Properties

Label 1280.4.d.h
Level 12801280
Weight 44
Character orbit 1280.d
Analytic conductor 75.52275.522
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,4,Mod(641,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.641");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1280=285 1280 = 2^{8} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1280.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 75.522444807375.5224448073
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 640)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+8iq35iq52q737q922iq11+10iq13+40q15+10q17+110iq1916iq21+154q2325q2580iq27+222iq2992q31+176q33++814iq99+O(q100) q + 8 i q^{3} - 5 i q^{5} - 2 q^{7} - 37 q^{9} - 22 i q^{11} + 10 i q^{13} + 40 q^{15} + 10 q^{17} + 110 i q^{19} - 16 i q^{21} + 154 q^{23} - 25 q^{25} - 80 i q^{27} + 222 i q^{29} - 92 q^{31} + 176 q^{33} + \cdots + 814 i q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q774q9+80q15+20q17+308q2350q25184q31+352q33160q39796q4120q47678q49220q551760q57+148q63+100q65++612q97+O(q100) 2 q - 4 q^{7} - 74 q^{9} + 80 q^{15} + 20 q^{17} + 308 q^{23} - 50 q^{25} - 184 q^{31} + 352 q^{33} - 160 q^{39} - 796 q^{41} - 20 q^{47} - 678 q^{49} - 220 q^{55} - 1760 q^{57} + 148 q^{63} + 100 q^{65}+ \cdots + 612 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1280Z)×\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times.

nn 257257 261261 511511
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
641.1
1.00000i
1.00000i
0 8.00000i 0 5.00000i 0 −2.00000 0 −37.0000 0
641.2 0 8.00000i 0 5.00000i 0 −2.00000 0 −37.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1280.4.d.h 2
4.b odd 2 1 1280.4.d.i 2
8.b even 2 1 inner 1280.4.d.h 2
8.d odd 2 1 1280.4.d.i 2
16.e even 4 1 640.4.a.a 1
16.e even 4 1 640.4.a.d yes 1
16.f odd 4 1 640.4.a.b yes 1
16.f odd 4 1 640.4.a.c yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
640.4.a.a 1 16.e even 4 1
640.4.a.b yes 1 16.f odd 4 1
640.4.a.c yes 1 16.f odd 4 1
640.4.a.d yes 1 16.e even 4 1
1280.4.d.h 2 1.a even 1 1 trivial
1280.4.d.h 2 8.b even 2 1 inner
1280.4.d.i 2 4.b odd 2 1
1280.4.d.i 2 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(1280,[χ])S_{4}^{\mathrm{new}}(1280, [\chi]):

T32+64 T_{3}^{2} + 64 Copy content Toggle raw display
T7+2 T_{7} + 2 Copy content Toggle raw display
T112+484 T_{11}^{2} + 484 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+64 T^{2} + 64 Copy content Toggle raw display
55 T2+25 T^{2} + 25 Copy content Toggle raw display
77 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
1111 T2+484 T^{2} + 484 Copy content Toggle raw display
1313 T2+100 T^{2} + 100 Copy content Toggle raw display
1717 (T10)2 (T - 10)^{2} Copy content Toggle raw display
1919 T2+12100 T^{2} + 12100 Copy content Toggle raw display
2323 (T154)2 (T - 154)^{2} Copy content Toggle raw display
2929 T2+49284 T^{2} + 49284 Copy content Toggle raw display
3131 (T+92)2 (T + 92)^{2} Copy content Toggle raw display
3737 T2+1156 T^{2} + 1156 Copy content Toggle raw display
4141 (T+398)2 (T + 398)^{2} Copy content Toggle raw display
4343 T2+71824 T^{2} + 71824 Copy content Toggle raw display
4747 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
5353 T2+338724 T^{2} + 338724 Copy content Toggle raw display
5959 T2+556516 T^{2} + 556516 Copy content Toggle raw display
6161 T2+51076 T^{2} + 51076 Copy content Toggle raw display
6767 T2+29584 T^{2} + 29584 Copy content Toggle raw display
7171 (T+928)2 (T + 928)^{2} Copy content Toggle raw display
7373 (T+570)2 (T + 570)^{2} Copy content Toggle raw display
7979 (T64)2 (T - 64)^{2} Copy content Toggle raw display
8383 T2+746496 T^{2} + 746496 Copy content Toggle raw display
8989 (T874)2 (T - 874)^{2} Copy content Toggle raw display
9797 (T306)2 (T - 306)^{2} Copy content Toggle raw display
show more
show less