Properties

Label 1280.3.e.b.639.1
Level $1280$
Weight $3$
Character 1280.639
Analytic conductor $34.877$
Analytic rank $0$
Dimension $2$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,3,Mod(639,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.639");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1280.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.8774738381\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 639.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1280.639
Dual form 1280.3.e.b.639.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{3} +5.00000i q^{5} -4.00000 q^{7} -7.00000 q^{9} +20.0000 q^{15} +16.0000i q^{21} +44.0000 q^{23} -25.0000 q^{25} -8.00000i q^{27} -22.0000i q^{29} -20.0000i q^{35} -62.0000 q^{41} -76.0000i q^{43} -35.0000i q^{45} +4.00000 q^{47} -33.0000 q^{49} -58.0000i q^{61} +28.0000 q^{63} -116.000i q^{67} -176.000i q^{69} +100.000i q^{75} -95.0000 q^{81} +76.0000i q^{83} -88.0000 q^{87} +142.000 q^{89} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{7} - 14 q^{9} + 40 q^{15} + 88 q^{23} - 50 q^{25} - 124 q^{41} + 8 q^{47} - 66 q^{49} + 56 q^{63} - 190 q^{81} - 176 q^{87} + 284 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 4.00000i − 1.33333i −0.745356 0.666667i \(-0.767720\pi\)
0.745356 0.666667i \(-0.232280\pi\)
\(4\) 0 0
\(5\) 5.00000i 1.00000i
\(6\) 0 0
\(7\) −4.00000 −0.571429 −0.285714 0.958315i \(-0.592231\pi\)
−0.285714 + 0.958315i \(0.592231\pi\)
\(8\) 0 0
\(9\) −7.00000 −0.777778
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 20.0000 1.33333
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 16.0000i 0.761905i
\(22\) 0 0
\(23\) 44.0000 1.91304 0.956522 0.291661i \(-0.0942079\pi\)
0.956522 + 0.291661i \(0.0942079\pi\)
\(24\) 0 0
\(25\) −25.0000 −1.00000
\(26\) 0 0
\(27\) − 8.00000i − 0.296296i
\(28\) 0 0
\(29\) − 22.0000i − 0.758621i −0.925270 0.379310i \(-0.876161\pi\)
0.925270 0.379310i \(-0.123839\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 20.0000i − 0.571429i
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −62.0000 −1.51220 −0.756098 0.654459i \(-0.772896\pi\)
−0.756098 + 0.654459i \(0.772896\pi\)
\(42\) 0 0
\(43\) − 76.0000i − 1.76744i −0.468014 0.883721i \(-0.655030\pi\)
0.468014 0.883721i \(-0.344970\pi\)
\(44\) 0 0
\(45\) − 35.0000i − 0.777778i
\(46\) 0 0
\(47\) 4.00000 0.0851064 0.0425532 0.999094i \(-0.486451\pi\)
0.0425532 + 0.999094i \(0.486451\pi\)
\(48\) 0 0
\(49\) −33.0000 −0.673469
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) − 58.0000i − 0.950820i −0.879764 0.475410i \(-0.842300\pi\)
0.879764 0.475410i \(-0.157700\pi\)
\(62\) 0 0
\(63\) 28.0000 0.444444
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 116.000i − 1.73134i −0.500612 0.865672i \(-0.666892\pi\)
0.500612 0.865672i \(-0.333108\pi\)
\(68\) 0 0
\(69\) − 176.000i − 2.55072i
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 100.000i 1.33333i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −95.0000 −1.17284
\(82\) 0 0
\(83\) 76.0000i 0.915663i 0.889039 + 0.457831i \(0.151374\pi\)
−0.889039 + 0.457831i \(0.848626\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −88.0000 −1.01149
\(88\) 0 0
\(89\) 142.000 1.59551 0.797753 0.602985i \(-0.206022\pi\)
0.797753 + 0.602985i \(0.206022\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 122.000i − 1.20792i −0.797014 0.603960i \(-0.793589\pi\)
0.797014 0.603960i \(-0.206411\pi\)
\(102\) 0 0
\(103\) 44.0000 0.427184 0.213592 0.976923i \(-0.431484\pi\)
0.213592 + 0.976923i \(0.431484\pi\)
\(104\) 0 0
\(105\) −80.0000 −0.761905
\(106\) 0 0
\(107\) − 124.000i − 1.15888i −0.815015 0.579439i \(-0.803272\pi\)
0.815015 0.579439i \(-0.196728\pi\)
\(108\) 0 0
\(109\) 38.0000i 0.348624i 0.984690 + 0.174312i \(0.0557701\pi\)
−0.984690 + 0.174312i \(0.944230\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 220.000i 1.91304i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −121.000 −1.00000
\(122\) 0 0
\(123\) 248.000i 2.01626i
\(124\) 0 0
\(125\) − 125.000i − 1.00000i
\(126\) 0 0
\(127\) −236.000 −1.85827 −0.929134 0.369744i \(-0.879446\pi\)
−0.929134 + 0.369744i \(0.879446\pi\)
\(128\) 0 0
\(129\) −304.000 −2.35659
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 40.0000 0.296296
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) − 16.0000i − 0.113475i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 110.000 0.758621
\(146\) 0 0
\(147\) 132.000i 0.897959i
\(148\) 0 0
\(149\) − 278.000i − 1.86577i −0.360172 0.932886i \(-0.617282\pi\)
0.360172 0.932886i \(-0.382718\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −176.000 −1.09317
\(162\) 0 0
\(163\) − 164.000i − 1.00613i −0.864247 0.503067i \(-0.832205\pi\)
0.864247 0.503067i \(-0.167795\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −244.000 −1.46108 −0.730539 0.682871i \(-0.760731\pi\)
−0.730539 + 0.682871i \(0.760731\pi\)
\(168\) 0 0
\(169\) −169.000 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 100.000 0.571429
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 358.000i 1.97790i 0.148248 + 0.988950i \(0.452637\pi\)
−0.148248 + 0.988950i \(0.547363\pi\)
\(182\) 0 0
\(183\) −232.000 −1.26776
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 32.0000i 0.169312i
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) −464.000 −2.30846
\(202\) 0 0
\(203\) 88.0000i 0.433498i
\(204\) 0 0
\(205\) − 310.000i − 1.51220i
\(206\) 0 0
\(207\) −308.000 −1.48792
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 380.000 1.76744
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 436.000 1.95516 0.977578 0.210571i \(-0.0675325\pi\)
0.977578 + 0.210571i \(0.0675325\pi\)
\(224\) 0 0
\(225\) 175.000 0.777778
\(226\) 0 0
\(227\) − 356.000i − 1.56828i −0.620583 0.784141i \(-0.713104\pi\)
0.620583 0.784141i \(-0.286896\pi\)
\(228\) 0 0
\(229\) 262.000i 1.14410i 0.820217 + 0.572052i \(0.193853\pi\)
−0.820217 + 0.572052i \(0.806147\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 20.0000i 0.0851064i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 302.000 1.25311 0.626556 0.779376i \(-0.284464\pi\)
0.626556 + 0.779376i \(0.284464\pi\)
\(242\) 0 0
\(243\) 308.000i 1.26749i
\(244\) 0 0
\(245\) − 165.000i − 0.673469i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 304.000 1.22088
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 154.000i 0.590038i
\(262\) 0 0
\(263\) 284.000 1.07985 0.539924 0.841714i \(-0.318453\pi\)
0.539924 + 0.841714i \(0.318453\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 568.000i − 2.12734i
\(268\) 0 0
\(269\) 38.0000i 0.141264i 0.997502 + 0.0706320i \(0.0225016\pi\)
−0.997502 + 0.0706320i \(0.977498\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 418.000 1.48754 0.743772 0.668433i \(-0.233035\pi\)
0.743772 + 0.668433i \(0.233035\pi\)
\(282\) 0 0
\(283\) − 316.000i − 1.11661i −0.829637 0.558304i \(-0.811452\pi\)
0.829637 0.558304i \(-0.188548\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 248.000 0.864111
\(288\) 0 0
\(289\) 289.000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 304.000i 1.00997i
\(302\) 0 0
\(303\) −488.000 −1.61056
\(304\) 0 0
\(305\) 290.000 0.950820
\(306\) 0 0
\(307\) − 596.000i − 1.94137i −0.240359 0.970684i \(-0.577265\pi\)
0.240359 0.970684i \(-0.422735\pi\)
\(308\) 0 0
\(309\) − 176.000i − 0.569579i
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 140.000i 0.444444i
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −496.000 −1.54517
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 152.000 0.464832
\(328\) 0 0
\(329\) −16.0000 −0.0486322
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 580.000 1.73134
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 328.000 0.956268
\(344\) 0 0
\(345\) 880.000 2.55072
\(346\) 0 0
\(347\) 116.000i 0.334294i 0.985932 + 0.167147i \(0.0534554\pi\)
−0.985932 + 0.167147i \(0.946545\pi\)
\(348\) 0 0
\(349\) − 22.0000i − 0.0630372i −0.999503 0.0315186i \(-0.989966\pi\)
0.999503 0.0315186i \(-0.0100344\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −361.000 −1.00000
\(362\) 0 0
\(363\) 484.000i 1.33333i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 724.000 1.97275 0.986376 0.164506i \(-0.0526031\pi\)
0.986376 + 0.164506i \(0.0526031\pi\)
\(368\) 0 0
\(369\) 434.000 1.17615
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) −500.000 −1.33333
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 944.000i 2.47769i
\(382\) 0 0
\(383\) −44.0000 −0.114883 −0.0574413 0.998349i \(-0.518294\pi\)
−0.0574413 + 0.998349i \(0.518294\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 532.000i 1.37468i
\(388\) 0 0
\(389\) 202.000i 0.519280i 0.965705 + 0.259640i \(0.0836039\pi\)
−0.965705 + 0.259640i \(0.916396\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −478.000 −1.19202 −0.596010 0.802977i \(-0.703248\pi\)
−0.596010 + 0.802977i \(0.703248\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 475.000i − 1.17284i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 802.000 1.96088 0.980440 0.196818i \(-0.0630607\pi\)
0.980440 + 0.196818i \(0.0630607\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −380.000 −0.915663
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 778.000i 1.84798i 0.382415 + 0.923990i \(0.375092\pi\)
−0.382415 + 0.923990i \(0.624908\pi\)
\(422\) 0 0
\(423\) −28.0000 −0.0661939
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 232.000i 0.543326i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) − 440.000i − 1.01149i
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 231.000 0.523810
\(442\) 0 0
\(443\) − 796.000i − 1.79684i −0.439138 0.898420i \(-0.644716\pi\)
0.439138 0.898420i \(-0.355284\pi\)
\(444\) 0 0
\(445\) 710.000i 1.59551i
\(446\) 0 0
\(447\) −1112.00 −2.48770
\(448\) 0 0
\(449\) 398.000 0.886414 0.443207 0.896419i \(-0.353841\pi\)
0.443207 + 0.896419i \(0.353841\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 842.000i 1.82646i 0.407440 + 0.913232i \(0.366422\pi\)
−0.407440 + 0.913232i \(0.633578\pi\)
\(462\) 0 0
\(463\) −764.000 −1.65011 −0.825054 0.565054i \(-0.808855\pi\)
−0.825054 + 0.565054i \(0.808855\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 124.000i 0.265525i 0.991148 + 0.132762i \(0.0423847\pi\)
−0.991148 + 0.132762i \(0.957615\pi\)
\(468\) 0 0
\(469\) 464.000i 0.989339i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 704.000i 1.45756i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −484.000 −0.993840 −0.496920 0.867796i \(-0.665536\pi\)
−0.496920 + 0.867796i \(0.665536\pi\)
\(488\) 0 0
\(489\) −656.000 −1.34151
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 976.000i 1.94810i
\(502\) 0 0
\(503\) −916.000 −1.82107 −0.910537 0.413428i \(-0.864331\pi\)
−0.910537 + 0.413428i \(0.864331\pi\)
\(504\) 0 0
\(505\) 610.000 1.20792
\(506\) 0 0
\(507\) 676.000i 1.33333i
\(508\) 0 0
\(509\) − 982.000i − 1.92927i −0.263584 0.964637i \(-0.584905\pi\)
0.263584 0.964637i \(-0.415095\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 220.000i 0.427184i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −722.000 −1.38580 −0.692898 0.721035i \(-0.743667\pi\)
−0.692898 + 0.721035i \(0.743667\pi\)
\(522\) 0 0
\(523\) 164.000i 0.313576i 0.987632 + 0.156788i \(0.0501139\pi\)
−0.987632 + 0.156788i \(0.949886\pi\)
\(524\) 0 0
\(525\) − 400.000i − 0.761905i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 1407.00 2.65974
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 620.000 1.15888
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 362.000i 0.669131i 0.942372 + 0.334566i \(0.108590\pi\)
−0.942372 + 0.334566i \(0.891410\pi\)
\(542\) 0 0
\(543\) 1432.00 2.63720
\(544\) 0 0
\(545\) −190.000 −0.348624
\(546\) 0 0
\(547\) 1084.00i 1.98172i 0.134900 + 0.990859i \(0.456929\pi\)
−0.134900 + 0.990859i \(0.543071\pi\)
\(548\) 0 0
\(549\) 406.000i 0.739526i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 1124.00i − 1.99645i −0.0595755 0.998224i \(-0.518975\pi\)
0.0595755 0.998224i \(-0.481025\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 380.000 0.670194
\(568\) 0 0
\(569\) −158.000 −0.277680 −0.138840 0.990315i \(-0.544337\pi\)
−0.138840 + 0.990315i \(0.544337\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1100.00 −1.91304
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 304.000i − 0.523236i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1076.00i 1.83305i 0.399978 + 0.916525i \(0.369018\pi\)
−0.399978 + 0.916525i \(0.630982\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 418.000 0.695507 0.347754 0.937586i \(-0.386945\pi\)
0.347754 + 0.937586i \(0.386945\pi\)
\(602\) 0 0
\(603\) 812.000i 1.34660i
\(604\) 0 0
\(605\) − 605.000i − 1.00000i
\(606\) 0 0
\(607\) 964.000 1.58814 0.794069 0.607827i \(-0.207959\pi\)
0.794069 + 0.607827i \(0.207959\pi\)
\(608\) 0 0
\(609\) 352.000 0.577997
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) −1240.00 −2.01626
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) − 352.000i − 0.566828i
\(622\) 0 0
\(623\) −568.000 −0.911717
\(624\) 0 0
\(625\) 625.000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 1180.00i − 1.85827i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1138.00 −1.77535 −0.887676 0.460470i \(-0.847681\pi\)
−0.887676 + 0.460470i \(0.847681\pi\)
\(642\) 0 0
\(643\) − 404.000i − 0.628305i −0.949373 0.314152i \(-0.898280\pi\)
0.949373 0.314152i \(-0.101720\pi\)
\(644\) 0 0
\(645\) − 1520.00i − 2.35659i
\(646\) 0 0
\(647\) 956.000 1.47759 0.738794 0.673931i \(-0.235395\pi\)
0.738794 + 0.673931i \(0.235395\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 298.000i 0.450832i 0.974263 + 0.225416i \(0.0723741\pi\)
−0.974263 + 0.225416i \(0.927626\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 968.000i − 1.45127i
\(668\) 0 0
\(669\) − 1744.00i − 2.60688i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 200.000i 0.296296i
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1424.00 −2.09104
\(682\) 0 0
\(683\) − 556.000i − 0.814056i −0.913416 0.407028i \(-0.866565\pi\)
0.913416 0.407028i \(-0.133435\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1048.00 1.52547
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 902.000i 1.28673i 0.765558 + 0.643367i \(0.222463\pi\)
−0.765558 + 0.643367i \(0.777537\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 80.0000 0.113475
\(706\) 0 0
\(707\) 488.000i 0.690240i
\(708\) 0 0
\(709\) − 698.000i − 0.984485i −0.870458 0.492243i \(-0.836177\pi\)
0.870458 0.492243i \(-0.163823\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) −176.000 −0.244105
\(722\) 0 0
\(723\) − 1208.00i − 1.67082i
\(724\) 0 0
\(725\) 550.000i 0.758621i
\(726\) 0 0
\(727\) 1436.00 1.97524 0.987620 0.156863i \(-0.0501381\pi\)
0.987620 + 0.156863i \(0.0501381\pi\)
\(728\) 0 0
\(729\) 377.000 0.517147
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) −660.000 −0.897959
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 764.000 1.02826 0.514132 0.857711i \(-0.328114\pi\)
0.514132 + 0.857711i \(0.328114\pi\)
\(744\) 0 0
\(745\) 1390.00 1.86577
\(746\) 0 0
\(747\) − 532.000i − 0.712182i
\(748\) 0 0
\(749\) 496.000i 0.662216i
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −242.000 −0.318003 −0.159001 0.987278i \(-0.550827\pi\)
−0.159001 + 0.987278i \(0.550827\pi\)
\(762\) 0 0
\(763\) − 152.000i − 0.199214i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −1342.00 −1.74512 −0.872562 0.488504i \(-0.837543\pi\)
−0.872562 + 0.488504i \(0.837543\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −176.000 −0.224777
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 116.000i − 0.147395i −0.997281 0.0736976i \(-0.976520\pi\)
0.997281 0.0736976i \(-0.0234800\pi\)
\(788\) 0 0
\(789\) − 1136.00i − 1.43980i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −994.000 −1.24095
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) − 880.000i − 1.09317i
\(806\) 0 0
\(807\) 152.000 0.188352
\(808\) 0 0
\(809\) −1298.00 −1.60445 −0.802225 0.597022i \(-0.796351\pi\)
−0.802225 + 0.597022i \(0.796351\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 820.000 1.00613
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 662.000i − 0.806334i −0.915126 0.403167i \(-0.867909\pi\)
0.915126 0.403167i \(-0.132091\pi\)
\(822\) 0 0
\(823\) −1396.00 −1.69623 −0.848117 0.529810i \(-0.822263\pi\)
−0.848117 + 0.529810i \(0.822263\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 596.000i 0.720677i 0.932822 + 0.360339i \(0.117339\pi\)
−0.932822 + 0.360339i \(0.882661\pi\)
\(828\) 0 0
\(829\) 1478.00i 1.78287i 0.453148 + 0.891435i \(0.350301\pi\)
−0.453148 + 0.891435i \(0.649699\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) − 1220.00i − 1.46108i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 357.000 0.424495
\(842\) 0 0
\(843\) − 1672.00i − 1.98339i
\(844\) 0 0
\(845\) − 845.000i − 1.00000i
\(846\) 0 0
\(847\) 484.000 0.571429
\(848\) 0 0
\(849\) −1264.00 −1.48881
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) − 992.000i − 1.15215i
\(862\) 0 0
\(863\) 1636.00 1.89571 0.947856 0.318698i \(-0.103246\pi\)
0.947856 + 0.318698i \(0.103246\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 1156.00i − 1.33333i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 500.000i 0.571429i
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1618.00 −1.83655 −0.918275 0.395944i \(-0.870417\pi\)
−0.918275 + 0.395944i \(0.870417\pi\)
\(882\) 0 0
\(883\) 1276.00i 1.44507i 0.691332 + 0.722537i \(0.257024\pi\)
−0.691332 + 0.722537i \(0.742976\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −964.000 −1.08681 −0.543405 0.839471i \(-0.682865\pi\)
−0.543405 + 0.839471i \(0.682865\pi\)
\(888\) 0 0
\(889\) 944.000 1.06187
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 1216.00 1.34662
\(904\) 0 0
\(905\) −1790.00 −1.97790
\(906\) 0 0
\(907\) 1796.00i 1.98015i 0.140525 + 0.990077i \(0.455121\pi\)
−0.140525 + 0.990077i \(0.544879\pi\)
\(908\) 0 0
\(909\) 854.000i 0.939494i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) − 1160.00i − 1.26776i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −2384.00 −2.58849
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −308.000 −0.332255
\(928\) 0 0
\(929\) −562.000 −0.604952 −0.302476 0.953157i \(-0.597813\pi\)
−0.302476 + 0.953157i \(0.597813\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 118.000i − 0.125399i −0.998032 0.0626993i \(-0.980029\pi\)
0.998032 0.0626993i \(-0.0199709\pi\)
\(942\) 0 0
\(943\) −2728.00 −2.89290
\(944\) 0 0
\(945\) −160.000 −0.169312
\(946\) 0 0
\(947\) 1804.00i 1.90496i 0.304596 + 0.952482i \(0.401478\pi\)
−0.304596 + 0.952482i \(0.598522\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 961.000 1.00000
\(962\) 0 0
\(963\) 868.000i 0.901350i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −244.000 −0.252327 −0.126163 0.992009i \(-0.540266\pi\)
−0.126163 + 0.992009i \(0.540266\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) − 266.000i − 0.271152i
\(982\) 0 0
\(983\) 284.000 0.288911 0.144456 0.989511i \(-0.453857\pi\)
0.144456 + 0.989511i \(0.453857\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 64.0000i 0.0648430i
\(988\) 0 0
\(989\) − 3344.00i − 3.38119i
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.3.e.b.639.1 2
4.3 odd 2 1280.3.e.c.639.2 2
5.4 even 2 1280.3.e.c.639.2 2
8.3 odd 2 1280.3.e.c.639.1 2
8.5 even 2 inner 1280.3.e.b.639.2 2
16.3 odd 4 320.3.h.a.319.1 1
16.5 even 4 20.3.d.b.19.1 yes 1
16.11 odd 4 20.3.d.a.19.1 1
16.13 even 4 320.3.h.b.319.1 1
20.19 odd 2 CM 1280.3.e.b.639.1 2
40.19 odd 2 inner 1280.3.e.b.639.2 2
40.29 even 2 1280.3.e.c.639.1 2
48.5 odd 4 180.3.f.a.19.1 1
48.11 even 4 180.3.f.b.19.1 1
80.3 even 4 1600.3.b.f.1151.1 2
80.13 odd 4 1600.3.b.f.1151.2 2
80.19 odd 4 320.3.h.b.319.1 1
80.27 even 4 100.3.b.c.51.1 2
80.29 even 4 320.3.h.a.319.1 1
80.37 odd 4 100.3.b.c.51.2 2
80.43 even 4 100.3.b.c.51.2 2
80.53 odd 4 100.3.b.c.51.1 2
80.59 odd 4 20.3.d.b.19.1 yes 1
80.67 even 4 1600.3.b.f.1151.2 2
80.69 even 4 20.3.d.a.19.1 1
80.77 odd 4 1600.3.b.f.1151.1 2
240.53 even 4 900.3.c.h.451.2 2
240.59 even 4 180.3.f.a.19.1 1
240.107 odd 4 900.3.c.h.451.2 2
240.149 odd 4 180.3.f.b.19.1 1
240.197 even 4 900.3.c.h.451.1 2
240.203 odd 4 900.3.c.h.451.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.3.d.a.19.1 1 16.11 odd 4
20.3.d.a.19.1 1 80.69 even 4
20.3.d.b.19.1 yes 1 16.5 even 4
20.3.d.b.19.1 yes 1 80.59 odd 4
100.3.b.c.51.1 2 80.27 even 4
100.3.b.c.51.1 2 80.53 odd 4
100.3.b.c.51.2 2 80.37 odd 4
100.3.b.c.51.2 2 80.43 even 4
180.3.f.a.19.1 1 48.5 odd 4
180.3.f.a.19.1 1 240.59 even 4
180.3.f.b.19.1 1 48.11 even 4
180.3.f.b.19.1 1 240.149 odd 4
320.3.h.a.319.1 1 16.3 odd 4
320.3.h.a.319.1 1 80.29 even 4
320.3.h.b.319.1 1 16.13 even 4
320.3.h.b.319.1 1 80.19 odd 4
900.3.c.h.451.1 2 240.197 even 4
900.3.c.h.451.1 2 240.203 odd 4
900.3.c.h.451.2 2 240.53 even 4
900.3.c.h.451.2 2 240.107 odd 4
1280.3.e.b.639.1 2 1.1 even 1 trivial
1280.3.e.b.639.1 2 20.19 odd 2 CM
1280.3.e.b.639.2 2 8.5 even 2 inner
1280.3.e.b.639.2 2 40.19 odd 2 inner
1280.3.e.c.639.1 2 8.3 odd 2
1280.3.e.c.639.1 2 40.29 even 2
1280.3.e.c.639.2 2 4.3 odd 2
1280.3.e.c.639.2 2 5.4 even 2
1600.3.b.f.1151.1 2 80.3 even 4
1600.3.b.f.1151.1 2 80.77 odd 4
1600.3.b.f.1151.2 2 80.13 odd 4
1600.3.b.f.1151.2 2 80.67 even 4