Properties

Label 1280.2.o.c.127.1
Level $1280$
Weight $2$
Character 1280.127
Analytic conductor $10.221$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,2,Mod(127,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.o (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 127.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1280.127
Dual form 1280.2.o.c.383.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{3} +(-2.00000 + 1.00000i) q^{5} +(-3.00000 + 3.00000i) q^{7} +1.00000i q^{9} -2.00000 q^{11} +(-3.00000 - 3.00000i) q^{13} +(1.00000 - 3.00000i) q^{15} +(1.00000 + 1.00000i) q^{17} +4.00000i q^{19} -6.00000i q^{21} +(-1.00000 - 1.00000i) q^{23} +(3.00000 - 4.00000i) q^{25} +(-4.00000 - 4.00000i) q^{27} +10.0000i q^{31} +(2.00000 - 2.00000i) q^{33} +(3.00000 - 9.00000i) q^{35} +(1.00000 - 1.00000i) q^{37} +6.00000 q^{39} +10.0000 q^{41} +(5.00000 - 5.00000i) q^{43} +(-1.00000 - 2.00000i) q^{45} +(3.00000 - 3.00000i) q^{47} -11.0000i q^{49} -2.00000 q^{51} +(-5.00000 - 5.00000i) q^{53} +(4.00000 - 2.00000i) q^{55} +(-4.00000 - 4.00000i) q^{57} +12.0000i q^{59} -2.00000i q^{61} +(-3.00000 - 3.00000i) q^{63} +(9.00000 + 3.00000i) q^{65} +(-1.00000 - 1.00000i) q^{67} +2.00000 q^{69} -2.00000i q^{71} +(-1.00000 + 1.00000i) q^{73} +(1.00000 + 7.00000i) q^{75} +(6.00000 - 6.00000i) q^{77} -8.00000 q^{79} +5.00000 q^{81} +(-5.00000 + 5.00000i) q^{83} +(-3.00000 - 1.00000i) q^{85} -16.0000i q^{89} +18.0000 q^{91} +(-10.0000 - 10.0000i) q^{93} +(-4.00000 - 8.00000i) q^{95} +(-3.00000 - 3.00000i) q^{97} -2.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 4 q^{5} - 6 q^{7} - 4 q^{11} - 6 q^{13} + 2 q^{15} + 2 q^{17} - 2 q^{23} + 6 q^{25} - 8 q^{27} + 4 q^{33} + 6 q^{35} + 2 q^{37} + 12 q^{39} + 20 q^{41} + 10 q^{43} - 2 q^{45} + 6 q^{47}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 + 1.00000i −0.577350 + 0.577350i −0.934172 0.356822i \(-0.883860\pi\)
0.356822 + 0.934172i \(0.383860\pi\)
\(4\) 0 0
\(5\) −2.00000 + 1.00000i −0.894427 + 0.447214i
\(6\) 0 0
\(7\) −3.00000 + 3.00000i −1.13389 + 1.13389i −0.144370 + 0.989524i \(0.546115\pi\)
−0.989524 + 0.144370i \(0.953885\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −3.00000 3.00000i −0.832050 0.832050i 0.155747 0.987797i \(-0.450222\pi\)
−0.987797 + 0.155747i \(0.950222\pi\)
\(14\) 0 0
\(15\) 1.00000 3.00000i 0.258199 0.774597i
\(16\) 0 0
\(17\) 1.00000 + 1.00000i 0.242536 + 0.242536i 0.817898 0.575363i \(-0.195139\pi\)
−0.575363 + 0.817898i \(0.695139\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) 6.00000i 1.30931i
\(22\) 0 0
\(23\) −1.00000 1.00000i −0.208514 0.208514i 0.595121 0.803636i \(-0.297104\pi\)
−0.803636 + 0.595121i \(0.797104\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) −4.00000 4.00000i −0.769800 0.769800i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 10.0000i 1.79605i 0.439941 + 0.898027i \(0.354999\pi\)
−0.439941 + 0.898027i \(0.645001\pi\)
\(32\) 0 0
\(33\) 2.00000 2.00000i 0.348155 0.348155i
\(34\) 0 0
\(35\) 3.00000 9.00000i 0.507093 1.52128i
\(36\) 0 0
\(37\) 1.00000 1.00000i 0.164399 0.164399i −0.620113 0.784512i \(-0.712913\pi\)
0.784512 + 0.620113i \(0.212913\pi\)
\(38\) 0 0
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) 5.00000 5.00000i 0.762493 0.762493i −0.214280 0.976772i \(-0.568740\pi\)
0.976772 + 0.214280i \(0.0687403\pi\)
\(44\) 0 0
\(45\) −1.00000 2.00000i −0.149071 0.298142i
\(46\) 0 0
\(47\) 3.00000 3.00000i 0.437595 0.437595i −0.453607 0.891202i \(-0.649863\pi\)
0.891202 + 0.453607i \(0.149863\pi\)
\(48\) 0 0
\(49\) 11.0000i 1.57143i
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) −5.00000 5.00000i −0.686803 0.686803i 0.274721 0.961524i \(-0.411414\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) 0 0
\(55\) 4.00000 2.00000i 0.539360 0.269680i
\(56\) 0 0
\(57\) −4.00000 4.00000i −0.529813 0.529813i
\(58\) 0 0
\(59\) 12.0000i 1.56227i 0.624364 + 0.781133i \(0.285358\pi\)
−0.624364 + 0.781133i \(0.714642\pi\)
\(60\) 0 0
\(61\) 2.00000i 0.256074i −0.991769 0.128037i \(-0.959132\pi\)
0.991769 0.128037i \(-0.0408676\pi\)
\(62\) 0 0
\(63\) −3.00000 3.00000i −0.377964 0.377964i
\(64\) 0 0
\(65\) 9.00000 + 3.00000i 1.11631 + 0.372104i
\(66\) 0 0
\(67\) −1.00000 1.00000i −0.122169 0.122169i 0.643379 0.765548i \(-0.277532\pi\)
−0.765548 + 0.643379i \(0.777532\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) 2.00000i 0.237356i −0.992933 0.118678i \(-0.962134\pi\)
0.992933 0.118678i \(-0.0378657\pi\)
\(72\) 0 0
\(73\) −1.00000 + 1.00000i −0.117041 + 0.117041i −0.763202 0.646160i \(-0.776374\pi\)
0.646160 + 0.763202i \(0.276374\pi\)
\(74\) 0 0
\(75\) 1.00000 + 7.00000i 0.115470 + 0.808290i
\(76\) 0 0
\(77\) 6.00000 6.00000i 0.683763 0.683763i
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 0 0
\(83\) −5.00000 + 5.00000i −0.548821 + 0.548821i −0.926100 0.377279i \(-0.876860\pi\)
0.377279 + 0.926100i \(0.376860\pi\)
\(84\) 0 0
\(85\) −3.00000 1.00000i −0.325396 0.108465i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.0000i 1.69600i −0.529999 0.847998i \(-0.677808\pi\)
0.529999 0.847998i \(-0.322192\pi\)
\(90\) 0 0
\(91\) 18.0000 1.88691
\(92\) 0 0
\(93\) −10.0000 10.0000i −1.03695 1.03695i
\(94\) 0 0
\(95\) −4.00000 8.00000i −0.410391 0.820783i
\(96\) 0 0
\(97\) −3.00000 3.00000i −0.304604 0.304604i 0.538208 0.842812i \(-0.319101\pi\)
−0.842812 + 0.538208i \(0.819101\pi\)
\(98\) 0 0
\(99\) 2.00000i 0.201008i
\(100\) 0 0
\(101\) 6.00000i 0.597022i 0.954406 + 0.298511i \(0.0964900\pi\)
−0.954406 + 0.298511i \(0.903510\pi\)
\(102\) 0 0
\(103\) −9.00000 9.00000i −0.886796 0.886796i 0.107418 0.994214i \(-0.465742\pi\)
−0.994214 + 0.107418i \(0.965742\pi\)
\(104\) 0 0
\(105\) 6.00000 + 12.0000i 0.585540 + 1.17108i
\(106\) 0 0
\(107\) −3.00000 3.00000i −0.290021 0.290021i 0.547068 0.837088i \(-0.315744\pi\)
−0.837088 + 0.547068i \(0.815744\pi\)
\(108\) 0 0
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 2.00000i 0.189832i
\(112\) 0 0
\(113\) −3.00000 + 3.00000i −0.282216 + 0.282216i −0.833992 0.551776i \(-0.813950\pi\)
0.551776 + 0.833992i \(0.313950\pi\)
\(114\) 0 0
\(115\) 3.00000 + 1.00000i 0.279751 + 0.0932505i
\(116\) 0 0
\(117\) 3.00000 3.00000i 0.277350 0.277350i
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −10.0000 + 10.0000i −0.901670 + 0.901670i
\(124\) 0 0
\(125\) −2.00000 + 11.0000i −0.178885 + 0.983870i
\(126\) 0 0
\(127\) 7.00000 7.00000i 0.621150 0.621150i −0.324676 0.945825i \(-0.605255\pi\)
0.945825 + 0.324676i \(0.105255\pi\)
\(128\) 0 0
\(129\) 10.0000i 0.880451i
\(130\) 0 0
\(131\) 10.0000 0.873704 0.436852 0.899533i \(-0.356093\pi\)
0.436852 + 0.899533i \(0.356093\pi\)
\(132\) 0 0
\(133\) −12.0000 12.0000i −1.04053 1.04053i
\(134\) 0 0
\(135\) 12.0000 + 4.00000i 1.03280 + 0.344265i
\(136\) 0 0
\(137\) 11.0000 + 11.0000i 0.939793 + 0.939793i 0.998288 0.0584943i \(-0.0186300\pi\)
−0.0584943 + 0.998288i \(0.518630\pi\)
\(138\) 0 0
\(139\) 12.0000i 1.01783i −0.860818 0.508913i \(-0.830047\pi\)
0.860818 0.508913i \(-0.169953\pi\)
\(140\) 0 0
\(141\) 6.00000i 0.505291i
\(142\) 0 0
\(143\) 6.00000 + 6.00000i 0.501745 + 0.501745i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 11.0000 + 11.0000i 0.907265 + 0.907265i
\(148\) 0 0
\(149\) 4.00000 0.327693 0.163846 0.986486i \(-0.447610\pi\)
0.163846 + 0.986486i \(0.447610\pi\)
\(150\) 0 0
\(151\) 6.00000i 0.488273i 0.969741 + 0.244137i \(0.0785045\pi\)
−0.969741 + 0.244137i \(0.921495\pi\)
\(152\) 0 0
\(153\) −1.00000 + 1.00000i −0.0808452 + 0.0808452i
\(154\) 0 0
\(155\) −10.0000 20.0000i −0.803219 1.60644i
\(156\) 0 0
\(157\) −1.00000 + 1.00000i −0.0798087 + 0.0798087i −0.745884 0.666076i \(-0.767973\pi\)
0.666076 + 0.745884i \(0.267973\pi\)
\(158\) 0 0
\(159\) 10.0000 0.793052
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) −1.00000 + 1.00000i −0.0783260 + 0.0783260i −0.745184 0.666858i \(-0.767639\pi\)
0.666858 + 0.745184i \(0.267639\pi\)
\(164\) 0 0
\(165\) −2.00000 + 6.00000i −0.155700 + 0.467099i
\(166\) 0 0
\(167\) 1.00000 1.00000i 0.0773823 0.0773823i −0.667356 0.744739i \(-0.732574\pi\)
0.744739 + 0.667356i \(0.232574\pi\)
\(168\) 0 0
\(169\) 5.00000i 0.384615i
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) 5.00000 + 5.00000i 0.380143 + 0.380143i 0.871154 0.491011i \(-0.163372\pi\)
−0.491011 + 0.871154i \(0.663372\pi\)
\(174\) 0 0
\(175\) 3.00000 + 21.0000i 0.226779 + 1.58745i
\(176\) 0 0
\(177\) −12.0000 12.0000i −0.901975 0.901975i
\(178\) 0 0
\(179\) 12.0000i 0.896922i −0.893802 0.448461i \(-0.851972\pi\)
0.893802 0.448461i \(-0.148028\pi\)
\(180\) 0 0
\(181\) 22.0000i 1.63525i 0.575753 + 0.817624i \(0.304709\pi\)
−0.575753 + 0.817624i \(0.695291\pi\)
\(182\) 0 0
\(183\) 2.00000 + 2.00000i 0.147844 + 0.147844i
\(184\) 0 0
\(185\) −1.00000 + 3.00000i −0.0735215 + 0.220564i
\(186\) 0 0
\(187\) −2.00000 2.00000i −0.146254 0.146254i
\(188\) 0 0
\(189\) 24.0000 1.74574
\(190\) 0 0
\(191\) 14.0000i 1.01300i −0.862239 0.506502i \(-0.830938\pi\)
0.862239 0.506502i \(-0.169062\pi\)
\(192\) 0 0
\(193\) −15.0000 + 15.0000i −1.07972 + 1.07972i −0.0831899 + 0.996534i \(0.526511\pi\)
−0.996534 + 0.0831899i \(0.973489\pi\)
\(194\) 0 0
\(195\) −12.0000 + 6.00000i −0.859338 + 0.429669i
\(196\) 0 0
\(197\) 13.0000 13.0000i 0.926212 0.926212i −0.0712470 0.997459i \(-0.522698\pi\)
0.997459 + 0.0712470i \(0.0226979\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 2.00000 0.141069
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −20.0000 + 10.0000i −1.39686 + 0.698430i
\(206\) 0 0
\(207\) 1.00000 1.00000i 0.0695048 0.0695048i
\(208\) 0 0
\(209\) 8.00000i 0.553372i
\(210\) 0 0
\(211\) −14.0000 −0.963800 −0.481900 0.876226i \(-0.660053\pi\)
−0.481900 + 0.876226i \(0.660053\pi\)
\(212\) 0 0
\(213\) 2.00000 + 2.00000i 0.137038 + 0.137038i
\(214\) 0 0
\(215\) −5.00000 + 15.0000i −0.340997 + 1.02299i
\(216\) 0 0
\(217\) −30.0000 30.0000i −2.03653 2.03653i
\(218\) 0 0
\(219\) 2.00000i 0.135147i
\(220\) 0 0
\(221\) 6.00000i 0.403604i
\(222\) 0 0
\(223\) 1.00000 + 1.00000i 0.0669650 + 0.0669650i 0.739796 0.672831i \(-0.234922\pi\)
−0.672831 + 0.739796i \(0.734922\pi\)
\(224\) 0 0
\(225\) 4.00000 + 3.00000i 0.266667 + 0.200000i
\(226\) 0 0
\(227\) −5.00000 5.00000i −0.331862 0.331862i 0.521431 0.853293i \(-0.325398\pi\)
−0.853293 + 0.521431i \(0.825398\pi\)
\(228\) 0 0
\(229\) 8.00000 0.528655 0.264327 0.964433i \(-0.414850\pi\)
0.264327 + 0.964433i \(0.414850\pi\)
\(230\) 0 0
\(231\) 12.0000i 0.789542i
\(232\) 0 0
\(233\) −21.0000 + 21.0000i −1.37576 + 1.37576i −0.524097 + 0.851658i \(0.675597\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) −3.00000 + 9.00000i −0.195698 + 0.587095i
\(236\) 0 0
\(237\) 8.00000 8.00000i 0.519656 0.519656i
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) 7.00000 7.00000i 0.449050 0.449050i
\(244\) 0 0
\(245\) 11.0000 + 22.0000i 0.702764 + 1.40553i
\(246\) 0 0
\(247\) 12.0000 12.0000i 0.763542 0.763542i
\(248\) 0 0
\(249\) 10.0000i 0.633724i
\(250\) 0 0
\(251\) 6.00000 0.378717 0.189358 0.981908i \(-0.439359\pi\)
0.189358 + 0.981908i \(0.439359\pi\)
\(252\) 0 0
\(253\) 2.00000 + 2.00000i 0.125739 + 0.125739i
\(254\) 0 0
\(255\) 4.00000 2.00000i 0.250490 0.125245i
\(256\) 0 0
\(257\) 5.00000 + 5.00000i 0.311891 + 0.311891i 0.845642 0.533751i \(-0.179218\pi\)
−0.533751 + 0.845642i \(0.679218\pi\)
\(258\) 0 0
\(259\) 6.00000i 0.372822i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 11.0000 + 11.0000i 0.678289 + 0.678289i 0.959613 0.281324i \(-0.0907735\pi\)
−0.281324 + 0.959613i \(0.590774\pi\)
\(264\) 0 0
\(265\) 15.0000 + 5.00000i 0.921443 + 0.307148i
\(266\) 0 0
\(267\) 16.0000 + 16.0000i 0.979184 + 0.979184i
\(268\) 0 0
\(269\) 20.0000 1.21942 0.609711 0.792624i \(-0.291286\pi\)
0.609711 + 0.792624i \(0.291286\pi\)
\(270\) 0 0
\(271\) 14.0000i 0.850439i −0.905090 0.425220i \(-0.860197\pi\)
0.905090 0.425220i \(-0.139803\pi\)
\(272\) 0 0
\(273\) −18.0000 + 18.0000i −1.08941 + 1.08941i
\(274\) 0 0
\(275\) −6.00000 + 8.00000i −0.361814 + 0.482418i
\(276\) 0 0
\(277\) −11.0000 + 11.0000i −0.660926 + 0.660926i −0.955598 0.294672i \(-0.904789\pi\)
0.294672 + 0.955598i \(0.404789\pi\)
\(278\) 0 0
\(279\) −10.0000 −0.598684
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −7.00000 + 7.00000i −0.416107 + 0.416107i −0.883859 0.467753i \(-0.845064\pi\)
0.467753 + 0.883859i \(0.345064\pi\)
\(284\) 0 0
\(285\) 12.0000 + 4.00000i 0.710819 + 0.236940i
\(286\) 0 0
\(287\) −30.0000 + 30.0000i −1.77084 + 1.77084i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 6.00000 0.351726
\(292\) 0 0
\(293\) 11.0000 + 11.0000i 0.642627 + 0.642627i 0.951200 0.308574i \(-0.0998516\pi\)
−0.308574 + 0.951200i \(0.599852\pi\)
\(294\) 0 0
\(295\) −12.0000 24.0000i −0.698667 1.39733i
\(296\) 0 0
\(297\) 8.00000 + 8.00000i 0.464207 + 0.464207i
\(298\) 0 0
\(299\) 6.00000i 0.346989i
\(300\) 0 0
\(301\) 30.0000i 1.72917i
\(302\) 0 0
\(303\) −6.00000 6.00000i −0.344691 0.344691i
\(304\) 0 0
\(305\) 2.00000 + 4.00000i 0.114520 + 0.229039i
\(306\) 0 0
\(307\) −17.0000 17.0000i −0.970241 0.970241i 0.0293286 0.999570i \(-0.490663\pi\)
−0.999570 + 0.0293286i \(0.990663\pi\)
\(308\) 0 0
\(309\) 18.0000 1.02398
\(310\) 0 0
\(311\) 18.0000i 1.02069i −0.859971 0.510343i \(-0.829518\pi\)
0.859971 0.510343i \(-0.170482\pi\)
\(312\) 0 0
\(313\) −9.00000 + 9.00000i −0.508710 + 0.508710i −0.914130 0.405420i \(-0.867125\pi\)
0.405420 + 0.914130i \(0.367125\pi\)
\(314\) 0 0
\(315\) 9.00000 + 3.00000i 0.507093 + 0.169031i
\(316\) 0 0
\(317\) −13.0000 + 13.0000i −0.730153 + 0.730153i −0.970650 0.240497i \(-0.922690\pi\)
0.240497 + 0.970650i \(0.422690\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 6.00000 0.334887
\(322\) 0 0
\(323\) −4.00000 + 4.00000i −0.222566 + 0.222566i
\(324\) 0 0
\(325\) −21.0000 + 3.00000i −1.16487 + 0.166410i
\(326\) 0 0
\(327\) 4.00000 4.00000i 0.221201 0.221201i
\(328\) 0 0
\(329\) 18.0000i 0.992372i
\(330\) 0 0
\(331\) −26.0000 −1.42909 −0.714545 0.699590i \(-0.753366\pi\)
−0.714545 + 0.699590i \(0.753366\pi\)
\(332\) 0 0
\(333\) 1.00000 + 1.00000i 0.0547997 + 0.0547997i
\(334\) 0 0
\(335\) 3.00000 + 1.00000i 0.163908 + 0.0546358i
\(336\) 0 0
\(337\) −15.0000 15.0000i −0.817102 0.817102i 0.168585 0.985687i \(-0.446080\pi\)
−0.985687 + 0.168585i \(0.946080\pi\)
\(338\) 0 0
\(339\) 6.00000i 0.325875i
\(340\) 0 0
\(341\) 20.0000i 1.08306i
\(342\) 0 0
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) 0 0
\(345\) −4.00000 + 2.00000i −0.215353 + 0.107676i
\(346\) 0 0
\(347\) 9.00000 + 9.00000i 0.483145 + 0.483145i 0.906135 0.422989i \(-0.139019\pi\)
−0.422989 + 0.906135i \(0.639019\pi\)
\(348\) 0 0
\(349\) −8.00000 −0.428230 −0.214115 0.976808i \(-0.568687\pi\)
−0.214115 + 0.976808i \(0.568687\pi\)
\(350\) 0 0
\(351\) 24.0000i 1.28103i
\(352\) 0 0
\(353\) −15.0000 + 15.0000i −0.798369 + 0.798369i −0.982838 0.184469i \(-0.940943\pi\)
0.184469 + 0.982838i \(0.440943\pi\)
\(354\) 0 0
\(355\) 2.00000 + 4.00000i 0.106149 + 0.212298i
\(356\) 0 0
\(357\) 6.00000 6.00000i 0.317554 0.317554i
\(358\) 0 0
\(359\) 32.0000 1.68890 0.844448 0.535638i \(-0.179929\pi\)
0.844448 + 0.535638i \(0.179929\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) 7.00000 7.00000i 0.367405 0.367405i
\(364\) 0 0
\(365\) 1.00000 3.00000i 0.0523424 0.157027i
\(366\) 0 0
\(367\) 15.0000 15.0000i 0.782994 0.782994i −0.197341 0.980335i \(-0.563231\pi\)
0.980335 + 0.197341i \(0.0632307\pi\)
\(368\) 0 0
\(369\) 10.0000i 0.520579i
\(370\) 0 0
\(371\) 30.0000 1.55752
\(372\) 0 0
\(373\) −9.00000 9.00000i −0.466002 0.466002i 0.434614 0.900617i \(-0.356885\pi\)
−0.900617 + 0.434614i \(0.856885\pi\)
\(374\) 0 0
\(375\) −9.00000 13.0000i −0.464758 0.671317i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 20.0000i 1.02733i −0.857991 0.513665i \(-0.828287\pi\)
0.857991 0.513665i \(-0.171713\pi\)
\(380\) 0 0
\(381\) 14.0000i 0.717242i
\(382\) 0 0
\(383\) 1.00000 + 1.00000i 0.0510976 + 0.0510976i 0.732194 0.681096i \(-0.238496\pi\)
−0.681096 + 0.732194i \(0.738496\pi\)
\(384\) 0 0
\(385\) −6.00000 + 18.0000i −0.305788 + 0.917365i
\(386\) 0 0
\(387\) 5.00000 + 5.00000i 0.254164 + 0.254164i
\(388\) 0 0
\(389\) 4.00000 0.202808 0.101404 0.994845i \(-0.467667\pi\)
0.101404 + 0.994845i \(0.467667\pi\)
\(390\) 0 0
\(391\) 2.00000i 0.101144i
\(392\) 0 0
\(393\) −10.0000 + 10.0000i −0.504433 + 0.504433i
\(394\) 0 0
\(395\) 16.0000 8.00000i 0.805047 0.402524i
\(396\) 0 0
\(397\) 15.0000 15.0000i 0.752828 0.752828i −0.222178 0.975006i \(-0.571317\pi\)
0.975006 + 0.222178i \(0.0713165\pi\)
\(398\) 0 0
\(399\) 24.0000 1.20150
\(400\) 0 0
\(401\) −22.0000 −1.09863 −0.549314 0.835616i \(-0.685111\pi\)
−0.549314 + 0.835616i \(0.685111\pi\)
\(402\) 0 0
\(403\) 30.0000 30.0000i 1.49441 1.49441i
\(404\) 0 0
\(405\) −10.0000 + 5.00000i −0.496904 + 0.248452i
\(406\) 0 0
\(407\) −2.00000 + 2.00000i −0.0991363 + 0.0991363i
\(408\) 0 0
\(409\) 20.0000i 0.988936i −0.869196 0.494468i \(-0.835363\pi\)
0.869196 0.494468i \(-0.164637\pi\)
\(410\) 0 0
\(411\) −22.0000 −1.08518
\(412\) 0 0
\(413\) −36.0000 36.0000i −1.77144 1.77144i
\(414\) 0 0
\(415\) 5.00000 15.0000i 0.245440 0.736321i
\(416\) 0 0
\(417\) 12.0000 + 12.0000i 0.587643 + 0.587643i
\(418\) 0 0
\(419\) 28.0000i 1.36789i 0.729534 + 0.683945i \(0.239737\pi\)
−0.729534 + 0.683945i \(0.760263\pi\)
\(420\) 0 0
\(421\) 34.0000i 1.65706i 0.559946 + 0.828529i \(0.310822\pi\)
−0.559946 + 0.828529i \(0.689178\pi\)
\(422\) 0 0
\(423\) 3.00000 + 3.00000i 0.145865 + 0.145865i
\(424\) 0 0
\(425\) 7.00000 1.00000i 0.339550 0.0485071i
\(426\) 0 0
\(427\) 6.00000 + 6.00000i 0.290360 + 0.290360i
\(428\) 0 0
\(429\) −12.0000 −0.579365
\(430\) 0 0
\(431\) 30.0000i 1.44505i −0.691345 0.722525i \(-0.742982\pi\)
0.691345 0.722525i \(-0.257018\pi\)
\(432\) 0 0
\(433\) 21.0000 21.0000i 1.00920 1.00920i 0.00923827 0.999957i \(-0.497059\pi\)
0.999957 0.00923827i \(-0.00294067\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.00000 4.00000i 0.191346 0.191346i
\(438\) 0 0
\(439\) 16.0000 0.763638 0.381819 0.924237i \(-0.375298\pi\)
0.381819 + 0.924237i \(0.375298\pi\)
\(440\) 0 0
\(441\) 11.0000 0.523810
\(442\) 0 0
\(443\) 25.0000 25.0000i 1.18779 1.18779i 0.210108 0.977678i \(-0.432619\pi\)
0.977678 0.210108i \(-0.0673814\pi\)
\(444\) 0 0
\(445\) 16.0000 + 32.0000i 0.758473 + 1.51695i
\(446\) 0 0
\(447\) −4.00000 + 4.00000i −0.189194 + 0.189194i
\(448\) 0 0
\(449\) 12.0000i 0.566315i −0.959073 0.283158i \(-0.908618\pi\)
0.959073 0.283158i \(-0.0913819\pi\)
\(450\) 0 0
\(451\) −20.0000 −0.941763
\(452\) 0 0
\(453\) −6.00000 6.00000i −0.281905 0.281905i
\(454\) 0 0
\(455\) −36.0000 + 18.0000i −1.68771 + 0.843853i
\(456\) 0 0
\(457\) −9.00000 9.00000i −0.421002 0.421002i 0.464546 0.885549i \(-0.346217\pi\)
−0.885549 + 0.464546i \(0.846217\pi\)
\(458\) 0 0
\(459\) 8.00000i 0.373408i
\(460\) 0 0
\(461\) 2.00000i 0.0931493i 0.998915 + 0.0465746i \(0.0148305\pi\)
−0.998915 + 0.0465746i \(0.985169\pi\)
\(462\) 0 0
\(463\) −11.0000 11.0000i −0.511213 0.511213i 0.403685 0.914898i \(-0.367729\pi\)
−0.914898 + 0.403685i \(0.867729\pi\)
\(464\) 0 0
\(465\) 30.0000 + 10.0000i 1.39122 + 0.463739i
\(466\) 0 0
\(467\) −13.0000 13.0000i −0.601568 0.601568i 0.339160 0.940729i \(-0.389857\pi\)
−0.940729 + 0.339160i \(0.889857\pi\)
\(468\) 0 0
\(469\) 6.00000 0.277054
\(470\) 0 0
\(471\) 2.00000i 0.0921551i
\(472\) 0 0
\(473\) −10.0000 + 10.0000i −0.459800 + 0.459800i
\(474\) 0 0
\(475\) 16.0000 + 12.0000i 0.734130 + 0.550598i
\(476\) 0 0
\(477\) 5.00000 5.00000i 0.228934 0.228934i
\(478\) 0 0
\(479\) 40.0000 1.82765 0.913823 0.406112i \(-0.133116\pi\)
0.913823 + 0.406112i \(0.133116\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) 0 0
\(483\) −6.00000 + 6.00000i −0.273009 + 0.273009i
\(484\) 0 0
\(485\) 9.00000 + 3.00000i 0.408669 + 0.136223i
\(486\) 0 0
\(487\) −19.0000 + 19.0000i −0.860972 + 0.860972i −0.991451 0.130479i \(-0.958349\pi\)
0.130479 + 0.991451i \(0.458349\pi\)
\(488\) 0 0
\(489\) 2.00000i 0.0904431i
\(490\) 0 0
\(491\) −10.0000 −0.451294 −0.225647 0.974209i \(-0.572450\pi\)
−0.225647 + 0.974209i \(0.572450\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 2.00000 + 4.00000i 0.0898933 + 0.179787i
\(496\) 0 0
\(497\) 6.00000 + 6.00000i 0.269137 + 0.269137i
\(498\) 0 0
\(499\) 28.0000i 1.25345i 0.779240 + 0.626726i \(0.215605\pi\)
−0.779240 + 0.626726i \(0.784395\pi\)
\(500\) 0 0
\(501\) 2.00000i 0.0893534i
\(502\) 0 0
\(503\) −17.0000 17.0000i −0.757993 0.757993i 0.217964 0.975957i \(-0.430058\pi\)
−0.975957 + 0.217964i \(0.930058\pi\)
\(504\) 0 0
\(505\) −6.00000 12.0000i −0.266996 0.533993i
\(506\) 0 0
\(507\) −5.00000 5.00000i −0.222058 0.222058i
\(508\) 0 0
\(509\) 24.0000 1.06378 0.531891 0.846813i \(-0.321482\pi\)
0.531891 + 0.846813i \(0.321482\pi\)
\(510\) 0 0
\(511\) 6.00000i 0.265424i
\(512\) 0 0
\(513\) 16.0000 16.0000i 0.706417 0.706417i
\(514\) 0 0
\(515\) 27.0000 + 9.00000i 1.18976 + 0.396587i
\(516\) 0 0
\(517\) −6.00000 + 6.00000i −0.263880 + 0.263880i
\(518\) 0 0
\(519\) −10.0000 −0.438951
\(520\) 0 0
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) −15.0000 + 15.0000i −0.655904 + 0.655904i −0.954408 0.298504i \(-0.903512\pi\)
0.298504 + 0.954408i \(0.403512\pi\)
\(524\) 0 0
\(525\) −24.0000 18.0000i −1.04745 0.785584i
\(526\) 0 0
\(527\) −10.0000 + 10.0000i −0.435607 + 0.435607i
\(528\) 0 0
\(529\) 21.0000i 0.913043i
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) −30.0000 30.0000i −1.29944 1.29944i
\(534\) 0 0
\(535\) 9.00000 + 3.00000i 0.389104 + 0.129701i
\(536\) 0 0
\(537\) 12.0000 + 12.0000i 0.517838 + 0.517838i
\(538\) 0 0
\(539\) 22.0000i 0.947607i
\(540\) 0 0
\(541\) 30.0000i 1.28980i −0.764267 0.644900i \(-0.776899\pi\)
0.764267 0.644900i \(-0.223101\pi\)
\(542\) 0 0
\(543\) −22.0000 22.0000i −0.944110 0.944110i
\(544\) 0 0
\(545\) 8.00000 4.00000i 0.342682 0.171341i
\(546\) 0 0
\(547\) 11.0000 + 11.0000i 0.470326 + 0.470326i 0.902020 0.431694i \(-0.142084\pi\)
−0.431694 + 0.902020i \(0.642084\pi\)
\(548\) 0 0
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 24.0000 24.0000i 1.02058 1.02058i
\(554\) 0 0
\(555\) −2.00000 4.00000i −0.0848953 0.169791i
\(556\) 0 0
\(557\) 27.0000 27.0000i 1.14403 1.14403i 0.156320 0.987706i \(-0.450037\pi\)
0.987706 0.156320i \(-0.0499632\pi\)
\(558\) 0 0
\(559\) −30.0000 −1.26886
\(560\) 0 0
\(561\) 4.00000 0.168880
\(562\) 0 0
\(563\) −33.0000 + 33.0000i −1.39078 + 1.39078i −0.567213 + 0.823571i \(0.691978\pi\)
−0.823571 + 0.567213i \(0.808022\pi\)
\(564\) 0 0
\(565\) 3.00000 9.00000i 0.126211 0.378633i
\(566\) 0 0
\(567\) −15.0000 + 15.0000i −0.629941 + 0.629941i
\(568\) 0 0
\(569\) 12.0000i 0.503066i −0.967849 0.251533i \(-0.919065\pi\)
0.967849 0.251533i \(-0.0809347\pi\)
\(570\) 0 0
\(571\) −34.0000 −1.42286 −0.711428 0.702759i \(-0.751951\pi\)
−0.711428 + 0.702759i \(0.751951\pi\)
\(572\) 0 0
\(573\) 14.0000 + 14.0000i 0.584858 + 0.584858i
\(574\) 0 0
\(575\) −7.00000 + 1.00000i −0.291920 + 0.0417029i
\(576\) 0 0
\(577\) −19.0000 19.0000i −0.790980 0.790980i 0.190673 0.981654i \(-0.438933\pi\)
−0.981654 + 0.190673i \(0.938933\pi\)
\(578\) 0 0
\(579\) 30.0000i 1.24676i
\(580\) 0 0
\(581\) 30.0000i 1.24461i
\(582\) 0 0
\(583\) 10.0000 + 10.0000i 0.414158 + 0.414158i
\(584\) 0 0
\(585\) −3.00000 + 9.00000i −0.124035 + 0.372104i
\(586\) 0 0
\(587\) −23.0000 23.0000i −0.949312 0.949312i 0.0494643 0.998776i \(-0.484249\pi\)
−0.998776 + 0.0494643i \(0.984249\pi\)
\(588\) 0 0
\(589\) −40.0000 −1.64817
\(590\) 0 0
\(591\) 26.0000i 1.06950i
\(592\) 0 0
\(593\) −7.00000 + 7.00000i −0.287456 + 0.287456i −0.836073 0.548618i \(-0.815154\pi\)
0.548618 + 0.836073i \(0.315154\pi\)
\(594\) 0 0
\(595\) 12.0000 6.00000i 0.491952 0.245976i
\(596\) 0 0
\(597\) 16.0000 16.0000i 0.654836 0.654836i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 1.00000 1.00000i 0.0407231 0.0407231i
\(604\) 0 0
\(605\) 14.0000 7.00000i 0.569181 0.284590i
\(606\) 0 0
\(607\) −5.00000 + 5.00000i −0.202944 + 0.202944i −0.801260 0.598316i \(-0.795837\pi\)
0.598316 + 0.801260i \(0.295837\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −18.0000 −0.728202
\(612\) 0 0
\(613\) 15.0000 + 15.0000i 0.605844 + 0.605844i 0.941857 0.336013i \(-0.109079\pi\)
−0.336013 + 0.941857i \(0.609079\pi\)
\(614\) 0 0
\(615\) 10.0000 30.0000i 0.403239 1.20972i
\(616\) 0 0
\(617\) −13.0000 13.0000i −0.523360 0.523360i 0.395224 0.918585i \(-0.370667\pi\)
−0.918585 + 0.395224i \(0.870667\pi\)
\(618\) 0 0
\(619\) 12.0000i 0.482321i 0.970485 + 0.241160i \(0.0775280\pi\)
−0.970485 + 0.241160i \(0.922472\pi\)
\(620\) 0 0
\(621\) 8.00000i 0.321029i
\(622\) 0 0
\(623\) 48.0000 + 48.0000i 1.92308 + 1.92308i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 8.00000 + 8.00000i 0.319489 + 0.319489i
\(628\) 0 0
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) 14.0000i 0.557331i 0.960388 + 0.278666i \(0.0898921\pi\)
−0.960388 + 0.278666i \(0.910108\pi\)
\(632\) 0 0
\(633\) 14.0000 14.0000i 0.556450 0.556450i
\(634\) 0 0
\(635\) −7.00000 + 21.0000i −0.277787 + 0.833360i
\(636\) 0 0
\(637\) −33.0000 + 33.0000i −1.30751 + 1.30751i
\(638\) 0 0
\(639\) 2.00000 0.0791188
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 27.0000 27.0000i 1.06478 1.06478i 0.0670247 0.997751i \(-0.478649\pi\)
0.997751 0.0670247i \(-0.0213506\pi\)
\(644\) 0 0
\(645\) −10.0000 20.0000i −0.393750 0.787499i
\(646\) 0 0
\(647\) 29.0000 29.0000i 1.14011 1.14011i 0.151678 0.988430i \(-0.451532\pi\)
0.988430 0.151678i \(-0.0484676\pi\)
\(648\) 0 0
\(649\) 24.0000i 0.942082i
\(650\) 0 0
\(651\) 60.0000 2.35159
\(652\) 0 0
\(653\) 1.00000 + 1.00000i 0.0391330 + 0.0391330i 0.726403 0.687270i \(-0.241191\pi\)
−0.687270 + 0.726403i \(0.741191\pi\)
\(654\) 0 0
\(655\) −20.0000 + 10.0000i −0.781465 + 0.390732i
\(656\) 0 0
\(657\) −1.00000 1.00000i −0.0390137 0.0390137i
\(658\) 0 0
\(659\) 36.0000i 1.40236i −0.712984 0.701180i \(-0.752657\pi\)
0.712984 0.701180i \(-0.247343\pi\)
\(660\) 0 0
\(661\) 30.0000i 1.16686i −0.812162 0.583432i \(-0.801709\pi\)
0.812162 0.583432i \(-0.198291\pi\)
\(662\) 0 0
\(663\) 6.00000 + 6.00000i 0.233021 + 0.233021i
\(664\) 0 0
\(665\) 36.0000 + 12.0000i 1.39602 + 0.465340i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −2.00000 −0.0773245
\(670\) 0 0
\(671\) 4.00000i 0.154418i
\(672\) 0 0
\(673\) −3.00000 + 3.00000i −0.115642 + 0.115642i −0.762560 0.646918i \(-0.776058\pi\)
0.646918 + 0.762560i \(0.276058\pi\)
\(674\) 0 0
\(675\) −28.0000 + 4.00000i −1.07772 + 0.153960i
\(676\) 0 0
\(677\) −3.00000 + 3.00000i −0.115299 + 0.115299i −0.762402 0.647103i \(-0.775980\pi\)
0.647103 + 0.762402i \(0.275980\pi\)
\(678\) 0 0
\(679\) 18.0000 0.690777
\(680\) 0 0
\(681\) 10.0000 0.383201
\(682\) 0 0
\(683\) −11.0000 + 11.0000i −0.420903 + 0.420903i −0.885515 0.464611i \(-0.846194\pi\)
0.464611 + 0.885515i \(0.346194\pi\)
\(684\) 0 0
\(685\) −33.0000 11.0000i −1.26087 0.420288i
\(686\) 0 0
\(687\) −8.00000 + 8.00000i −0.305219 + 0.305219i
\(688\) 0 0
\(689\) 30.0000i 1.14291i
\(690\) 0 0
\(691\) −14.0000 −0.532585 −0.266293 0.963892i \(-0.585799\pi\)
−0.266293 + 0.963892i \(0.585799\pi\)
\(692\) 0 0
\(693\) 6.00000 + 6.00000i 0.227921 + 0.227921i
\(694\) 0 0
\(695\) 12.0000 + 24.0000i 0.455186 + 0.910372i
\(696\) 0 0
\(697\) 10.0000 + 10.0000i 0.378777 + 0.378777i
\(698\) 0 0
\(699\) 42.0000i 1.58859i
\(700\) 0 0
\(701\) 34.0000i 1.28416i −0.766637 0.642081i \(-0.778071\pi\)
0.766637 0.642081i \(-0.221929\pi\)
\(702\) 0 0
\(703\) 4.00000 + 4.00000i 0.150863 + 0.150863i
\(704\) 0 0
\(705\) −6.00000 12.0000i −0.225973 0.451946i
\(706\) 0 0
\(707\) −18.0000 18.0000i −0.676960 0.676960i
\(708\) 0 0
\(709\) −48.0000 −1.80268 −0.901339 0.433114i \(-0.857415\pi\)
−0.901339 + 0.433114i \(0.857415\pi\)
\(710\) 0 0
\(711\) 8.00000i 0.300023i
\(712\) 0 0
\(713\) 10.0000 10.0000i 0.374503 0.374503i
\(714\) 0 0
\(715\) −18.0000 6.00000i −0.673162 0.224387i
\(716\) 0 0
\(717\) 16.0000 16.0000i 0.597531 0.597531i
\(718\) 0 0
\(719\) −16.0000 −0.596699 −0.298350 0.954457i \(-0.596436\pi\)
−0.298350 + 0.954457i \(0.596436\pi\)
\(720\) 0 0
\(721\) 54.0000 2.01107
\(722\) 0 0
\(723\) 2.00000 2.00000i 0.0743808 0.0743808i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −3.00000 + 3.00000i −0.111264 + 0.111264i −0.760547 0.649283i \(-0.775069\pi\)
0.649283 + 0.760547i \(0.275069\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) 10.0000 0.369863
\(732\) 0 0
\(733\) −27.0000 27.0000i −0.997268 0.997268i 0.00272852 0.999996i \(-0.499131\pi\)
−0.999996 + 0.00272852i \(0.999131\pi\)
\(734\) 0 0
\(735\) −33.0000 11.0000i −1.21722 0.405741i
\(736\) 0 0
\(737\) 2.00000 + 2.00000i 0.0736709 + 0.0736709i
\(738\) 0 0
\(739\) 28.0000i 1.03000i −0.857191 0.514998i \(-0.827793\pi\)
0.857191 0.514998i \(-0.172207\pi\)
\(740\) 0 0
\(741\) 24.0000i 0.881662i
\(742\) 0 0
\(743\) −21.0000 21.0000i −0.770415 0.770415i 0.207764 0.978179i \(-0.433381\pi\)
−0.978179 + 0.207764i \(0.933381\pi\)
\(744\) 0 0
\(745\) −8.00000 + 4.00000i −0.293097 + 0.146549i
\(746\) 0 0
\(747\) −5.00000 5.00000i −0.182940 0.182940i
\(748\) 0 0
\(749\) 18.0000 0.657706
\(750\) 0 0
\(751\) 2.00000i 0.0729810i 0.999334 + 0.0364905i \(0.0116179\pi\)
−0.999334 + 0.0364905i \(0.988382\pi\)
\(752\) 0 0
\(753\) −6.00000 + 6.00000i −0.218652 + 0.218652i
\(754\) 0 0
\(755\) −6.00000 12.0000i −0.218362 0.436725i
\(756\) 0 0
\(757\) −19.0000 + 19.0000i −0.690567 + 0.690567i −0.962357 0.271790i \(-0.912384\pi\)
0.271790 + 0.962357i \(0.412384\pi\)
\(758\) 0 0
\(759\) −4.00000 −0.145191
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 12.0000 12.0000i 0.434429 0.434429i
\(764\) 0 0
\(765\) 1.00000 3.00000i 0.0361551 0.108465i
\(766\) 0 0
\(767\) 36.0000 36.0000i 1.29988 1.29988i
\(768\) 0 0
\(769\) 8.00000i 0.288487i −0.989542 0.144244i \(-0.953925\pi\)
0.989542 0.144244i \(-0.0460749\pi\)
\(770\) 0 0
\(771\) −10.0000 −0.360141
\(772\) 0 0
\(773\) −17.0000 17.0000i −0.611448 0.611448i 0.331876 0.943323i \(-0.392319\pi\)
−0.943323 + 0.331876i \(0.892319\pi\)
\(774\) 0 0
\(775\) 40.0000 + 30.0000i 1.43684 + 1.07763i
\(776\) 0 0
\(777\) −6.00000 6.00000i −0.215249 0.215249i
\(778\) 0 0
\(779\) 40.0000i 1.43315i
\(780\) 0 0
\(781\) 4.00000i 0.143131i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.00000 3.00000i 0.0356915 0.107075i
\(786\) 0 0
\(787\) 31.0000 + 31.0000i 1.10503 + 1.10503i 0.993794 + 0.111237i \(0.0354812\pi\)
0.111237 + 0.993794i \(0.464519\pi\)
\(788\) 0 0
\(789\) −22.0000 −0.783221
\(790\) 0 0
\(791\) 18.0000i 0.640006i
\(792\) 0 0
\(793\) −6.00000 + 6.00000i −0.213066 + 0.213066i
\(794\) 0 0
\(795\) −20.0000 + 10.0000i −0.709327 + 0.354663i
\(796\) 0 0
\(797\) −37.0000 + 37.0000i −1.31061 + 1.31061i −0.389640 + 0.920967i \(0.627401\pi\)
−0.920967 + 0.389640i \(0.872599\pi\)
\(798\) 0 0
\(799\) 6.00000 0.212265
\(800\) 0 0
\(801\) 16.0000 0.565332
\(802\) 0 0
\(803\) 2.00000 2.00000i 0.0705785 0.0705785i
\(804\) 0 0
\(805\) −12.0000 + 6.00000i −0.422944 + 0.211472i
\(806\) 0 0
\(807\) −20.0000 + 20.0000i −0.704033 + 0.704033i
\(808\) 0 0
\(809\) 16.0000i 0.562530i −0.959630 0.281265i \(-0.909246\pi\)
0.959630 0.281265i \(-0.0907540\pi\)
\(810\) 0 0
\(811\) 54.0000 1.89620 0.948098 0.317978i \(-0.103004\pi\)
0.948098 + 0.317978i \(0.103004\pi\)
\(812\) 0 0
\(813\) 14.0000 + 14.0000i 0.491001 + 0.491001i
\(814\) 0 0
\(815\) 1.00000 3.00000i 0.0350285 0.105085i
\(816\) 0 0
\(817\) 20.0000 + 20.0000i 0.699711 + 0.699711i
\(818\) 0 0
\(819\) 18.0000i 0.628971i
\(820\) 0 0
\(821\) 10.0000i 0.349002i 0.984657 + 0.174501i \(0.0558313\pi\)
−0.984657 + 0.174501i \(0.944169\pi\)
\(822\) 0 0
\(823\) 7.00000 + 7.00000i 0.244005 + 0.244005i 0.818505 0.574500i \(-0.194803\pi\)
−0.574500 + 0.818505i \(0.694803\pi\)
\(824\) 0 0
\(825\) −2.00000 14.0000i −0.0696311 0.487417i
\(826\) 0 0
\(827\) 25.0000 + 25.0000i 0.869335 + 0.869335i 0.992399 0.123064i \(-0.0392719\pi\)
−0.123064 + 0.992399i \(0.539272\pi\)
\(828\) 0 0
\(829\) 20.0000 0.694629 0.347314 0.937749i \(-0.387094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(830\) 0 0
\(831\) 22.0000i 0.763172i
\(832\) 0 0
\(833\) 11.0000 11.0000i 0.381127 0.381127i
\(834\) 0 0
\(835\) −1.00000 + 3.00000i −0.0346064 + 0.103819i
\(836\) 0 0
\(837\) 40.0000 40.0000i 1.38260 1.38260i
\(838\) 0 0
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 6.00000 6.00000i 0.206651 0.206651i
\(844\) 0 0
\(845\) −5.00000 10.0000i −0.172005 0.344010i
\(846\) 0 0
\(847\) 21.0000 21.0000i 0.721569 0.721569i
\(848\) 0 0
\(849\) 14.0000i 0.480479i
\(850\) 0 0
\(851\) −2.00000 −0.0685591
\(852\) 0 0
\(853\) −9.00000 9.00000i −0.308154 0.308154i 0.536039 0.844193i \(-0.319920\pi\)
−0.844193 + 0.536039i \(0.819920\pi\)
\(854\) 0 0
\(855\) 8.00000 4.00000i 0.273594 0.136797i
\(856\) 0 0
\(857\) 35.0000 + 35.0000i 1.19558 + 1.19558i 0.975477 + 0.220100i \(0.0706383\pi\)
0.220100 + 0.975477i \(0.429362\pi\)
\(858\) 0 0
\(859\) 28.0000i 0.955348i 0.878537 + 0.477674i \(0.158520\pi\)
−0.878537 + 0.477674i \(0.841480\pi\)
\(860\) 0 0
\(861\) 60.0000i 2.04479i
\(862\) 0 0
\(863\) 13.0000 + 13.0000i 0.442525 + 0.442525i 0.892860 0.450335i \(-0.148695\pi\)
−0.450335 + 0.892860i \(0.648695\pi\)
\(864\) 0 0
\(865\) −15.0000 5.00000i −0.510015 0.170005i
\(866\) 0 0
\(867\) 15.0000 + 15.0000i 0.509427 + 0.509427i
\(868\) 0 0
\(869\) 16.0000 0.542763
\(870\) 0 0
\(871\) 6.00000i 0.203302i
\(872\) 0 0
\(873\) 3.00000 3.00000i 0.101535 0.101535i
\(874\) 0 0
\(875\) −27.0000 39.0000i −0.912767 1.31844i
\(876\) 0 0
\(877\) 7.00000 7.00000i 0.236373 0.236373i −0.578973 0.815347i \(-0.696546\pi\)
0.815347 + 0.578973i \(0.196546\pi\)
\(878\) 0 0
\(879\) −22.0000 −0.742042
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) −33.0000 + 33.0000i −1.11054 + 1.11054i −0.117461 + 0.993078i \(0.537475\pi\)
−0.993078 + 0.117461i \(0.962525\pi\)
\(884\) 0 0
\(885\) 36.0000 + 12.0000i 1.21013 + 0.403376i
\(886\) 0 0
\(887\) 5.00000 5.00000i 0.167884 0.167884i −0.618165 0.786048i \(-0.712124\pi\)
0.786048 + 0.618165i \(0.212124\pi\)
\(888\) 0 0
\(889\) 42.0000i 1.40863i
\(890\) 0 0
\(891\) −10.0000 −0.335013
\(892\) 0 0
\(893\) 12.0000 + 12.0000i 0.401565 + 0.401565i
\(894\) 0 0
\(895\) 12.0000 + 24.0000i 0.401116 + 0.802232i
\(896\) 0 0
\(897\) −6.00000 6.00000i −0.200334 0.200334i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 10.0000i 0.333148i
\(902\) 0 0
\(903\) −30.0000 30.0000i −0.998337 0.998337i
\(904\) 0 0
\(905\) −22.0000 44.0000i −0.731305 1.46261i
\(906\) 0 0
\(907\) −27.0000 27.0000i −0.896520 0.896520i 0.0986062 0.995127i \(-0.468562\pi\)
−0.995127 + 0.0986062i \(0.968562\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 6.00000i 0.198789i −0.995048 0.0993944i \(-0.968309\pi\)
0.995048 0.0993944i \(-0.0316906\pi\)
\(912\) 0 0
\(913\) 10.0000 10.0000i 0.330952 0.330952i
\(914\) 0 0
\(915\) −6.00000 2.00000i −0.198354 0.0661180i
\(916\) 0 0
\(917\) −30.0000 + 30.0000i −0.990687 + 0.990687i
\(918\) 0 0
\(919\) −48.0000 −1.58337 −0.791687 0.610927i \(-0.790797\pi\)
−0.791687 + 0.610927i \(0.790797\pi\)
\(920\) 0 0
\(921\) 34.0000 1.12034
\(922\) 0 0
\(923\) −6.00000 + 6.00000i −0.197492 + 0.197492i
\(924\) 0 0
\(925\) −1.00000 7.00000i −0.0328798 0.230159i
\(926\) 0 0
\(927\) 9.00000 9.00000i 0.295599 0.295599i
\(928\) 0 0
\(929\) 28.0000i 0.918650i 0.888268 + 0.459325i \(0.151909\pi\)
−0.888268 + 0.459325i \(0.848091\pi\)
\(930\) 0 0
\(931\) 44.0000 1.44204
\(932\) 0 0
\(933\) 18.0000 + 18.0000i 0.589294 + 0.589294i
\(934\) 0 0
\(935\) 6.00000 + 2.00000i 0.196221 + 0.0654070i
\(936\) 0 0
\(937\) −21.0000 21.0000i −0.686040 0.686040i 0.275314 0.961354i \(-0.411218\pi\)
−0.961354 + 0.275314i \(0.911218\pi\)
\(938\) 0 0
\(939\) 18.0000i 0.587408i
\(940\) 0 0
\(941\) 34.0000i 1.10837i 0.832394 + 0.554184i \(0.186970\pi\)
−0.832394 + 0.554184i \(0.813030\pi\)
\(942\) 0 0
\(943\) −10.0000 10.0000i −0.325645 0.325645i
\(944\) 0 0
\(945\) −48.0000 + 24.0000i −1.56144 + 0.780720i
\(946\) 0 0
\(947\) 31.0000 + 31.0000i 1.00736 + 1.00736i 0.999973 + 0.00739197i \(0.00235296\pi\)
0.00739197 + 0.999973i \(0.497647\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 0 0
\(951\) 26.0000i 0.843108i
\(952\) 0 0
\(953\) 31.0000 31.0000i 1.00419 1.00419i 0.00419731 0.999991i \(-0.498664\pi\)
0.999991 0.00419731i \(-0.00133605\pi\)
\(954\) 0 0
\(955\) 14.0000 + 28.0000i 0.453029 + 0.906059i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −66.0000 −2.13125
\(960\) 0 0
\(961\) −69.0000 −2.22581
\(962\) 0 0
\(963\) 3.00000 3.00000i 0.0966736 0.0966736i
\(964\) 0 0
\(965\) 15.0000 45.0000i 0.482867 1.44860i
\(966\) 0 0
\(967\) 1.00000 1.00000i 0.0321578 0.0321578i −0.690845 0.723003i \(-0.742761\pi\)
0.723003 + 0.690845i \(0.242761\pi\)
\(968\) 0 0
\(969\) 8.00000i 0.256997i
\(970\) 0 0
\(971\) −2.00000 −0.0641831 −0.0320915 0.999485i \(-0.510217\pi\)
−0.0320915 + 0.999485i \(0.510217\pi\)
\(972\) 0 0
\(973\) 36.0000 + 36.0000i 1.15411 + 1.15411i
\(974\) 0 0
\(975\) 18.0000 24.0000i 0.576461 0.768615i
\(976\) 0 0
\(977\) 21.0000 + 21.0000i 0.671850 + 0.671850i 0.958142 0.286293i \(-0.0924230\pi\)
−0.286293 + 0.958142i \(0.592423\pi\)
\(978\) 0 0
\(979\) 32.0000i 1.02272i
\(980\) 0 0
\(981\) 4.00000i 0.127710i
\(982\) 0 0
\(983\) −5.00000 5.00000i −0.159475 0.159475i 0.622859 0.782334i \(-0.285971\pi\)
−0.782334 + 0.622859i \(0.785971\pi\)
\(984\) 0 0
\(985\) −13.0000 + 39.0000i −0.414214 + 1.24264i
\(986\) 0 0
\(987\) −18.0000 18.0000i −0.572946 0.572946i
\(988\) 0 0
\(989\) −10.0000 −0.317982
\(990\) 0 0
\(991\) 10.0000i 0.317660i 0.987306 + 0.158830i \(0.0507723\pi\)
−0.987306 + 0.158830i \(0.949228\pi\)
\(992\) 0 0
\(993\) 26.0000 26.0000i 0.825085 0.825085i
\(994\) 0 0
\(995\) 32.0000 16.0000i 1.01447 0.507234i
\(996\) 0 0
\(997\) 17.0000 17.0000i 0.538395 0.538395i −0.384662 0.923057i \(-0.625682\pi\)
0.923057 + 0.384662i \(0.125682\pi\)
\(998\) 0 0
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.o.c.127.1 2
4.3 odd 2 1280.2.o.l.127.1 2
5.3 odd 4 1280.2.o.f.383.1 2
8.3 odd 2 1280.2.o.f.127.1 2
8.5 even 2 1280.2.o.m.127.1 2
16.3 odd 4 160.2.n.d.127.1 yes 2
16.5 even 4 320.2.n.g.127.1 2
16.11 odd 4 320.2.n.b.127.1 2
16.13 even 4 160.2.n.c.127.1 yes 2
20.3 even 4 1280.2.o.m.383.1 2
40.3 even 4 inner 1280.2.o.c.383.1 2
40.13 odd 4 1280.2.o.l.383.1 2
48.29 odd 4 1440.2.x.f.127.1 2
48.35 even 4 1440.2.x.a.127.1 2
80.3 even 4 160.2.n.c.63.1 2
80.13 odd 4 160.2.n.d.63.1 yes 2
80.19 odd 4 800.2.n.e.607.1 2
80.27 even 4 1600.2.n.c.1343.1 2
80.29 even 4 800.2.n.f.607.1 2
80.37 odd 4 1600.2.n.m.1343.1 2
80.43 even 4 320.2.n.g.63.1 2
80.53 odd 4 320.2.n.b.63.1 2
80.59 odd 4 1600.2.n.m.1407.1 2
80.67 even 4 800.2.n.f.543.1 2
80.69 even 4 1600.2.n.c.1407.1 2
80.77 odd 4 800.2.n.e.543.1 2
240.83 odd 4 1440.2.x.f.703.1 2
240.173 even 4 1440.2.x.a.703.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.2.n.c.63.1 2 80.3 even 4
160.2.n.c.127.1 yes 2 16.13 even 4
160.2.n.d.63.1 yes 2 80.13 odd 4
160.2.n.d.127.1 yes 2 16.3 odd 4
320.2.n.b.63.1 2 80.53 odd 4
320.2.n.b.127.1 2 16.11 odd 4
320.2.n.g.63.1 2 80.43 even 4
320.2.n.g.127.1 2 16.5 even 4
800.2.n.e.543.1 2 80.77 odd 4
800.2.n.e.607.1 2 80.19 odd 4
800.2.n.f.543.1 2 80.67 even 4
800.2.n.f.607.1 2 80.29 even 4
1280.2.o.c.127.1 2 1.1 even 1 trivial
1280.2.o.c.383.1 2 40.3 even 4 inner
1280.2.o.f.127.1 2 8.3 odd 2
1280.2.o.f.383.1 2 5.3 odd 4
1280.2.o.l.127.1 2 4.3 odd 2
1280.2.o.l.383.1 2 40.13 odd 4
1280.2.o.m.127.1 2 8.5 even 2
1280.2.o.m.383.1 2 20.3 even 4
1440.2.x.a.127.1 2 48.35 even 4
1440.2.x.a.703.1 2 240.173 even 4
1440.2.x.f.127.1 2 48.29 odd 4
1440.2.x.f.703.1 2 240.83 odd 4
1600.2.n.c.1343.1 2 80.27 even 4
1600.2.n.c.1407.1 2 80.69 even 4
1600.2.n.m.1343.1 2 80.37 odd 4
1600.2.n.m.1407.1 2 80.59 odd 4