0.770771i \(0.719871\pi\)
\(600\) 0 0
\(601\) 17.8671i 0.728814i 0.931240 + 0.364407i \(0.118728\pi\)
−0.931240 + 0.364407i \(0.881272\pi\)
\(602\) 0 0
\(603\) 16.1834 + 16.1834i 0.659039 + 0.659039i
\(604\) 0 0
\(605\) −7.15660 + 7.15660i −0.290957 + 0.290957i
\(606\) 0 0
\(607\) −16.1526 −0.655613 −0.327807 0.944745i \(-0.606309\pi\)
−0.327807 + 0.944745i \(0.606309\pi\)
\(608\) 0 0
\(609\) 1.81077 0.0733760
\(610\) 0 0
\(611\) 17.5804 17.5804i 0.711227 0.711227i
\(612\) 0 0
\(613\) −19.0003 19.0003i −0.767414 0.767414i 0.210237 0.977650i \(-0.432576\pi\)
−0.977650 + 0.210237i \(0.932576\pi\)
\(614\) 0 0
\(615\) 1.52469i 0.0614813i
\(616\) 0 0
\(617\) 12.4952i 0.503040i −0.967852 0.251520i \(-0.919070\pi\)
0.967852 0.251520i \(-0.0809304\pi\)
\(618\) 0 0
\(619\) −9.84544 9.84544i −0.395722 0.395722i 0.480999 0.876721i \(-0.340274\pi\)
−0.876721 + 0.480999i \(0.840274\pi\)
\(620\) 0 0
\(621\) −11.0435 + 11.0435i −0.443160 + 0.443160i
\(622\) 0 0
\(623\) −9.94209 −0.398321
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) −8.82679 + 8.82679i −0.352508 + 0.352508i
\(628\) 0 0
\(629\) 13.5911 + 13.5911i 0.541913 + 0.541913i
\(630\) 0 0
\(631\) 30.2540i 1.20439i −0.798348 0.602197i \(-0.794292\pi\)
0.798348 0.602197i \(-0.205708\pi\)
\(632\) 0 0
\(633\) 0.876907i 0.0348539i
\(634\) 0 0
\(635\) 15.2610 + 15.2610i 0.605614 + 0.605614i
\(636\) 0 0
\(637\) −9.97710 + 9.97710i −0.395307 + 0.395307i
\(638\) 0 0
\(639\) −12.4512 −0.492564
\(640\) 0 0
\(641\) −41.6543 −1.64525 −0.822623 0.568587i \(-0.807490\pi\)
−0.822623 + 0.568587i \(0.807490\pi\)
\(642\) 0 0
\(643\) 32.7951 32.7951i 1.29331 1.29331i 0.360589 0.932725i \(-0.382576\pi\)
0.932725 0.360589i \(-0.117424\pi\)
\(644\) 0 0
\(645\) −1.64448 1.64448i −0.0647514 0.0647514i
\(646\) 0 0
\(647\) 7.51356i 0.295388i −0.989033 0.147694i \(-0.952815\pi\)
0.989033 0.147694i \(-0.0471852\pi\)
\(648\) 0 0
\(649\) 63.1034i 2.47703i
\(650\) 0 0
\(651\) 4.07055 + 4.07055i 0.159538 + 0.159538i
\(652\) 0 0
\(653\) 8.30614 8.30614i 0.325045 0.325045i −0.525654 0.850699i \(-0.676179\pi\)
0.850699 + 0.525654i \(0.176179\pi\)
\(654\) 0 0
\(655\) −5.42418 −0.211940
\(656\) 0 0
\(657\) −27.0476 −1.05523
\(658\) 0 0
\(659\) 6.43123 6.43123i 0.250525 0.250525i −0.570661 0.821186i \(-0.693313\pi\)
0.821186 + 0.570661i \(0.193313\pi\)
\(660\) 0 0
\(661\) 15.8478 + 15.8478i 0.616410 + 0.616410i 0.944609 0.328199i \(-0.106442\pi\)
−0.328199 + 0.944609i \(0.606442\pi\)
\(662\) 0 0
\(663\) 16.0199i 0.622163i
\(664\) 0 0
\(665\) 10.6797i 0.414140i
\(666\) 0 0
\(667\) 7.85738 + 7.85738i 0.304239 + 0.304239i
\(668\) 0 0
\(669\) −7.79847 + 7.79847i −0.301506 + 0.301506i
\(670\) 0 0
\(671\) −45.7897 −1.76769
\(672\) 0 0
\(673\) 4.30979 0.166130 0.0830652 0.996544i \(-0.473529\pi\)
0.0830652 + 0.996544i \(0.473529\pi\)
\(674\) 0 0
\(675\) 1.96713 1.96713i 0.0757148 0.0757148i
\(676\) 0 0
\(677\) 13.5723 + 13.5723i 0.521627 + 0.521627i 0.918063 0.396435i \(-0.129753\pi\)
−0.396435 + 0.918063i \(0.629753\pi\)
\(678\) 0 0
\(679\) 10.1411i 0.389180i
\(680\) 0 0
\(681\) 4.85226i 0.185939i
\(682\) 0 0
\(683\) 5.87622 + 5.87622i 0.224847 + 0.224847i 0.810536 0.585689i \(-0.199176\pi\)
−0.585689 + 0.810536i \(0.699176\pi\)
\(684\) 0 0
\(685\) 0.196152 0.196152i 0.00749460 0.00749460i
\(686\) 0 0
\(687\) −9.68092 −0.369350
\(688\) 0 0
\(689\) −8.33386 −0.317495
\(690\) 0 0
\(691\) 0.100772 0.100772i 0.00383354 0.00383354i −0.705187 0.709021i \(-0.749137\pi\)
0.709021 + 0.705187i \(0.249137\pi\)
\(692\) 0 0
\(693\) −17.0558 17.0558i −0.647897 0.647897i
\(694\) 0 0
\(695\) 13.0538i 0.495159i
\(696\) 0 0
\(697\) 25.3185i 0.959007i
\(698\) 0 0
\(699\) 1.81065 + 1.81065i 0.0684850 + 0.0684850i
\(700\) 0 0
\(701\) −21.7340 + 21.7340i −0.820881 + 0.820881i −0.986234 0.165353i \(-0.947124\pi\)
0.165353 + 0.986234i \(0.447124\pi\)
\(702\) 0 0
\(703\) −13.5122 −0.509623
\(704\) 0 0
\(705\) 2.89241 0.108935
\(706\) 0 0
\(707\) 1.63808 1.63808i 0.0616063 0.0616063i
\(708\) 0 0
\(709\) 14.5911 + 14.5911i 0.547981 + 0.547981i 0.925856 0.377876i \(-0.123345\pi\)
−0.377876 + 0.925856i \(0.623345\pi\)
\(710\) 0 0
\(711\) 36.0729i 1.35284i
\(712\) 0 0
\(713\) 35.3263i 1.32298i
\(714\) 0 0
\(715\) −13.4741 13.4741i −0.503902 0.503902i
\(716\) 0 0
\(717\) −2.94298 + 2.94298i −0.109908 + 0.109908i
\(718\) 0 0
\(719\) −15.2427 −0.568455 −0.284228 0.958757i \(-0.591737\pi\)
−0.284228 + 0.958757i \(0.591737\pi\)
\(720\) 0 0
\(721\) −9.52396 −0.354691
\(722\) 0 0
\(723\) −0.716675 + 0.716675i −0.0266534 + 0.0266534i
\(724\) 0 0
\(725\) −1.39960 1.39960i −0.0519799 0.0519799i
\(726\) 0 0
\(727\) 13.9261i 0.516491i −0.966079 0.258246i \(-0.916856\pi\)
0.966079 0.258246i \(-0.0831444\pi\)
\(728\) 0 0
\(729\) 15.2351i 0.564263i
\(730\) 0 0
\(731\) −27.3078 27.3078i −1.01002 1.01002i
\(732\) 0 0
\(733\) −10.0306 + 10.0306i −0.370490 + 0.370490i −0.867656 0.497166i \(-0.834374\pi\)
0.497166 + 0.867656i \(0.334374\pi\)
\(734\) 0 0
\(735\) −1.64148 −0.0605468
\(736\) 0 0
\(737\) 38.0085 1.40006
\(738\) 0 0
\(739\) 16.3899 16.3899i 0.602912 0.602912i −0.338172 0.941084i \(-0.609809\pi\)
0.941084 + 0.338172i \(0.109809\pi\)
\(740\) 0 0
\(741\) −7.96348 7.96348i −0.292546 0.292546i
\(742\) 0 0
\(743\) 39.2832i 1.44116i −0.693372 0.720580i \(-0.743876\pi\)
0.693372 0.720580i \(-0.256124\pi\)
\(744\) 0 0
\(745\) 9.29858i 0.340674i
\(746\) 0 0
\(747\) 11.7270 + 11.7270i 0.429068 + 0.429068i
\(748\) 0 0
\(749\) 3.64564 3.64564i 0.133209 0.133209i
\(750\) 0 0
\(751\) 53.2689 1.94381 0.971905 0.235372i \(-0.0756307\pi\)
0.971905 + 0.235372i \(0.0756307\pi\)
\(752\) 0 0
\(753\) 7.24049 0.263858
\(754\) 0 0
\(755\) 10.6715 10.6715i 0.388374 0.388374i
\(756\) 0 0
\(757\) 26.5792 + 26.5792i 0.966036 + 0.966036i 0.999442 0.0334056i \(-0.0106353\pi\)
−0.0334056 + 0.999442i \(0.510635\pi\)
\(758\) 0 0
\(759\) 12.4452i 0.451734i
\(760\) 0 0
\(761\) 8.39479i 0.304311i −0.988357 0.152156i \(-0.951379\pi\)
0.988357 0.152156i \(-0.0486215\pi\)
\(762\) 0 0
\(763\) 18.6681 + 18.6681i 0.675829 + 0.675829i
\(764\) 0 0
\(765\) 15.6739 15.6739i 0.566690 0.566690i
\(766\) 0 0
\(767\) −56.9316 −2.05568
\(768\) 0 0
\(769\) 4.52558 0.163197 0.0815983 0.996665i \(-0.473998\pi\)
0.0815983 + 0.996665i \(0.473998\pi\)
\(770\) 0 0
\(771\) 9.99587 9.99587i 0.359993 0.359993i
\(772\) 0 0
\(773\) 7.53513 + 7.53513i 0.271020 + 0.271020i 0.829511 0.558491i \(-0.188619\pi\)
−0.558491 + 0.829511i \(0.688619\pi\)
\(774\) 0 0
\(775\) 6.29253i 0.226034i
\(776\) 0 0
\(777\) 2.19524i 0.0787538i
\(778\) 0 0
\(779\) −12.5858 12.5858i −0.450933 0.450933i
\(780\) 0 0
\(781\) −14.6216 + 14.6216i −0.523201 + 0.523201i
\(782\) 0 0
\(783\) 5.50639 0.196782
\(784\) 0 0
\(785\) −22.0613 −0.787400
\(786\) 0 0
\(787\) −24.0356 + 24.0356i −0.856777 + 0.856777i −0.990957 0.134180i \(-0.957160\pi\)
0.134180 + 0.990957i \(0.457160\pi\)
\(788\) 0 0
\(789\) 8.14021 + 8.14021i 0.289799 + 0.289799i
\(790\) 0 0
\(791\) 12.1235i 0.431062i
\(792\) 0 0
\(793\) 41.3112i 1.46700i
\(794\) 0 0
\(795\) −0.685563 0.685563i −0.0243144 0.0243144i
\(796\) 0 0
\(797\) 15.9406 15.9406i 0.564644 0.564644i −0.365979 0.930623i \(-0.619266\pi\)
0.930623 + 0.365979i \(0.119266\pi\)
\(798\) 0 0
\(799\) 48.0306 1.69920
\(800\) 0 0
\(801\) −14.5067 −0.512568
\(802\) 0 0
\(803\) −31.7621 + 31.7621i −1.12086 + 1.12086i
\(804\) 0 0
\(805\) 7.52885 + 7.52885i 0.265357 + 0.265357i
\(806\) 0 0
\(807\) 3.46161i 0.121855i
\(808\) 0 0
\(809\) 6.56615i 0.230854i −0.993316 0.115427i \(-0.963176\pi\)
0.993316 0.115427i \(-0.0368236\pi\)
\(810\) 0 0
\(811\) −6.17686 6.17686i −0.216899 0.216899i 0.590291 0.807190i \(-0.299013\pi\)
−0.807190 + 0.590291i \(0.799013\pi\)
\(812\) 0 0
\(813\) −0.915747 + 0.915747i −0.0321166 + 0.0321166i
\(814\) 0 0
\(815\) −6.95252 −0.243536
\(816\) 0 0
\(817\) 27.1493 0.949835
\(818\) 0 0
\(819\) 15.3877 15.3877i 0.537688 0.537688i
\(820\) 0 0
\(821\) −27.7607 27.7607i −0.968855 0.968855i 0.0306740 0.999529i \(-0.490235\pi\)
−0.999529 + 0.0306740i \(0.990235\pi\)
\(822\) 0 0
\(823\) 32.6093i 1.13669i 0.822791 + 0.568345i \(0.192416\pi\)
−0.822791 + 0.568345i \(0.807584\pi\)
\(824\) 0 0
\(825\) 2.21682i 0.0771797i
\(826\) 0 0
\(827\) 24.3987 + 24.3987i 0.848426 + 0.848426i 0.989937 0.141511i \(-0.0451960\pi\)
−0.141511 + 0.989937i \(0.545196\pi\)
\(828\) 0 0
\(829\) −27.9934 + 27.9934i −0.972250 + 0.972250i −0.999625 0.0273749i \(-0.991285\pi\)
0.0273749 + 0.999625i \(0.491285\pi\)
\(830\) 0 0
\(831\) −4.53789 −0.157418
\(832\) 0 0
\(833\) −27.2579 −0.944431
\(834\) 0 0
\(835\) −16.4085 + 16.4085i −0.567840 + 0.567840i
\(836\) 0 0
\(837\) 12.3782 + 12.3782i 0.427853 + 0.427853i
\(838\) 0 0
\(839\) 21.9927i 0.759272i −0.925136 0.379636i \(-0.876049\pi\)
0.925136 0.379636i \(-0.123951\pi\)
\(840\) 0 0
\(841\) 25.0822i 0.864904i
\(842\) 0 0
\(843\) 6.83888 + 6.83888i 0.235543 + 0.235543i
\(844\) 0 0
\(845\) 2.96384 2.96384i 0.101959 0.101959i
\(846\) 0 0
\(847\) −19.1952 −0.659553
\(848\) 0 0
\(849\) −8.92928 −0.306452
\(850\) 0 0
\(851\) −9.52572 + 9.52572i −0.326537 + 0.326537i
\(852\) 0 0
\(853\) −19.8800 19.8800i −0.680678 0.680678i 0.279475 0.960153i \(-0.409840\pi\)
−0.960153 + 0.279475i \(0.909840\pi\)
\(854\) 0 0
\(855\) 15.5829i 0.532924i
\(856\) 0 0
\(857\) 18.3052i 0.625293i −0.949870 0.312646i \(-0.898785\pi\)
0.949870 0.312646i \(-0.101215\pi\)
\(858\) 0 0
\(859\) 19.6751 + 19.6751i 0.671306 + 0.671306i 0.958017 0.286711i \(-0.0925619\pi\)
−0.286711 + 0.958017i \(0.592562\pi\)
\(860\) 0 0
\(861\) −2.04473 + 2.04473i −0.0696842 + 0.0696842i
\(862\) 0 0
\(863\) 26.1668 0.890727 0.445363 0.895350i \(-0.353075\pi\)
0.445363 + 0.895350i \(0.353075\pi\)
\(864\) 0 0
\(865\) 1.03528 0.0352004
\(866\) 0 0
\(867\) −16.0853 + 16.0853i −0.546284 + 0.546284i
\(868\) 0 0
\(869\) −42.3606 42.3606i −1.43698 1.43698i
\(870\) 0 0
\(871\) 34.2911i 1.16191i
\(872\) 0 0
\(873\) 14.7971i 0.500805i
\(874\) 0 0
\(875\) −1.34108 1.34108i −0.0453368 0.0453368i
\(876\) 0 0
\(877\) 7.81965 7.81965i 0.264051 0.264051i −0.562647 0.826698i \(-0.690217\pi\)
0.826698 + 0.562647i \(0.190217\pi\)
\(878\) 0 0
\(879\) 4.49586 0.151642
\(880\) 0 0
\(881\) −24.8591 −0.837523 −0.418761 0.908096i \(-0.637536\pi\)
−0.418761 + 0.908096i \(0.637536\pi\)
\(882\) 0 0
\(883\) 19.1337 19.1337i 0.643899 0.643899i −0.307613 0.951512i \(-0.599530\pi\)
0.951512 + 0.307613i \(0.0995301\pi\)
\(884\) 0 0
\(885\) −4.68332 4.68332i −0.157428 0.157428i
\(886\) 0 0
\(887\) 4.22417i 0.141834i −0.997482 0.0709168i \(-0.977408\pi\)
0.997482 0.0709168i \(-0.0225925\pi\)
\(888\) 0 0
\(889\) 40.9325i 1.37283i
\(890\) 0 0
\(891\) −22.6181 22.6181i −0.757735 0.757735i
\(892\) 0 0
\(893\) −23.8759 + 23.8759i −0.798977 + 0.798977i
\(894\) 0 0
\(895\) −0.875644 −0.0292696
\(896\) 0 0
\(897\) −11.2280 −0.374893
\(898\) 0 0
\(899\) 8.80703 8.80703i 0.293731 0.293731i
\(900\) 0 0
\(901\) −11.3843 11.3843i −0.379265 0.379265i
\(902\) 0 0
\(903\) 4.41077i 0.146781i
\(904\) 0 0
\(905\) 19.1708i 0.637260i
\(906\) 0 0
\(907\) 22.3277 + 22.3277i 0.741378 + 0.741378i 0.972843 0.231465i \(-0.0743520\pi\)
−0.231465 + 0.972843i \(0.574352\pi\)
\(908\) 0 0
\(909\) 2.39015 2.39015i 0.0792763 0.0792763i
\(910\) 0 0
\(911\) −5.03080 −0.166678 −0.0833389 0.996521i \(-0.526558\pi\)
−0.0833389 + 0.996521i \(0.526558\pi\)
\(912\) 0 0
\(913\) 27.5421 0.911512
\(914\) 0 0
\(915\) 3.39836 3.39836i 0.112346 0.112346i
\(916\) 0 0
\(917\) −7.27427 7.27427i −0.240218 0.240218i
\(918\) 0 0
\(919\) 29.0945i 0.959741i 0.877339 + 0.479870i \(0.159316\pi\)
−0.877339 + 0.479870i \(0.840684\pi\)
\(920\) 0 0
\(921\) 2.52520i 0.0832082i
\(922\) 0 0
\(923\) −13.1915 13.1915i −0.434204 0.434204i
\(924\) 0 0
\(925\) 1.69677 1.69677i 0.0557896 0.0557896i
\(926\) 0 0
\(927\) −13.8966 −0.456423
\(928\) 0 0
\(929\) 21.0425 0.690383 0.345191 0.938532i \(-0.387814\pi\)
0.345191 + 0.938532i \(0.387814\pi\)
\(930\) 0 0
\(931\) 13.5499 13.5499i 0.444079 0.444079i
\(932\) 0 0
\(933\) 2.59751 + 2.59751i 0.0850388 + 0.0850388i
\(934\) 0 0
\(935\) 36.8118i 1.20388i
\(936\) 0 0
\(937\) 8.03670i 0.262548i −0.991346 0.131274i \(-0.958093\pi\)
0.991346 0.131274i \(-0.0419067\pi\)
\(938\) 0 0
\(939\) −8.87011 8.87011i −0.289465 0.289465i
\(940\) 0 0
\(941\) 33.7967 33.7967i 1.10174 1.10174i 0.107541 0.994201i \(-0.465702\pi\)
0.994201 0.107541i \(-0.0342976\pi\)
\(942\) 0 0
\(943\) −17.7452 −0.577863
\(944\) 0 0
\(945\) 5.27616 0.171633
\(946\) 0 0
\(947\) −25.9264 + 25.9264i −0.842495 + 0.842495i −0.989183 0.146688i \(-0.953139\pi\)
0.146688 + 0.989183i \(0.453139\pi\)
\(948\) 0 0
\(949\) −28.6556 28.6556i −0.930200 0.930200i
\(950\) 0 0
\(951\) 3.84145i 0.124568i
\(952\) 0 0
\(953\) 38.3568i 1.24250i 0.783613 + 0.621250i \(0.213375\pi\)
−0.783613 + 0.621250i \(0.786625\pi\)
\(954\) 0 0
\(955\) 4.73862 + 4.73862i 0.153338 + 0.153338i
\(956\) 0 0
\(957\) 3.10266 3.10266i 0.100295 0.100295i
\(958\) 0 0
\(959\) 0.526113 0.0169891
\(960\) 0 0
\(961\) 8.59592 0.277288
\(962\) 0 0
\(963\) 5.31942 5.31942i 0.171416 0.171416i
\(964\) 0 0
\(965\) 7.60332 + 7.60332i 0.244759 + 0.244759i
\(966\) 0 0
\(967\) 1.16045i 0.0373174i 0.999826 + 0.0186587i \(0.00593960\pi\)
−0.999826 + 0.0186587i \(0.994060\pi\)
\(968\) 0 0
\(969\) 21.7566i 0.698924i
\(970\) 0 0
\(971\) 27.3205 + 27.3205i 0.876758 + 0.876758i 0.993198 0.116440i \(-0.0371482\pi\)
−0.116440 + 0.993198i \(0.537148\pi\)
\(972\) 0 0
\(973\) −17.5062 + 17.5062i −0.561223 + 0.561223i
\(974\) 0 0
\(975\) 2.00000 0.0640513
\(976\) 0 0
\(977\) 36.0168 1.15228 0.576139 0.817352i \(-0.304559\pi\)
0.576139 + 0.817352i \(0.304559\pi\)
\(978\) 0 0
\(979\) −17.0353 + 17.0353i −0.544450 + 0.544450i
\(980\) 0 0
\(981\) 27.2389 + 27.2389i 0.869671 + 0.869671i
\(982\) 0 0
\(983\) 6.41287i 0.204539i −0.994757 0.102269i \(-0.967390\pi\)
0.994757 0.102269i \(-0.0326104\pi\)
\(984\) 0 0
\(985\) 26.0158i 0.828933i
\(986\) 0 0
\(987\) 3.87896 + 3.87896i 0.123469 + 0.123469i
\(988\) 0 0
\(989\) 19.1395 19.1395i 0.608600 0.608600i
\(990\) 0 0
\(991\) −20.1152 −0.638981 −0.319491 0.947589i \(-0.603512\pi\)
−0.319491 + 0.947589i \(0.603512\pi\)
\(992\) 0 0
\(993\) 6.90567 0.219145
\(994\) 0 0
\(995\) −9.38426 + 9.38426i −0.297501 + 0.297501i
\(996\) 0 0
\(997\) 29.7795 + 29.7795i 0.943127 + 0.943127i 0.998468 0.0553402i \(-0.0176243\pi\)
−0.0553402 + 0.998468i \(0.517624\pi\)
\(998\) 0 0
\(999\) 6.67555i 0.211205i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.l.a.961.3 yes 8
4.3 odd 2 1280.2.l.f.961.2 yes 8
8.3 odd 2 1280.2.l.d.961.3 yes 8
8.5 even 2 1280.2.l.g.961.2 yes 8
16.3 odd 4 1280.2.l.f.321.2 yes 8
16.5 even 4 1280.2.l.g.321.2 yes 8
16.11 odd 4 1280.2.l.d.321.3 yes 8
16.13 even 4 inner 1280.2.l.a.321.3 8
32.3 odd 8 5120.2.a.q.1.2 4
32.13 even 8 5120.2.a.r.1.2 4
32.19 odd 8 5120.2.a.b.1.3 4
32.29 even 8 5120.2.a.a.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1280.2.l.a.321.3 8 16.13 even 4 inner
1280.2.l.a.961.3 yes 8 1.1 even 1 trivial
1280.2.l.d.321.3 yes 8 16.11 odd 4
1280.2.l.d.961.3 yes 8 8.3 odd 2
1280.2.l.f.321.2 yes 8 16.3 odd 4
1280.2.l.f.961.2 yes 8 4.3 odd 2
1280.2.l.g.321.2 yes 8 16.5 even 4
1280.2.l.g.961.2 yes 8 8.5 even 2
5120.2.a.a.1.3 4 32.29 even 8
5120.2.a.b.1.3 4 32.19 odd 8
5120.2.a.q.1.2 4 32.3 odd 8
5120.2.a.r.1.2 4 32.13 even 8