Properties

Label 13.8.a.c
Level 1313
Weight 88
Character orbit 13.a
Self dual yes
Analytic conductor 4.0614.061
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [13,8,Mod(1,13)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(13, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("13.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: N N == 13 13
Weight: k k == 8 8
Character orbit: [χ][\chi] == 13.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 4.061005331294.06100533129
Analytic rank: 00
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3354x2640x+20912 x^{4} - x^{3} - 354x^{2} - 640x + 20912 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+4)q2+(β22β1+21)q3+(β32β24β1+63)q4+(6β3β2++63)q5+(11β34β2++391)q6++(136548β377786β2++1572948)q99+O(q100) q + ( - \beta_1 + 4) q^{2} + (\beta_{2} - 2 \beta_1 + 21) q^{3} + (\beta_{3} - 2 \beta_{2} - 4 \beta_1 + 63) q^{4} + ( - 6 \beta_{3} - \beta_{2} + \cdots + 63) q^{5} + (11 \beta_{3} - 4 \beta_{2} + \cdots + 391) q^{6}+ \cdots + (136548 \beta_{3} - 77786 \beta_{2} + \cdots + 1572948) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+15q2+80q3+253q4+258q5+1579q6+1692q7+1893q8+3494q94495q10+1836q113655q128788q1318285q1429736q1536159q16++6200852q99+O(q100) 4 q + 15 q^{2} + 80 q^{3} + 253 q^{4} + 258 q^{5} + 1579 q^{6} + 1692 q^{7} + 1893 q^{8} + 3494 q^{9} - 4495 q^{10} + 1836 q^{11} - 3655 q^{12} - 8788 q^{13} - 18285 q^{14} - 29736 q^{15} - 36159 q^{16}+ \cdots + 6200852 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x3354x2640x+20912 x^{4} - x^{3} - 354x^{2} - 640x + 20912 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν315ν2180ν+1956)/4 ( \nu^{3} - 15\nu^{2} - 180\nu + 1956 ) / 4 Copy content Toggle raw display
β3\beta_{3}== (ν313ν2188ν+1606)/2 ( \nu^{3} - 13\nu^{2} - 188\nu + 1606 ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β32β2+4β1+175 \beta_{3} - 2\beta_{2} + 4\beta _1 + 175 Copy content Toggle raw display
ν3\nu^{3}== 15β326β2+240β1+669 15\beta_{3} - 26\beta_{2} + 240\beta _1 + 669 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
18.6191
7.26058
−12.1994
−12.6802
−14.6191 −51.4405 85.7173 123.659 752.012 559.667 618.134 459.121 −1807.78
1.2 −3.26058 66.7551 −117.369 259.973 −217.660 1453.99 800.043 2269.24 −847.662
1.3 16.1994 71.3782 134.421 −532.467 1156.29 −6.33667 104.021 2907.85 −8625.66
1.4 16.6802 −6.69280 150.230 406.835 −111.637 −315.324 370.802 −2142.21 6786.11
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 13.8.a.c 4
3.b odd 2 1 117.8.a.e 4
4.b odd 2 1 208.8.a.k 4
5.b even 2 1 325.8.a.c 4
13.b even 2 1 169.8.a.c 4
13.d odd 4 2 169.8.b.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.8.a.c 4 1.a even 1 1 trivial
117.8.a.e 4 3.b odd 2 1
169.8.a.c 4 13.b even 2 1
169.8.b.c 8 13.d odd 4 2
208.8.a.k 4 4.b odd 2 1
325.8.a.c 4 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2415T23270T22+3264T2+12880 T_{2}^{4} - 15T_{2}^{3} - 270T_{2}^{2} + 3264T_{2} + 12880 acting on S8new(Γ0(13))S_{8}^{\mathrm{new}}(\Gamma_0(13)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T415T3++12880 T^{4} - 15 T^{3} + \cdots + 12880 Copy content Toggle raw display
33 T480T3++1640448 T^{4} - 80 T^{3} + \cdots + 1640448 Copy content Toggle raw display
55 T4+6964113500 T^{4} + \cdots - 6964113500 Copy content Toggle raw display
77 T4++1625961532 T^{4} + \cdots + 1625961532 Copy content Toggle raw display
1111 T4++19773464676784 T^{4} + \cdots + 19773464676784 Copy content Toggle raw display
1313 (T+2197)4 (T + 2197)^{4} Copy content Toggle raw display
1717 T4++17 ⁣ ⁣84 T^{4} + \cdots + 17\!\cdots\!84 Copy content Toggle raw display
1919 T4++43 ⁣ ⁣60 T^{4} + \cdots + 43\!\cdots\!60 Copy content Toggle raw display
2323 T4++20 ⁣ ⁣36 T^{4} + \cdots + 20\!\cdots\!36 Copy content Toggle raw display
2929 T4+32 ⁣ ⁣40 T^{4} + \cdots - 32\!\cdots\!40 Copy content Toggle raw display
3131 T4+83 ⁣ ⁣08 T^{4} + \cdots - 83\!\cdots\!08 Copy content Toggle raw display
3737 T4++59 ⁣ ⁣76 T^{4} + \cdots + 59\!\cdots\!76 Copy content Toggle raw display
4141 T4++19 ⁣ ⁣36 T^{4} + \cdots + 19\!\cdots\!36 Copy content Toggle raw display
4343 T4++11 ⁣ ⁣52 T^{4} + \cdots + 11\!\cdots\!52 Copy content Toggle raw display
4747 T4+13 ⁣ ⁣60 T^{4} + \cdots - 13\!\cdots\!60 Copy content Toggle raw display
5353 T4+28 ⁣ ⁣64 T^{4} + \cdots - 28\!\cdots\!64 Copy content Toggle raw display
5959 T4+44 ⁣ ⁣20 T^{4} + \cdots - 44\!\cdots\!20 Copy content Toggle raw display
6161 T4++11 ⁣ ⁣68 T^{4} + \cdots + 11\!\cdots\!68 Copy content Toggle raw display
6767 T4+57 ⁣ ⁣08 T^{4} + \cdots - 57\!\cdots\!08 Copy content Toggle raw display
7171 T4++25 ⁣ ⁣48 T^{4} + \cdots + 25\!\cdots\!48 Copy content Toggle raw display
7373 T4++69 ⁣ ⁣24 T^{4} + \cdots + 69\!\cdots\!24 Copy content Toggle raw display
7979 T4++22 ⁣ ⁣00 T^{4} + \cdots + 22\!\cdots\!00 Copy content Toggle raw display
8383 T4++70 ⁣ ⁣76 T^{4} + \cdots + 70\!\cdots\!76 Copy content Toggle raw display
8989 T4+76 ⁣ ⁣00 T^{4} + \cdots - 76\!\cdots\!00 Copy content Toggle raw display
9797 T4+44 ⁣ ⁣60 T^{4} + \cdots - 44\!\cdots\!60 Copy content Toggle raw display
show more
show less