Properties

Label 1280.4.a.c
Level 12801280
Weight 44
Character orbit 1280.a
Self dual yes
Analytic conductor 75.52275.522
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,4,Mod(1,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1280=285 1280 = 2^{8} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1280.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 75.522444807375.5224448073
Analytic rank: 11
Dimension: 22
Coefficient field: Q(2)\Q(\sqrt{2})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x22 x^{2} - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 640)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2\beta = \sqrt{2}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+βq35q5+15βq725q922βq11+30q135βq15+42q1724βq19+30q21+15βq23+25q2552βq2730βq31++550βq99+O(q100) q + \beta q^{3} - 5 q^{5} + 15 \beta q^{7} - 25 q^{9} - 22 \beta q^{11} + 30 q^{13} - 5 \beta q^{15} + 42 q^{17} - 24 \beta q^{19} + 30 q^{21} + 15 \beta q^{23} + 25 q^{25} - 52 \beta q^{27} - 30 \beta q^{31} + \cdots + 550 \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q10q550q9+60q13+84q17+60q21+50q2588q33+60q37+672q41+250q45+214q491380q5396q571380q61300q65+60q69+500q97+O(q100) 2 q - 10 q^{5} - 50 q^{9} + 60 q^{13} + 84 q^{17} + 60 q^{21} + 50 q^{25} - 88 q^{33} + 60 q^{37} + 672 q^{41} + 250 q^{45} + 214 q^{49} - 1380 q^{53} - 96 q^{57} - 1380 q^{61} - 300 q^{65} + 60 q^{69}+ \cdots - 500 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.41421
1.41421
0 −1.41421 0 −5.00000 0 −21.2132 0 −25.0000 0
1.2 0 1.41421 0 −5.00000 0 21.2132 0 −25.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1280.4.a.c 2
4.b odd 2 1 inner 1280.4.a.c 2
8.b even 2 1 1280.4.a.i 2
8.d odd 2 1 1280.4.a.i 2
16.e even 4 2 640.4.d.f 4
16.f odd 4 2 640.4.d.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
640.4.d.f 4 16.e even 4 2
640.4.d.f 4 16.f odd 4 2
1280.4.a.c 2 1.a even 1 1 trivial
1280.4.a.c 2 4.b odd 2 1 inner
1280.4.a.i 2 8.b even 2 1
1280.4.a.i 2 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1280))S_{4}^{\mathrm{new}}(\Gamma_0(1280)):

T322 T_{3}^{2} - 2 Copy content Toggle raw display
T72450 T_{7}^{2} - 450 Copy content Toggle raw display
T1330 T_{13} - 30 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T22 T^{2} - 2 Copy content Toggle raw display
55 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
77 T2450 T^{2} - 450 Copy content Toggle raw display
1111 T2968 T^{2} - 968 Copy content Toggle raw display
1313 (T30)2 (T - 30)^{2} Copy content Toggle raw display
1717 (T42)2 (T - 42)^{2} Copy content Toggle raw display
1919 T21152 T^{2} - 1152 Copy content Toggle raw display
2323 T2450 T^{2} - 450 Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T21800 T^{2} - 1800 Copy content Toggle raw display
3737 (T30)2 (T - 30)^{2} Copy content Toggle raw display
4141 (T336)2 (T - 336)^{2} Copy content Toggle raw display
4343 T227378 T^{2} - 27378 Copy content Toggle raw display
4747 T2238050 T^{2} - 238050 Copy content Toggle raw display
5353 (T+690)2 (T + 690)^{2} Copy content Toggle raw display
5959 T2320000 T^{2} - 320000 Copy content Toggle raw display
6161 (T+690)2 (T + 690)^{2} Copy content Toggle raw display
6767 T215138 T^{2} - 15138 Copy content Toggle raw display
7171 T2952200 T^{2} - 952200 Copy content Toggle raw display
7373 (T+574)2 (T + 574)^{2} Copy content Toggle raw display
7979 T21036800 T^{2} - 1036800 Copy content Toggle raw display
8383 T2305762 T^{2} - 305762 Copy content Toggle raw display
8989 (T+138)2 (T + 138)^{2} Copy content Toggle raw display
9797 (T+250)2 (T + 250)^{2} Copy content Toggle raw display
show more
show less