gp: [N,k,chi] = [13,8,Mod(1,13)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(13, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 8, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("13.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: traces = [4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − x 3 − 354 x 2 − 640 x + 20912 x^{4} - x^{3} - 354x^{2} - 640x + 20912 x 4 − x 3 − 3 5 4 x 2 − 6 4 0 x + 2 0 9 1 2
x^4 - x^3 - 354*x^2 - 640*x + 20912
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 3 − 15 ν 2 − 180 ν + 1956 ) / 4 ( \nu^{3} - 15\nu^{2} - 180\nu + 1956 ) / 4 ( ν 3 − 1 5 ν 2 − 1 8 0 ν + 1 9 5 6 ) / 4
(v^3 - 15*v^2 - 180*v + 1956) / 4
β 3 \beta_{3} β 3 = = =
( ν 3 − 13 ν 2 − 188 ν + 1606 ) / 2 ( \nu^{3} - 13\nu^{2} - 188\nu + 1606 ) / 2 ( ν 3 − 1 3 ν 2 − 1 8 8 ν + 1 6 0 6 ) / 2
(v^3 - 13*v^2 - 188*v + 1606) / 2
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 3 − 2 β 2 + 4 β 1 + 175 \beta_{3} - 2\beta_{2} + 4\beta _1 + 175 β 3 − 2 β 2 + 4 β 1 + 1 7 5
b3 - 2*b2 + 4*b1 + 175
ν 3 \nu^{3} ν 3 = = =
15 β 3 − 26 β 2 + 240 β 1 + 669 15\beta_{3} - 26\beta_{2} + 240\beta _1 + 669 1 5 β 3 − 2 6 β 2 + 2 4 0 β 1 + 6 6 9
15*b3 - 26*b2 + 240*b1 + 669
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
13 13 1 3
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 4 − 15 T 2 3 − 270 T 2 2 + 3264 T 2 + 12880 T_{2}^{4} - 15T_{2}^{3} - 270T_{2}^{2} + 3264T_{2} + 12880 T 2 4 − 1 5 T 2 3 − 2 7 0 T 2 2 + 3 2 6 4 T 2 + 1 2 8 8 0
T2^4 - 15*T2^3 - 270*T2^2 + 3264*T2 + 12880
acting on S 8 n e w ( Γ 0 ( 13 ) ) S_{8}^{\mathrm{new}}(\Gamma_0(13)) S 8 n e w ( Γ 0 ( 1 3 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 − 15 T 3 + ⋯ + 12880 T^{4} - 15 T^{3} + \cdots + 12880 T 4 − 1 5 T 3 + ⋯ + 1 2 8 8 0
T^4 - 15*T^3 - 270*T^2 + 3264*T + 12880
3 3 3
T 4 − 80 T 3 + ⋯ + 1640448 T^{4} - 80 T^{3} + \cdots + 1640448 T 4 − 8 0 T 3 + ⋯ + 1 6 4 0 4 4 8
T^4 - 80*T^3 - 2921*T^2 + 229440*T + 1640448
5 5 5
T 4 + ⋯ − 6964113500 T^{4} + \cdots - 6964113500 T 4 + ⋯ − 6 9 6 4 1 1 3 5 0 0
T^4 - 258*T^3 - 232675*T^2 + 87143700*T - 6964113500
7 7 7
T 4 + ⋯ + 1625961532 T^{4} + \cdots + 1625961532 T 4 + ⋯ + 1 6 2 5 9 6 1 5 3 2
T^4 - 1692*T^3 + 168035*T^2 + 257728644*T + 1625961532
11 11 1 1
T 4 + ⋯ + 19773464676784 T^{4} + \cdots + 19773464676784 T 4 + ⋯ + 1 9 7 7 3 4 6 4 6 7 6 7 8 4
T^4 - 1836*T^3 - 22277744*T^2 + 29807712432*T + 19773464676784
13 13 1 3
( T + 2197 ) 4 (T + 2197)^{4} ( T + 2 1 9 7 ) 4
(T + 2197)^4
17 17 1 7
T 4 + ⋯ + 17 ⋯ 84 T^{4} + \cdots + 17\!\cdots\!84 T 4 + ⋯ + 1 7 ⋯ 8 4
T^4 - 11814*T^3 - 955565883*T^2 + 2196543589932*T + 174768583683247684
19 19 1 9
T 4 + ⋯ + 43 ⋯ 60 T^{4} + \cdots + 43\!\cdots\!60 T 4 + ⋯ + 4 3 ⋯ 6 0
T^4 - 27660*T^3 - 1856808064*T^2 + 41686844893872*T + 436885571235243760
23 23 2 3
T 4 + ⋯ + 20 ⋯ 36 T^{4} + \cdots + 20\!\cdots\!36 T 4 + ⋯ + 2 0 ⋯ 3 6
T^4 - 172920*T^3 + 10345450384*T^2 - 249472900932864*T + 2050857366883726336
29 29 2 9
T 4 + ⋯ − 32 ⋯ 40 T^{4} + \cdots - 32\!\cdots\!40 T 4 + ⋯ − 3 2 ⋯ 4 0
T^4 - 133344*T^3 - 42339084056*T^2 + 3712250796795072*T - 32314495718898017840
31 31 3 1
T 4 + ⋯ − 83 ⋯ 08 T^{4} + \cdots - 83\!\cdots\!08 T 4 + ⋯ − 8 3 ⋯ 0 8
T^4 + 231748*T^3 - 46857675820*T^2 - 14375320738992256*T - 838885006381296780608
37 37 3 7
T 4 + ⋯ + 59 ⋯ 76 T^{4} + \cdots + 59\!\cdots\!76 T 4 + ⋯ + 5 9 ⋯ 7 6
T^4 - 248026*T^3 - 189938966107*T^2 - 9722817587431964*T + 591854679631517957476
41 41 4 1
T 4 + ⋯ + 19 ⋯ 36 T^{4} + \cdots + 19\!\cdots\!36 T 4 + ⋯ + 1 9 ⋯ 3 6
T^4 - 588108*T^3 + 114274129860*T^2 - 8224636842319584*T + 192075440852513383936
43 43 4 3
T 4 + ⋯ + 11 ⋯ 52 T^{4} + \cdots + 11\!\cdots\!52 T 4 + ⋯ + 1 1 ⋯ 5 2
T^4 - 309304*T^3 - 756373057465*T^2 + 156099159305350552*T + 11042021147139132512752
47 47 4 7
T 4 + ⋯ − 13 ⋯ 60 T^{4} + \cdots - 13\!\cdots\!60 T 4 + ⋯ − 1 3 ⋯ 6 0
T^4 - 557916*T^3 - 630779629093*T^2 + 300277692344475588*T - 13266608970368463213860
53 53 5 3
T 4 + ⋯ − 28 ⋯ 64 T^{4} + \cdots - 28\!\cdots\!64 T 4 + ⋯ − 2 8 ⋯ 6 4
T^4 - 2022348*T^3 + 1284175766452*T^2 - 209932118264652288*T - 28032456599489173331264
59 59 5 9
T 4 + ⋯ − 44 ⋯ 20 T^{4} + \cdots - 44\!\cdots\!20 T 4 + ⋯ − 4 4 ⋯ 2 0
T^4 - 1162668*T^3 - 3000233695440*T^2 + 3890016251618636592*T - 440566558481139303699920
61 61 6 1
T 4 + ⋯ + 11 ⋯ 68 T^{4} + \cdots + 11\!\cdots\!68 T 4 + ⋯ + 1 1 ⋯ 6 8
T^4 + 1340572*T^3 - 6782366613244*T^2 - 4107973812239656672*T + 11698489512880377284128768
67 67 6 7
T 4 + ⋯ − 57 ⋯ 08 T^{4} + \cdots - 57\!\cdots\!08 T 4 + ⋯ − 5 7 ⋯ 0 8
T^4 + 598484*T^3 - 3173466373600*T^2 + 1655538850137785008*T - 57652152918405249496208
71 71 7 1
T 4 + ⋯ + 25 ⋯ 48 T^{4} + \cdots + 25\!\cdots\!48 T 4 + ⋯ + 2 5 ⋯ 4 8
T^4 - 697860*T^3 - 19945595301317*T^2 - 11346486157347185268*T + 25198394623098276504585148
73 73 7 3
T 4 + ⋯ + 69 ⋯ 24 T^{4} + \cdots + 69\!\cdots\!24 T 4 + ⋯ + 6 9 ⋯ 2 4
T^4 + 13725816*T^3 + 62394173705480*T^2 + 112101299294615962656*T + 69005615349760865423798224
79 79 7 9
T 4 + ⋯ + 22 ⋯ 00 T^{4} + \cdots + 22\!\cdots\!00 T 4 + ⋯ + 2 2 ⋯ 0 0
T^4 - 20079576*T^3 + 139609676016704*T^2 - 369039251681588824704*T + 229378857747410521003744000
83 83 8 3
T 4 + ⋯ + 70 ⋯ 76 T^{4} + \cdots + 70\!\cdots\!76 T 4 + ⋯ + 7 0 ⋯ 7 6
T^4 + 2024724*T^3 - 54205847777724*T^2 - 65141013406058526144*T + 709040025062126489586866176
89 89 8 9
T 4 + ⋯ − 76 ⋯ 00 T^{4} + \cdots - 76\!\cdots\!00 T 4 + ⋯ − 7 6 ⋯ 0 0
T^4 - 17646240*T^3 + 70656400552568*T^2 + 122937551307954545280*T - 762427412064772823043503600
97 97 9 7
T 4 + ⋯ − 44 ⋯ 60 T^{4} + \cdots - 44\!\cdots\!60 T 4 + ⋯ − 4 4 ⋯ 6 0
T^4 + 6329096*T^3 - 183951644606488*T^2 - 1842548960279415002144*T - 4430455663617486384281251760
show more
show less