Properties

Label 130.6.a.c.1.1
Level $130$
Weight $6$
Character 130.1
Self dual yes
Analytic conductor $20.850$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [130,6,Mod(1,130)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(130, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("130.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 130.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.8498965757\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{145}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-5.52080\) of defining polynomial
Character \(\chi\) \(=\) 130.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -9.04159 q^{3} +16.0000 q^{4} -25.0000 q^{5} +36.1664 q^{6} +77.0416 q^{7} -64.0000 q^{8} -161.250 q^{9} +100.000 q^{10} +463.248 q^{11} -144.666 q^{12} -169.000 q^{13} -308.166 q^{14} +226.040 q^{15} +256.000 q^{16} +1869.15 q^{17} +644.998 q^{18} -618.329 q^{19} -400.000 q^{20} -696.579 q^{21} -1852.99 q^{22} -1711.36 q^{23} +578.662 q^{24} +625.000 q^{25} +676.000 q^{26} +3655.06 q^{27} +1232.67 q^{28} -5862.49 q^{29} -904.159 q^{30} -545.331 q^{31} -1024.00 q^{32} -4188.50 q^{33} -7476.62 q^{34} -1926.04 q^{35} -2579.99 q^{36} -12321.6 q^{37} +2473.32 q^{38} +1528.03 q^{39} +1600.00 q^{40} -17708.6 q^{41} +2786.32 q^{42} +12622.2 q^{43} +7411.97 q^{44} +4031.24 q^{45} +6845.46 q^{46} -15968.1 q^{47} -2314.65 q^{48} -10871.6 q^{49} -2500.00 q^{50} -16900.1 q^{51} -2704.00 q^{52} -27930.3 q^{53} -14620.2 q^{54} -11581.2 q^{55} -4930.66 q^{56} +5590.68 q^{57} +23449.9 q^{58} -22214.9 q^{59} +3616.64 q^{60} +5542.43 q^{61} +2181.32 q^{62} -12422.9 q^{63} +4096.00 q^{64} +4225.00 q^{65} +16754.0 q^{66} +59646.7 q^{67} +29906.5 q^{68} +15473.5 q^{69} +7704.16 q^{70} -67225.5 q^{71} +10320.0 q^{72} +67383.3 q^{73} +49286.5 q^{74} -5651.00 q^{75} -9893.27 q^{76} +35689.4 q^{77} -6112.12 q^{78} -49060.5 q^{79} -6400.00 q^{80} +6136.07 q^{81} +70834.3 q^{82} +12542.6 q^{83} -11145.3 q^{84} -46728.9 q^{85} -50488.9 q^{86} +53006.2 q^{87} -29647.9 q^{88} -1361.03 q^{89} -16125.0 q^{90} -13020.0 q^{91} -27381.8 q^{92} +4930.66 q^{93} +63872.4 q^{94} +15458.2 q^{95} +9258.59 q^{96} +58030.7 q^{97} +43486.4 q^{98} -74698.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 6 q^{3} + 32 q^{4} - 50 q^{5} - 24 q^{6} + 130 q^{7} - 128 q^{8} - 178 q^{9} + 200 q^{10} + 204 q^{11} + 96 q^{12} - 338 q^{13} - 520 q^{14} - 150 q^{15} + 512 q^{16} - 404 q^{17} + 712 q^{18}+ \cdots - 70356 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −9.04159 −0.580019 −0.290009 0.957024i \(-0.593658\pi\)
−0.290009 + 0.957024i \(0.593658\pi\)
\(4\) 16.0000 0.500000
\(5\) −25.0000 −0.447214
\(6\) 36.1664 0.410135
\(7\) 77.0416 0.594265 0.297133 0.954836i \(-0.403970\pi\)
0.297133 + 0.954836i \(0.403970\pi\)
\(8\) −64.0000 −0.353553
\(9\) −161.250 −0.663578
\(10\) 100.000 0.316228
\(11\) 463.248 1.15433 0.577167 0.816626i \(-0.304158\pi\)
0.577167 + 0.816626i \(0.304158\pi\)
\(12\) −144.666 −0.290009
\(13\) −169.000 −0.277350
\(14\) −308.166 −0.420209
\(15\) 226.040 0.259392
\(16\) 256.000 0.250000
\(17\) 1869.15 1.56864 0.784319 0.620357i \(-0.213012\pi\)
0.784319 + 0.620357i \(0.213012\pi\)
\(18\) 644.998 0.469221
\(19\) −618.329 −0.392949 −0.196474 0.980509i \(-0.562949\pi\)
−0.196474 + 0.980509i \(0.562949\pi\)
\(20\) −400.000 −0.223607
\(21\) −696.579 −0.344685
\(22\) −1852.99 −0.816238
\(23\) −1711.36 −0.674563 −0.337282 0.941404i \(-0.609507\pi\)
−0.337282 + 0.941404i \(0.609507\pi\)
\(24\) 578.662 0.205068
\(25\) 625.000 0.200000
\(26\) 676.000 0.196116
\(27\) 3655.06 0.964906
\(28\) 1232.67 0.297133
\(29\) −5862.49 −1.29445 −0.647227 0.762297i \(-0.724072\pi\)
−0.647227 + 0.762297i \(0.724072\pi\)
\(30\) −904.159 −0.183418
\(31\) −545.331 −0.101919 −0.0509596 0.998701i \(-0.516228\pi\)
−0.0509596 + 0.998701i \(0.516228\pi\)
\(32\) −1024.00 −0.176777
\(33\) −4188.50 −0.669535
\(34\) −7476.62 −1.10919
\(35\) −1926.04 −0.265763
\(36\) −2579.99 −0.331789
\(37\) −12321.6 −1.47967 −0.739833 0.672790i \(-0.765096\pi\)
−0.739833 + 0.672790i \(0.765096\pi\)
\(38\) 2473.32 0.277857
\(39\) 1528.03 0.160868
\(40\) 1600.00 0.158114
\(41\) −17708.6 −1.64522 −0.822610 0.568606i \(-0.807483\pi\)
−0.822610 + 0.568606i \(0.807483\pi\)
\(42\) 2786.32 0.243729
\(43\) 12622.2 1.04103 0.520517 0.853851i \(-0.325739\pi\)
0.520517 + 0.853851i \(0.325739\pi\)
\(44\) 7411.97 0.577167
\(45\) 4031.24 0.296761
\(46\) 6845.46 0.476988
\(47\) −15968.1 −1.05441 −0.527204 0.849739i \(-0.676760\pi\)
−0.527204 + 0.849739i \(0.676760\pi\)
\(48\) −2314.65 −0.145005
\(49\) −10871.6 −0.646849
\(50\) −2500.00 −0.141421
\(51\) −16900.1 −0.909839
\(52\) −2704.00 −0.138675
\(53\) −27930.3 −1.36580 −0.682898 0.730514i \(-0.739281\pi\)
−0.682898 + 0.730514i \(0.739281\pi\)
\(54\) −14620.2 −0.682292
\(55\) −11581.2 −0.516234
\(56\) −4930.66 −0.210104
\(57\) 5590.68 0.227918
\(58\) 23449.9 0.915318
\(59\) −22214.9 −0.830835 −0.415418 0.909631i \(-0.636365\pi\)
−0.415418 + 0.909631i \(0.636365\pi\)
\(60\) 3616.64 0.129696
\(61\) 5542.43 0.190711 0.0953554 0.995443i \(-0.469601\pi\)
0.0953554 + 0.995443i \(0.469601\pi\)
\(62\) 2181.32 0.0720678
\(63\) −12422.9 −0.394341
\(64\) 4096.00 0.125000
\(65\) 4225.00 0.124035
\(66\) 16754.0 0.473433
\(67\) 59646.7 1.62330 0.811652 0.584142i \(-0.198569\pi\)
0.811652 + 0.584142i \(0.198569\pi\)
\(68\) 29906.5 0.784319
\(69\) 15473.5 0.391259
\(70\) 7704.16 0.187923
\(71\) −67225.5 −1.58266 −0.791331 0.611388i \(-0.790611\pi\)
−0.791331 + 0.611388i \(0.790611\pi\)
\(72\) 10320.0 0.234610
\(73\) 67383.3 1.47994 0.739972 0.672637i \(-0.234839\pi\)
0.739972 + 0.672637i \(0.234839\pi\)
\(74\) 49286.5 1.04628
\(75\) −5651.00 −0.116004
\(76\) −9893.27 −0.196474
\(77\) 35689.4 0.685981
\(78\) −6112.12 −0.113751
\(79\) −49060.5 −0.884431 −0.442215 0.896909i \(-0.645807\pi\)
−0.442215 + 0.896909i \(0.645807\pi\)
\(80\) −6400.00 −0.111803
\(81\) 6136.07 0.103915
\(82\) 70834.3 1.16335
\(83\) 12542.6 0.199844 0.0999222 0.994995i \(-0.468141\pi\)
0.0999222 + 0.994995i \(0.468141\pi\)
\(84\) −11145.3 −0.172342
\(85\) −46728.9 −0.701516
\(86\) −50488.9 −0.736122
\(87\) 53006.2 0.750808
\(88\) −29647.9 −0.408119
\(89\) −1361.03 −0.0182135 −0.00910673 0.999959i \(-0.502899\pi\)
−0.00910673 + 0.999959i \(0.502899\pi\)
\(90\) −16125.0 −0.209842
\(91\) −13020.0 −0.164819
\(92\) −27381.8 −0.337282
\(93\) 4930.66 0.0591150
\(94\) 63872.4 0.745579
\(95\) 15458.2 0.175732
\(96\) 9258.59 0.102534
\(97\) 58030.7 0.626222 0.313111 0.949717i \(-0.398629\pi\)
0.313111 + 0.949717i \(0.398629\pi\)
\(98\) 43486.4 0.457391
\(99\) −74698.5 −0.765992
\(100\) 10000.0 0.100000
\(101\) 119042. 1.16118 0.580588 0.814197i \(-0.302823\pi\)
0.580588 + 0.814197i \(0.302823\pi\)
\(102\) 67600.5 0.643354
\(103\) −120678. −1.12082 −0.560408 0.828216i \(-0.689356\pi\)
−0.560408 + 0.828216i \(0.689356\pi\)
\(104\) 10816.0 0.0980581
\(105\) 17414.5 0.154148
\(106\) 111721. 0.965764
\(107\) −29154.6 −0.246177 −0.123089 0.992396i \(-0.539280\pi\)
−0.123089 + 0.992396i \(0.539280\pi\)
\(108\) 58481.0 0.482453
\(109\) 35710.9 0.287895 0.143948 0.989585i \(-0.454020\pi\)
0.143948 + 0.989585i \(0.454020\pi\)
\(110\) 46324.8 0.365033
\(111\) 111407. 0.858234
\(112\) 19722.6 0.148566
\(113\) −194071. −1.42976 −0.714882 0.699245i \(-0.753519\pi\)
−0.714882 + 0.699245i \(0.753519\pi\)
\(114\) −22362.7 −0.161162
\(115\) 42784.1 0.301674
\(116\) −93799.8 −0.647227
\(117\) 27251.2 0.184044
\(118\) 88859.7 0.587489
\(119\) 144003. 0.932187
\(120\) −14466.6 −0.0917090
\(121\) 53547.6 0.332488
\(122\) −22169.7 −0.134853
\(123\) 160114. 0.954259
\(124\) −8725.30 −0.0509596
\(125\) −15625.0 −0.0894427
\(126\) 49691.7 0.278842
\(127\) 113031. 0.621855 0.310927 0.950434i \(-0.399360\pi\)
0.310927 + 0.950434i \(0.399360\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −114125. −0.603819
\(130\) −16900.0 −0.0877058
\(131\) −358787. −1.82666 −0.913331 0.407217i \(-0.866499\pi\)
−0.913331 + 0.407217i \(0.866499\pi\)
\(132\) −67016.0 −0.334768
\(133\) −47637.1 −0.233516
\(134\) −238587. −1.14785
\(135\) −91376.5 −0.431519
\(136\) −119626. −0.554597
\(137\) 389881. 1.77473 0.887363 0.461072i \(-0.152535\pi\)
0.887363 + 0.461072i \(0.152535\pi\)
\(138\) −61893.8 −0.276662
\(139\) −143094. −0.628179 −0.314090 0.949393i \(-0.601699\pi\)
−0.314090 + 0.949393i \(0.601699\pi\)
\(140\) −30816.6 −0.132882
\(141\) 144377. 0.611576
\(142\) 268902. 1.11911
\(143\) −78288.9 −0.320155
\(144\) −41279.9 −0.165895
\(145\) 146562. 0.578898
\(146\) −269533. −1.04648
\(147\) 98296.5 0.375184
\(148\) −197146. −0.739833
\(149\) 57507.0 0.212205 0.106102 0.994355i \(-0.466163\pi\)
0.106102 + 0.994355i \(0.466163\pi\)
\(150\) 22604.0 0.0820270
\(151\) −382788. −1.36621 −0.683103 0.730322i \(-0.739370\pi\)
−0.683103 + 0.730322i \(0.739370\pi\)
\(152\) 39573.1 0.138928
\(153\) −301400. −1.04091
\(154\) −142757. −0.485062
\(155\) 13633.3 0.0455796
\(156\) 24448.5 0.0804341
\(157\) −175379. −0.567844 −0.283922 0.958847i \(-0.591636\pi\)
−0.283922 + 0.958847i \(0.591636\pi\)
\(158\) 196242. 0.625387
\(159\) 252534. 0.792187
\(160\) 25600.0 0.0790569
\(161\) −131846. −0.400869
\(162\) −24544.3 −0.0734789
\(163\) −631372. −1.86130 −0.930650 0.365909i \(-0.880758\pi\)
−0.930650 + 0.365909i \(0.880758\pi\)
\(164\) −283337. −0.822610
\(165\) 104712. 0.299425
\(166\) −50170.4 −0.141311
\(167\) −261161. −0.724631 −0.362315 0.932056i \(-0.618014\pi\)
−0.362315 + 0.932056i \(0.618014\pi\)
\(168\) 44581.0 0.121864
\(169\) 28561.0 0.0769231
\(170\) 186915. 0.496047
\(171\) 99705.3 0.260752
\(172\) 201956. 0.520517
\(173\) −333245. −0.846541 −0.423270 0.906003i \(-0.639118\pi\)
−0.423270 + 0.906003i \(0.639118\pi\)
\(174\) −212025. −0.530901
\(175\) 48151.0 0.118853
\(176\) 118591. 0.288584
\(177\) 200858. 0.481900
\(178\) 5444.12 0.0128789
\(179\) −607067. −1.41613 −0.708066 0.706146i \(-0.750432\pi\)
−0.708066 + 0.706146i \(0.750432\pi\)
\(180\) 64499.8 0.148381
\(181\) 145547. 0.330222 0.165111 0.986275i \(-0.447202\pi\)
0.165111 + 0.986275i \(0.447202\pi\)
\(182\) 52080.1 0.116545
\(183\) −50112.4 −0.110616
\(184\) 109527. 0.238494
\(185\) 308041. 0.661727
\(186\) −19722.6 −0.0418006
\(187\) 865882. 1.81073
\(188\) −255490. −0.527204
\(189\) 281592. 0.573410
\(190\) −61832.9 −0.124261
\(191\) 16804.6 0.0333308 0.0166654 0.999861i \(-0.494695\pi\)
0.0166654 + 0.999861i \(0.494695\pi\)
\(192\) −37034.4 −0.0725023
\(193\) 517817. 1.00065 0.500326 0.865837i \(-0.333213\pi\)
0.500326 + 0.865837i \(0.333213\pi\)
\(194\) −232123. −0.442806
\(195\) −38200.7 −0.0719424
\(196\) −173945. −0.323425
\(197\) 244368. 0.448619 0.224310 0.974518i \(-0.427987\pi\)
0.224310 + 0.974518i \(0.427987\pi\)
\(198\) 298794. 0.541638
\(199\) 238178. 0.426354 0.213177 0.977014i \(-0.431619\pi\)
0.213177 + 0.977014i \(0.431619\pi\)
\(200\) −40000.0 −0.0707107
\(201\) −539302. −0.941546
\(202\) −476170. −0.821076
\(203\) −451655. −0.769249
\(204\) −270402. −0.454920
\(205\) 442715. 0.735765
\(206\) 482712. 0.792537
\(207\) 275957. 0.447626
\(208\) −43264.0 −0.0693375
\(209\) −286440. −0.453594
\(210\) −69657.9 −0.108999
\(211\) 853217. 1.31933 0.659665 0.751560i \(-0.270698\pi\)
0.659665 + 0.751560i \(0.270698\pi\)
\(212\) −446885. −0.682898
\(213\) 607826. 0.917973
\(214\) 116618. 0.174073
\(215\) −315556. −0.465564
\(216\) −233924. −0.341146
\(217\) −42013.2 −0.0605670
\(218\) −142843. −0.203573
\(219\) −609253. −0.858395
\(220\) −185299. −0.258117
\(221\) −315887. −0.435062
\(222\) −445629. −0.606863
\(223\) −86442.8 −0.116404 −0.0582018 0.998305i \(-0.518537\pi\)
−0.0582018 + 0.998305i \(0.518537\pi\)
\(224\) −78890.6 −0.105052
\(225\) −100781. −0.132716
\(226\) 776283. 1.01100
\(227\) 622295. 0.801552 0.400776 0.916176i \(-0.368741\pi\)
0.400776 + 0.916176i \(0.368741\pi\)
\(228\) 89450.9 0.113959
\(229\) 582324. 0.733797 0.366899 0.930261i \(-0.380420\pi\)
0.366899 + 0.930261i \(0.380420\pi\)
\(230\) −171136. −0.213316
\(231\) −322689. −0.397881
\(232\) 375199. 0.457659
\(233\) 865669. 1.04463 0.522315 0.852753i \(-0.325069\pi\)
0.522315 + 0.852753i \(0.325069\pi\)
\(234\) −109005. −0.130138
\(235\) 399202. 0.471545
\(236\) −355439. −0.415418
\(237\) 443585. 0.512986
\(238\) −576011. −0.659156
\(239\) −754782. −0.854726 −0.427363 0.904080i \(-0.640557\pi\)
−0.427363 + 0.904080i \(0.640557\pi\)
\(240\) 57866.2 0.0648480
\(241\) −211415. −0.234473 −0.117237 0.993104i \(-0.537404\pi\)
−0.117237 + 0.993104i \(0.537404\pi\)
\(242\) −214190. −0.235105
\(243\) −943660. −1.02518
\(244\) 88678.8 0.0953554
\(245\) 271790. 0.289280
\(246\) −640455. −0.674763
\(247\) 104498. 0.108984
\(248\) 34901.2 0.0360339
\(249\) −113405. −0.115914
\(250\) 62500.0 0.0632456
\(251\) 1.60703e6 1.61005 0.805024 0.593243i \(-0.202153\pi\)
0.805024 + 0.593243i \(0.202153\pi\)
\(252\) −198767. −0.197171
\(253\) −792786. −0.778672
\(254\) −452125. −0.439718
\(255\) 422503. 0.406893
\(256\) 65536.0 0.0625000
\(257\) −1.29242e6 −1.22059 −0.610295 0.792174i \(-0.708949\pi\)
−0.610295 + 0.792174i \(0.708949\pi\)
\(258\) 456500. 0.426964
\(259\) −949278. −0.879314
\(260\) 67600.0 0.0620174
\(261\) 945323. 0.858972
\(262\) 1.43515e6 1.29165
\(263\) 787600. 0.702128 0.351064 0.936351i \(-0.385820\pi\)
0.351064 + 0.936351i \(0.385820\pi\)
\(264\) 268064. 0.236717
\(265\) 698257. 0.610803
\(266\) 190548. 0.165120
\(267\) 12305.9 0.0105641
\(268\) 954348. 0.811652
\(269\) −1.13160e6 −0.953480 −0.476740 0.879044i \(-0.658182\pi\)
−0.476740 + 0.879044i \(0.658182\pi\)
\(270\) 365506. 0.305130
\(271\) 1.50590e6 1.24559 0.622794 0.782386i \(-0.285998\pi\)
0.622794 + 0.782386i \(0.285998\pi\)
\(272\) 478503. 0.392160
\(273\) 117722. 0.0955983
\(274\) −1.55953e6 −1.25492
\(275\) 289530. 0.230867
\(276\) 247575. 0.195630
\(277\) 789483. 0.618221 0.309110 0.951026i \(-0.399969\pi\)
0.309110 + 0.951026i \(0.399969\pi\)
\(278\) 572375. 0.444190
\(279\) 87934.4 0.0676314
\(280\) 123267. 0.0939615
\(281\) −815478. −0.616093 −0.308047 0.951371i \(-0.599675\pi\)
−0.308047 + 0.951371i \(0.599675\pi\)
\(282\) −577508. −0.432449
\(283\) −326725. −0.242502 −0.121251 0.992622i \(-0.538691\pi\)
−0.121251 + 0.992622i \(0.538691\pi\)
\(284\) −1.07561e6 −0.791331
\(285\) −139767. −0.101928
\(286\) 313156. 0.226384
\(287\) −1.36430e6 −0.977697
\(288\) 165120. 0.117305
\(289\) 2.07388e6 1.46063
\(290\) −586249. −0.409342
\(291\) −524690. −0.363220
\(292\) 1.07813e6 0.739972
\(293\) 1.32473e6 0.901487 0.450743 0.892654i \(-0.351159\pi\)
0.450743 + 0.892654i \(0.351159\pi\)
\(294\) −393186. −0.265295
\(295\) 555373. 0.371561
\(296\) 788584. 0.523141
\(297\) 1.69320e6 1.11382
\(298\) −230028. −0.150051
\(299\) 289221. 0.187090
\(300\) −90415.9 −0.0580019
\(301\) 972436. 0.618650
\(302\) 1.53115e6 0.966054
\(303\) −1.07633e6 −0.673504
\(304\) −158292. −0.0982372
\(305\) −138561. −0.0852885
\(306\) 1.20560e6 0.736038
\(307\) 550416. 0.333307 0.166654 0.986015i \(-0.446704\pi\)
0.166654 + 0.986015i \(0.446704\pi\)
\(308\) 571030. 0.342990
\(309\) 1.09112e6 0.650095
\(310\) −54533.1 −0.0322297
\(311\) −3.35779e6 −1.96858 −0.984290 0.176561i \(-0.943503\pi\)
−0.984290 + 0.176561i \(0.943503\pi\)
\(312\) −97793.9 −0.0568755
\(313\) −2.61647e6 −1.50957 −0.754787 0.655970i \(-0.772260\pi\)
−0.754787 + 0.655970i \(0.772260\pi\)
\(314\) 701518. 0.401527
\(315\) 310573. 0.176355
\(316\) −784967. −0.442215
\(317\) 1.33414e6 0.745683 0.372841 0.927895i \(-0.378384\pi\)
0.372841 + 0.927895i \(0.378384\pi\)
\(318\) −1.01014e6 −0.560161
\(319\) −2.71578e6 −1.49423
\(320\) −102400. −0.0559017
\(321\) 263604. 0.142787
\(322\) 527385. 0.283458
\(323\) −1.15575e6 −0.616394
\(324\) 98177.1 0.0519574
\(325\) −105625. −0.0554700
\(326\) 2.52549e6 1.31614
\(327\) −322883. −0.166984
\(328\) 1.13335e6 0.581673
\(329\) −1.23021e6 −0.626597
\(330\) −418850. −0.211726
\(331\) −716034. −0.359223 −0.179611 0.983738i \(-0.557484\pi\)
−0.179611 + 0.983738i \(0.557484\pi\)
\(332\) 200682. 0.0999222
\(333\) 1.98686e6 0.981875
\(334\) 1.04464e6 0.512391
\(335\) −1.49117e6 −0.725963
\(336\) −178324. −0.0861712
\(337\) −3.87372e6 −1.85803 −0.929016 0.370038i \(-0.879345\pi\)
−0.929016 + 0.370038i \(0.879345\pi\)
\(338\) −114244. −0.0543928
\(339\) 1.75471e6 0.829289
\(340\) −747662. −0.350758
\(341\) −252623. −0.117649
\(342\) −398821. −0.184380
\(343\) −2.13240e6 −0.978665
\(344\) −807822. −0.368061
\(345\) −386836. −0.174976
\(346\) 1.33298e6 0.598595
\(347\) 41926.2 0.0186923 0.00934613 0.999956i \(-0.497025\pi\)
0.00934613 + 0.999956i \(0.497025\pi\)
\(348\) 848099. 0.375404
\(349\) 2.08136e6 0.914711 0.457356 0.889284i \(-0.348797\pi\)
0.457356 + 0.889284i \(0.348797\pi\)
\(350\) −192604. −0.0840418
\(351\) −617705. −0.267617
\(352\) −474366. −0.204059
\(353\) −4.19749e6 −1.79289 −0.896443 0.443160i \(-0.853857\pi\)
−0.896443 + 0.443160i \(0.853857\pi\)
\(354\) −803434. −0.340755
\(355\) 1.68064e6 0.707788
\(356\) −21776.5 −0.00910673
\(357\) −1.30201e6 −0.540686
\(358\) 2.42827e6 1.00136
\(359\) 1.58526e6 0.649179 0.324590 0.945855i \(-0.394774\pi\)
0.324590 + 0.945855i \(0.394774\pi\)
\(360\) −257999. −0.104921
\(361\) −2.09377e6 −0.845591
\(362\) −582187. −0.233502
\(363\) −484155. −0.192849
\(364\) −208320. −0.0824097
\(365\) −1.68458e6 −0.661851
\(366\) 200449. 0.0782172
\(367\) −693454. −0.268752 −0.134376 0.990930i \(-0.542903\pi\)
−0.134376 + 0.990930i \(0.542903\pi\)
\(368\) −438109. −0.168641
\(369\) 2.85550e6 1.09173
\(370\) −1.23216e6 −0.467912
\(371\) −2.15179e6 −0.811645
\(372\) 78890.6 0.0295575
\(373\) 3.74196e6 1.39260 0.696300 0.717751i \(-0.254828\pi\)
0.696300 + 0.717751i \(0.254828\pi\)
\(374\) −3.46353e6 −1.28038
\(375\) 141275. 0.0518784
\(376\) 1.02196e6 0.372789
\(377\) 990760. 0.359017
\(378\) −1.12637e6 −0.405462
\(379\) 32595.4 0.0116562 0.00582812 0.999983i \(-0.498145\pi\)
0.00582812 + 0.999983i \(0.498145\pi\)
\(380\) 247332. 0.0878660
\(381\) −1.02198e6 −0.360687
\(382\) −67218.5 −0.0235684
\(383\) −4.99326e6 −1.73935 −0.869676 0.493624i \(-0.835672\pi\)
−0.869676 + 0.493624i \(0.835672\pi\)
\(384\) 148137. 0.0512669
\(385\) −892234. −0.306780
\(386\) −2.07127e6 −0.707568
\(387\) −2.03533e6 −0.690807
\(388\) 928491. 0.313111
\(389\) −3.19780e6 −1.07146 −0.535732 0.844388i \(-0.679964\pi\)
−0.535732 + 0.844388i \(0.679964\pi\)
\(390\) 152803. 0.0508710
\(391\) −3.19880e6 −1.05815
\(392\) 695782. 0.228696
\(393\) 3.24401e6 1.05950
\(394\) −977470. −0.317222
\(395\) 1.22651e6 0.395529
\(396\) −1.19518e6 −0.382996
\(397\) −1.12978e6 −0.359764 −0.179882 0.983688i \(-0.557572\pi\)
−0.179882 + 0.983688i \(0.557572\pi\)
\(398\) −952714. −0.301477
\(399\) 430715. 0.135443
\(400\) 160000. 0.0500000
\(401\) −560089. −0.173939 −0.0869693 0.996211i \(-0.527718\pi\)
−0.0869693 + 0.996211i \(0.527718\pi\)
\(402\) 2.15721e6 0.665774
\(403\) 92160.9 0.0282673
\(404\) 1.90468e6 0.580588
\(405\) −153402. −0.0464721
\(406\) 1.80662e6 0.543941
\(407\) −5.70797e6 −1.70803
\(408\) 1.08161e6 0.321677
\(409\) 4.95376e6 1.46429 0.732144 0.681150i \(-0.238520\pi\)
0.732144 + 0.681150i \(0.238520\pi\)
\(410\) −1.77086e6 −0.520264
\(411\) −3.52515e6 −1.02937
\(412\) −1.93085e6 −0.560408
\(413\) −1.71147e6 −0.493736
\(414\) −1.10383e6 −0.316519
\(415\) −313565. −0.0893732
\(416\) 173056. 0.0490290
\(417\) 1.29379e6 0.364355
\(418\) 1.14576e6 0.320740
\(419\) 3.76102e6 1.04658 0.523288 0.852156i \(-0.324705\pi\)
0.523288 + 0.852156i \(0.324705\pi\)
\(420\) 278632. 0.0770739
\(421\) 1.47722e6 0.406199 0.203099 0.979158i \(-0.434899\pi\)
0.203099 + 0.979158i \(0.434899\pi\)
\(422\) −3.41287e6 −0.932907
\(423\) 2.57485e6 0.699682
\(424\) 1.78754e6 0.482882
\(425\) 1.16822e6 0.313728
\(426\) −2.43130e6 −0.649105
\(427\) 426997. 0.113333
\(428\) −466473. −0.123089
\(429\) 707856. 0.185696
\(430\) 1.26222e6 0.329204
\(431\) 7.00591e6 1.81665 0.908326 0.418264i \(-0.137361\pi\)
0.908326 + 0.418264i \(0.137361\pi\)
\(432\) 935696. 0.241227
\(433\) −771976. −0.197872 −0.0989360 0.995094i \(-0.531544\pi\)
−0.0989360 + 0.995094i \(0.531544\pi\)
\(434\) 168053. 0.0428273
\(435\) −1.32516e6 −0.335771
\(436\) 571374. 0.143948
\(437\) 1.05819e6 0.265069
\(438\) 2.43701e6 0.606977
\(439\) −3.79177e6 −0.939032 −0.469516 0.882924i \(-0.655572\pi\)
−0.469516 + 0.882924i \(0.655572\pi\)
\(440\) 741197. 0.182516
\(441\) 1.75304e6 0.429235
\(442\) 1.26355e6 0.307635
\(443\) 153363. 0.0371289 0.0185644 0.999828i \(-0.494090\pi\)
0.0185644 + 0.999828i \(0.494090\pi\)
\(444\) 1.78252e6 0.429117
\(445\) 34025.7 0.00814531
\(446\) 345771. 0.0823098
\(447\) −519955. −0.123083
\(448\) 315562. 0.0742831
\(449\) 6.79802e6 1.59135 0.795676 0.605722i \(-0.207116\pi\)
0.795676 + 0.605722i \(0.207116\pi\)
\(450\) 403124. 0.0938442
\(451\) −8.20346e6 −1.89914
\(452\) −3.10513e6 −0.714882
\(453\) 3.46102e6 0.792425
\(454\) −2.48918e6 −0.566783
\(455\) 325501. 0.0737095
\(456\) −357804. −0.0805810
\(457\) 5.30770e6 1.18882 0.594409 0.804163i \(-0.297386\pi\)
0.594409 + 0.804163i \(0.297386\pi\)
\(458\) −2.32930e6 −0.518873
\(459\) 6.83187e6 1.51359
\(460\) 684546. 0.150837
\(461\) −2.92325e6 −0.640640 −0.320320 0.947309i \(-0.603790\pi\)
−0.320320 + 0.947309i \(0.603790\pi\)
\(462\) 1.29075e6 0.281345
\(463\) 5.67529e6 1.23037 0.615185 0.788383i \(-0.289081\pi\)
0.615185 + 0.788383i \(0.289081\pi\)
\(464\) −1.50080e6 −0.323614
\(465\) −123267. −0.0264370
\(466\) −3.46268e6 −0.738664
\(467\) −1.97672e6 −0.419425 −0.209712 0.977763i \(-0.567253\pi\)
−0.209712 + 0.977763i \(0.567253\pi\)
\(468\) 436019. 0.0920218
\(469\) 4.59528e6 0.964672
\(470\) −1.59681e6 −0.333433
\(471\) 1.58571e6 0.329360
\(472\) 1.42176e6 0.293745
\(473\) 5.84722e6 1.20170
\(474\) −1.77434e6 −0.362736
\(475\) −386456. −0.0785897
\(476\) 2.30404e6 0.466093
\(477\) 4.50375e6 0.906313
\(478\) 3.01913e6 0.604383
\(479\) 7.52380e6 1.49830 0.749149 0.662401i \(-0.230463\pi\)
0.749149 + 0.662401i \(0.230463\pi\)
\(480\) −231465. −0.0458545
\(481\) 2.08236e6 0.410386
\(482\) 845661. 0.165798
\(483\) 1.19210e6 0.232512
\(484\) 856761. 0.166244
\(485\) −1.45077e6 −0.280055
\(486\) 3.77464e6 0.724911
\(487\) −4.51302e6 −0.862274 −0.431137 0.902287i \(-0.641887\pi\)
−0.431137 + 0.902287i \(0.641887\pi\)
\(488\) −354715. −0.0674265
\(489\) 5.70861e6 1.07959
\(490\) −1.08716e6 −0.204552
\(491\) 1.48957e6 0.278841 0.139421 0.990233i \(-0.455476\pi\)
0.139421 + 0.990233i \(0.455476\pi\)
\(492\) 2.56182e6 0.477129
\(493\) −1.09579e7 −2.03053
\(494\) −417991. −0.0770636
\(495\) 1.86746e6 0.342562
\(496\) −139605. −0.0254798
\(497\) −5.17916e6 −0.940520
\(498\) 453620. 0.0819632
\(499\) −3.27484e6 −0.588761 −0.294380 0.955688i \(-0.595113\pi\)
−0.294380 + 0.955688i \(0.595113\pi\)
\(500\) −250000. −0.0447214
\(501\) 2.36131e6 0.420299
\(502\) −6.42810e6 −1.13848
\(503\) −3.30838e6 −0.583037 −0.291518 0.956565i \(-0.594160\pi\)
−0.291518 + 0.956565i \(0.594160\pi\)
\(504\) 795067. 0.139421
\(505\) −2.97606e6 −0.519294
\(506\) 3.17114e6 0.550604
\(507\) −258237. −0.0446168
\(508\) 1.80850e6 0.310927
\(509\) 6.58728e6 1.12697 0.563484 0.826127i \(-0.309461\pi\)
0.563484 + 0.826127i \(0.309461\pi\)
\(510\) −1.69001e6 −0.287716
\(511\) 5.19132e6 0.879479
\(512\) −262144. −0.0441942
\(513\) −2.26003e6 −0.379159
\(514\) 5.16967e6 0.863087
\(515\) 3.01695e6 0.501245
\(516\) −1.82600e6 −0.301909
\(517\) −7.39719e6 −1.21714
\(518\) 3.79711e6 0.621769
\(519\) 3.01306e6 0.491009
\(520\) −270400. −0.0438529
\(521\) −2.79881e6 −0.451731 −0.225865 0.974159i \(-0.572521\pi\)
−0.225865 + 0.974159i \(0.572521\pi\)
\(522\) −3.78129e6 −0.607385
\(523\) 1.07586e6 0.171990 0.0859950 0.996296i \(-0.472593\pi\)
0.0859950 + 0.996296i \(0.472593\pi\)
\(524\) −5.74059e6 −0.913331
\(525\) −435362. −0.0689369
\(526\) −3.15040e6 −0.496480
\(527\) −1.01931e6 −0.159874
\(528\) −1.07226e6 −0.167384
\(529\) −3.50758e6 −0.544964
\(530\) −2.79303e6 −0.431903
\(531\) 3.58215e6 0.551324
\(532\) −762193. −0.116758
\(533\) 2.99275e6 0.456302
\(534\) −49223.5 −0.00746998
\(535\) 728865. 0.110094
\(536\) −3.81739e6 −0.573924
\(537\) 5.48885e6 0.821383
\(538\) 4.52639e6 0.674212
\(539\) −5.03624e6 −0.746680
\(540\) −1.46202e6 −0.215760
\(541\) 7.54330e6 1.10807 0.554037 0.832492i \(-0.313087\pi\)
0.554037 + 0.832492i \(0.313087\pi\)
\(542\) −6.02362e6 −0.880763
\(543\) −1.31598e6 −0.191535
\(544\) −1.91401e6 −0.277299
\(545\) −892772. −0.128751
\(546\) −470887. −0.0675982
\(547\) 8.04405e6 1.14949 0.574747 0.818331i \(-0.305101\pi\)
0.574747 + 0.818331i \(0.305101\pi\)
\(548\) 6.23810e6 0.887363
\(549\) −893714. −0.126552
\(550\) −1.15812e6 −0.163248
\(551\) 3.62495e6 0.508654
\(552\) −990301. −0.138331
\(553\) −3.77970e6 −0.525586
\(554\) −3.15793e6 −0.437148
\(555\) −2.78518e6 −0.383814
\(556\) −2.28950e6 −0.314090
\(557\) −1.90075e6 −0.259590 −0.129795 0.991541i \(-0.541432\pi\)
−0.129795 + 0.991541i \(0.541432\pi\)
\(558\) −351738. −0.0478226
\(559\) −2.13316e6 −0.288731
\(560\) −493066. −0.0664408
\(561\) −7.82895e6 −1.05026
\(562\) 3.26191e6 0.435644
\(563\) 6.26708e6 0.833286 0.416643 0.909070i \(-0.363207\pi\)
0.416643 + 0.909070i \(0.363207\pi\)
\(564\) 2.31003e6 0.305788
\(565\) 4.85177e6 0.639410
\(566\) 1.30690e6 0.171475
\(567\) 472732. 0.0617530
\(568\) 4.30243e6 0.559555
\(569\) 6.91884e6 0.895885 0.447943 0.894062i \(-0.352157\pi\)
0.447943 + 0.894062i \(0.352157\pi\)
\(570\) 559068. 0.0720738
\(571\) −5.72155e6 −0.734385 −0.367192 0.930145i \(-0.619681\pi\)
−0.367192 + 0.930145i \(0.619681\pi\)
\(572\) −1.25262e6 −0.160077
\(573\) −151941. −0.0193325
\(574\) 5.45719e6 0.691336
\(575\) −1.06960e6 −0.134913
\(576\) −660478. −0.0829473
\(577\) −1.23874e7 −1.54896 −0.774481 0.632597i \(-0.781989\pi\)
−0.774481 + 0.632597i \(0.781989\pi\)
\(578\) −8.29552e6 −1.03282
\(579\) −4.68189e6 −0.580397
\(580\) 2.34499e6 0.289449
\(581\) 966301. 0.118761
\(582\) 2.09876e6 0.256836
\(583\) −1.29387e7 −1.57659
\(584\) −4.31253e6 −0.523239
\(585\) −681279. −0.0823068
\(586\) −5.29893e6 −0.637447
\(587\) 3.70271e6 0.443531 0.221766 0.975100i \(-0.428818\pi\)
0.221766 + 0.975100i \(0.428818\pi\)
\(588\) 1.57274e6 0.187592
\(589\) 337194. 0.0400490
\(590\) −2.22149e6 −0.262733
\(591\) −2.20947e6 −0.260208
\(592\) −3.15434e6 −0.369917
\(593\) 4.98645e6 0.582310 0.291155 0.956676i \(-0.405960\pi\)
0.291155 + 0.956676i \(0.405960\pi\)
\(594\) −6.77280e6 −0.787593
\(595\) −3.60007e6 −0.416887
\(596\) 920111. 0.106102
\(597\) −2.15351e6 −0.247293
\(598\) −1.15688e6 −0.132293
\(599\) −3.30712e6 −0.376602 −0.188301 0.982111i \(-0.560298\pi\)
−0.188301 + 0.982111i \(0.560298\pi\)
\(600\) 361664. 0.0410135
\(601\) 5.21917e6 0.589407 0.294703 0.955589i \(-0.404779\pi\)
0.294703 + 0.955589i \(0.404779\pi\)
\(602\) −3.88974e6 −0.437451
\(603\) −9.61801e6 −1.07719
\(604\) −6.12462e6 −0.683103
\(605\) −1.33869e6 −0.148693
\(606\) 4.30533e6 0.476239
\(607\) 4.57734e6 0.504245 0.252123 0.967695i \(-0.418871\pi\)
0.252123 + 0.967695i \(0.418871\pi\)
\(608\) 633169. 0.0694642
\(609\) 4.08368e6 0.446179
\(610\) 554243. 0.0603081
\(611\) 2.69861e6 0.292440
\(612\) −4.82241e6 −0.520457
\(613\) 5.04824e6 0.542611 0.271306 0.962493i \(-0.412545\pi\)
0.271306 + 0.962493i \(0.412545\pi\)
\(614\) −2.20166e6 −0.235684
\(615\) −4.00285e6 −0.426757
\(616\) −2.28412e6 −0.242531
\(617\) −1.31376e7 −1.38932 −0.694662 0.719336i \(-0.744446\pi\)
−0.694662 + 0.719336i \(0.744446\pi\)
\(618\) −4.36448e6 −0.459686
\(619\) 1.12291e7 1.17793 0.588964 0.808159i \(-0.299536\pi\)
0.588964 + 0.808159i \(0.299536\pi\)
\(620\) 218132. 0.0227898
\(621\) −6.25514e6 −0.650891
\(622\) 1.34312e7 1.39200
\(623\) −104856. −0.0108236
\(624\) 391176. 0.0402171
\(625\) 390625. 0.0400000
\(626\) 1.04659e7 1.06743
\(627\) 2.58987e6 0.263093
\(628\) −2.80607e6 −0.283922
\(629\) −2.30310e7 −2.32106
\(630\) −1.24229e6 −0.124702
\(631\) 5.42646e6 0.542554 0.271277 0.962501i \(-0.412554\pi\)
0.271277 + 0.962501i \(0.412554\pi\)
\(632\) 3.13987e6 0.312694
\(633\) −7.71444e6 −0.765236
\(634\) −5.33657e6 −0.527277
\(635\) −2.82578e6 −0.278102
\(636\) 4.04055e6 0.396094
\(637\) 1.83730e6 0.179404
\(638\) 1.08631e7 1.05658
\(639\) 1.08401e7 1.05022
\(640\) 409600. 0.0395285
\(641\) 1.64890e7 1.58507 0.792536 0.609826i \(-0.208761\pi\)
0.792536 + 0.609826i \(0.208761\pi\)
\(642\) −1.05442e6 −0.100966
\(643\) 3.20604e6 0.305803 0.152901 0.988241i \(-0.451138\pi\)
0.152901 + 0.988241i \(0.451138\pi\)
\(644\) −2.10954e6 −0.200435
\(645\) 2.85313e6 0.270036
\(646\) 4.62301e6 0.435857
\(647\) −1.26054e7 −1.18385 −0.591923 0.805994i \(-0.701631\pi\)
−0.591923 + 0.805994i \(0.701631\pi\)
\(648\) −392708. −0.0367394
\(649\) −1.02910e7 −0.959062
\(650\) 422500. 0.0392232
\(651\) 379866. 0.0351300
\(652\) −1.01020e7 −0.930650
\(653\) 1.20010e7 1.10137 0.550685 0.834713i \(-0.314366\pi\)
0.550685 + 0.834713i \(0.314366\pi\)
\(654\) 1.29153e6 0.118076
\(655\) 8.96967e6 0.816909
\(656\) −4.53340e6 −0.411305
\(657\) −1.08655e7 −0.982059
\(658\) 4.92083e6 0.443071
\(659\) −5.28381e6 −0.473951 −0.236976 0.971516i \(-0.576156\pi\)
−0.236976 + 0.971516i \(0.576156\pi\)
\(660\) 1.67540e6 0.149713
\(661\) 866979. 0.0771801 0.0385900 0.999255i \(-0.487713\pi\)
0.0385900 + 0.999255i \(0.487713\pi\)
\(662\) 2.86414e6 0.254009
\(663\) 2.85612e6 0.252344
\(664\) −802726. −0.0706557
\(665\) 1.19093e6 0.104431
\(666\) −7.94743e6 −0.694291
\(667\) 1.00328e7 0.873192
\(668\) −4.17857e6 −0.362315
\(669\) 781581. 0.0675163
\(670\) 5.96467e6 0.513334
\(671\) 2.56752e6 0.220144
\(672\) 713297. 0.0609322
\(673\) −1.14870e7 −0.977620 −0.488810 0.872390i \(-0.662569\pi\)
−0.488810 + 0.872390i \(0.662569\pi\)
\(674\) 1.54949e7 1.31383
\(675\) 2.28441e6 0.192981
\(676\) 456976. 0.0384615
\(677\) −4.22852e6 −0.354582 −0.177291 0.984158i \(-0.556733\pi\)
−0.177291 + 0.984158i \(0.556733\pi\)
\(678\) −7.01884e6 −0.586396
\(679\) 4.47078e6 0.372142
\(680\) 2.99065e6 0.248024
\(681\) −5.62654e6 −0.464915
\(682\) 1.01049e6 0.0831903
\(683\) 7.70437e6 0.631954 0.315977 0.948767i \(-0.397668\pi\)
0.315977 + 0.948767i \(0.397668\pi\)
\(684\) 1.59529e6 0.130376
\(685\) −9.74704e6 −0.793681
\(686\) 8.52961e6 0.692021
\(687\) −5.26514e6 −0.425616
\(688\) 3.23129e6 0.260258
\(689\) 4.72022e6 0.378804
\(690\) 1.54735e6 0.123727
\(691\) −1.44971e6 −0.115501 −0.0577504 0.998331i \(-0.518393\pi\)
−0.0577504 + 0.998331i \(0.518393\pi\)
\(692\) −5.33191e6 −0.423270
\(693\) −5.75489e6 −0.455202
\(694\) −167705. −0.0132174
\(695\) 3.57734e6 0.280930
\(696\) −3.39240e6 −0.265451
\(697\) −3.31001e7 −2.58076
\(698\) −8.32545e6 −0.646798
\(699\) −7.82703e6 −0.605904
\(700\) 770416. 0.0594265
\(701\) −3.04812e6 −0.234281 −0.117140 0.993115i \(-0.537373\pi\)
−0.117140 + 0.993115i \(0.537373\pi\)
\(702\) 2.47082e6 0.189234
\(703\) 7.61883e6 0.581433
\(704\) 1.89746e6 0.144292
\(705\) −3.60943e6 −0.273505
\(706\) 1.67899e7 1.26776
\(707\) 9.17121e6 0.690046
\(708\) 3.21373e6 0.240950
\(709\) −7.81300e6 −0.583717 −0.291858 0.956462i \(-0.594274\pi\)
−0.291858 + 0.956462i \(0.594274\pi\)
\(710\) −6.72255e6 −0.500481
\(711\) 7.91098e6 0.586889
\(712\) 87105.9 0.00643943
\(713\) 933260. 0.0687510
\(714\) 5.20805e6 0.382323
\(715\) 1.95722e6 0.143178
\(716\) −9.71307e6 −0.708066
\(717\) 6.82443e6 0.495757
\(718\) −6.34104e6 −0.459039
\(719\) −1.82691e7 −1.31794 −0.658969 0.752170i \(-0.729007\pi\)
−0.658969 + 0.752170i \(0.729007\pi\)
\(720\) 1.03200e6 0.0741903
\(721\) −9.29722e6 −0.666062
\(722\) 8.37507e6 0.597923
\(723\) 1.91153e6 0.135999
\(724\) 2.32875e6 0.165111
\(725\) −3.66405e6 −0.258891
\(726\) 1.93662e6 0.136365
\(727\) 2.73815e6 0.192142 0.0960708 0.995374i \(-0.469372\pi\)
0.0960708 + 0.995374i \(0.469372\pi\)
\(728\) 833282. 0.0582725
\(729\) 7.04112e6 0.490708
\(730\) 6.73833e6 0.468000
\(731\) 2.35929e7 1.63301
\(732\) −801798. −0.0553079
\(733\) −1.19371e6 −0.0820614 −0.0410307 0.999158i \(-0.513064\pi\)
−0.0410307 + 0.999158i \(0.513064\pi\)
\(734\) 2.77381e6 0.190037
\(735\) −2.45741e6 −0.167788
\(736\) 1.75244e6 0.119247
\(737\) 2.76312e7 1.87384
\(738\) −1.14220e7 −0.771972
\(739\) −6.31824e6 −0.425584 −0.212792 0.977098i \(-0.568256\pi\)
−0.212792 + 0.977098i \(0.568256\pi\)
\(740\) 4.92865e6 0.330864
\(741\) −944825. −0.0632129
\(742\) 8.60718e6 0.573920
\(743\) −268541. −0.0178459 −0.00892296 0.999960i \(-0.502840\pi\)
−0.00892296 + 0.999960i \(0.502840\pi\)
\(744\) −315562. −0.0209003
\(745\) −1.43767e6 −0.0949008
\(746\) −1.49678e7 −0.984717
\(747\) −2.02249e6 −0.132612
\(748\) 1.38541e7 0.905367
\(749\) −2.24612e6 −0.146294
\(750\) −565100. −0.0366836
\(751\) −604825. −0.0391318 −0.0195659 0.999809i \(-0.506228\pi\)
−0.0195659 + 0.999809i \(0.506228\pi\)
\(752\) −4.08783e6 −0.263602
\(753\) −1.45301e7 −0.933857
\(754\) −3.96304e6 −0.253863
\(755\) 9.56971e6 0.610986
\(756\) 4.50547e6 0.286705
\(757\) 2.65907e7 1.68651 0.843256 0.537512i \(-0.180636\pi\)
0.843256 + 0.537512i \(0.180636\pi\)
\(758\) −130382. −0.00824221
\(759\) 7.16805e6 0.451644
\(760\) −989327. −0.0621306
\(761\) −2.32242e7 −1.45371 −0.726856 0.686789i \(-0.759019\pi\)
−0.726856 + 0.686789i \(0.759019\pi\)
\(762\) 4.08793e6 0.255044
\(763\) 2.75122e6 0.171086
\(764\) 268874. 0.0166654
\(765\) 7.53501e6 0.465511
\(766\) 1.99730e7 1.22991
\(767\) 3.75432e6 0.230432
\(768\) −592550. −0.0362512
\(769\) 1.05706e7 0.644590 0.322295 0.946639i \(-0.395546\pi\)
0.322295 + 0.946639i \(0.395546\pi\)
\(770\) 3.56894e6 0.216926
\(771\) 1.16855e7 0.707965
\(772\) 8.28508e6 0.500326
\(773\) 1.87286e6 0.112734 0.0563671 0.998410i \(-0.482048\pi\)
0.0563671 + 0.998410i \(0.482048\pi\)
\(774\) 8.14131e6 0.488475
\(775\) −340832. −0.0203838
\(776\) −3.71396e6 −0.221403
\(777\) 8.58299e6 0.510019
\(778\) 1.27912e7 0.757640
\(779\) 1.09497e7 0.646487
\(780\) −611212. −0.0359712
\(781\) −3.11421e7 −1.82692
\(782\) 1.27952e7 0.748222
\(783\) −2.14277e7 −1.24903
\(784\) −2.78313e6 −0.161712
\(785\) 4.38448e6 0.253948
\(786\) −1.29760e7 −0.749179
\(787\) −1.36103e6 −0.0783303 −0.0391651 0.999233i \(-0.512470\pi\)
−0.0391651 + 0.999233i \(0.512470\pi\)
\(788\) 3.90988e6 0.224310
\(789\) −7.12116e6 −0.407247
\(790\) −4.90605e6 −0.279682
\(791\) −1.49515e7 −0.849658
\(792\) 4.78070e6 0.270819
\(793\) −936670. −0.0528937
\(794\) 4.51912e6 0.254391
\(795\) −6.31336e6 −0.354277
\(796\) 3.81086e6 0.213177
\(797\) 1.70704e7 0.951917 0.475958 0.879468i \(-0.342101\pi\)
0.475958 + 0.879468i \(0.342101\pi\)
\(798\) −1.72286e6 −0.0957730
\(799\) −2.98468e7 −1.65398
\(800\) −640000. −0.0353553
\(801\) 219465. 0.0120861
\(802\) 2.24036e6 0.122993
\(803\) 3.12152e7 1.70835
\(804\) −8.62883e6 −0.470773
\(805\) 3.29616e6 0.179274
\(806\) −368644. −0.0199880
\(807\) 1.02315e7 0.553036
\(808\) −7.61871e6 −0.410538
\(809\) −2.60220e7 −1.39788 −0.698938 0.715182i \(-0.746344\pi\)
−0.698938 + 0.715182i \(0.746344\pi\)
\(810\) 613607. 0.0328608
\(811\) −2.10104e7 −1.12171 −0.560857 0.827913i \(-0.689528\pi\)
−0.560857 + 0.827913i \(0.689528\pi\)
\(812\) −7.22648e6 −0.384624
\(813\) −1.36158e7 −0.722464
\(814\) 2.28319e7 1.20776
\(815\) 1.57843e7 0.832399
\(816\) −4.32643e6 −0.227460
\(817\) −7.80469e6 −0.409073
\(818\) −1.98150e7 −1.03541
\(819\) 2.09947e6 0.109371
\(820\) 7.08343e6 0.367883
\(821\) 8.52765e6 0.441542 0.220771 0.975326i \(-0.429143\pi\)
0.220771 + 0.975326i \(0.429143\pi\)
\(822\) 1.41006e7 0.727877
\(823\) 1.68012e7 0.864650 0.432325 0.901718i \(-0.357693\pi\)
0.432325 + 0.901718i \(0.357693\pi\)
\(824\) 7.72339e6 0.396269
\(825\) −2.61781e6 −0.133907
\(826\) 6.84590e6 0.349124
\(827\) 2.18393e7 1.11039 0.555195 0.831720i \(-0.312644\pi\)
0.555195 + 0.831720i \(0.312644\pi\)
\(828\) 4.41531e6 0.223813
\(829\) 1.58155e7 0.799277 0.399639 0.916673i \(-0.369136\pi\)
0.399639 + 0.916673i \(0.369136\pi\)
\(830\) 1.25426e6 0.0631964
\(831\) −7.13819e6 −0.358579
\(832\) −692224. −0.0346688
\(833\) −2.03207e7 −1.01467
\(834\) −5.17518e6 −0.257638
\(835\) 6.52902e6 0.324065
\(836\) −4.58304e6 −0.226797
\(837\) −1.99322e6 −0.0983425
\(838\) −1.50441e7 −0.740041
\(839\) −2.88093e7 −1.41295 −0.706477 0.707736i \(-0.749717\pi\)
−0.706477 + 0.707736i \(0.749717\pi\)
\(840\) −1.11453e6 −0.0544994
\(841\) 1.38576e7 0.675612
\(842\) −5.90886e6 −0.287226
\(843\) 7.37322e6 0.357346
\(844\) 1.36515e7 0.659665
\(845\) −714025. −0.0344010
\(846\) −1.02994e7 −0.494750
\(847\) 4.12539e6 0.197586
\(848\) −7.15016e6 −0.341449
\(849\) 2.95411e6 0.140656
\(850\) −4.67289e6 −0.221839
\(851\) 2.10868e7 0.998129
\(852\) 9.72521e6 0.458987
\(853\) 1.92928e7 0.907867 0.453933 0.891036i \(-0.350020\pi\)
0.453933 + 0.891036i \(0.350020\pi\)
\(854\) −1.70799e6 −0.0801384
\(855\) −2.49263e6 −0.116612
\(856\) 1.86589e6 0.0870367
\(857\) 3.80802e7 1.77112 0.885559 0.464528i \(-0.153776\pi\)
0.885559 + 0.464528i \(0.153776\pi\)
\(858\) −2.83143e6 −0.131307
\(859\) −2.73638e6 −0.126530 −0.0632651 0.997997i \(-0.520151\pi\)
−0.0632651 + 0.997997i \(0.520151\pi\)
\(860\) −5.04889e6 −0.232782
\(861\) 1.23354e7 0.567082
\(862\) −2.80237e7 −1.28457
\(863\) 1.00854e7 0.460962 0.230481 0.973077i \(-0.425970\pi\)
0.230481 + 0.973077i \(0.425970\pi\)
\(864\) −3.74278e6 −0.170573
\(865\) 8.33112e6 0.378585
\(866\) 3.08790e6 0.139917
\(867\) −1.87512e7 −0.847190
\(868\) −672211. −0.0302835
\(869\) −2.27272e7 −1.02093
\(870\) 5.30062e6 0.237426
\(871\) −1.00803e7 −0.450223
\(872\) −2.28550e6 −0.101786
\(873\) −9.35742e6 −0.415548
\(874\) −4.23275e6 −0.187432
\(875\) −1.20377e6 −0.0531527
\(876\) −9.74805e6 −0.429198
\(877\) 1.31876e7 0.578984 0.289492 0.957180i \(-0.406514\pi\)
0.289492 + 0.957180i \(0.406514\pi\)
\(878\) 1.51671e7 0.663996
\(879\) −1.19777e7 −0.522879
\(880\) −2.96479e6 −0.129059
\(881\) −1.21216e7 −0.526163 −0.263082 0.964774i \(-0.584739\pi\)
−0.263082 + 0.964774i \(0.584739\pi\)
\(882\) −7.01216e6 −0.303515
\(883\) −1.70890e7 −0.737591 −0.368795 0.929511i \(-0.620230\pi\)
−0.368795 + 0.929511i \(0.620230\pi\)
\(884\) −5.05419e6 −0.217531
\(885\) −5.02146e6 −0.215512
\(886\) −613452. −0.0262541
\(887\) 3.63465e6 0.155115 0.0775574 0.996988i \(-0.475288\pi\)
0.0775574 + 0.996988i \(0.475288\pi\)
\(888\) −7.13006e6 −0.303432
\(889\) 8.70810e6 0.369547
\(890\) −136103. −0.00575960
\(891\) 2.84252e6 0.119952
\(892\) −1.38308e6 −0.0582018
\(893\) 9.87354e6 0.414328
\(894\) 2.07982e6 0.0870325
\(895\) 1.51767e7 0.633314
\(896\) −1.26225e6 −0.0525261
\(897\) −2.61501e6 −0.108516
\(898\) −2.71921e7 −1.12526
\(899\) 3.19700e6 0.131930
\(900\) −1.61250e6 −0.0663578
\(901\) −5.22060e7 −2.14244
\(902\) 3.28138e7 1.34289
\(903\) −8.79237e6 −0.358828
\(904\) 1.24205e7 0.505498
\(905\) −3.63867e6 −0.147680
\(906\) −1.38441e7 −0.560329
\(907\) −2.76573e6 −0.111633 −0.0558163 0.998441i \(-0.517776\pi\)
−0.0558163 + 0.998441i \(0.517776\pi\)
\(908\) 9.95672e6 0.400776
\(909\) −1.91955e7 −0.770532
\(910\) −1.30200e6 −0.0521205
\(911\) 3.42270e7 1.36639 0.683193 0.730238i \(-0.260591\pi\)
0.683193 + 0.730238i \(0.260591\pi\)
\(912\) 1.43121e6 0.0569794
\(913\) 5.81033e6 0.230687
\(914\) −2.12308e7 −0.840622
\(915\) 1.25281e6 0.0494689
\(916\) 9.31719e6 0.366899
\(917\) −2.76415e7 −1.08552
\(918\) −2.73275e7 −1.07027
\(919\) −1.47495e7 −0.576086 −0.288043 0.957618i \(-0.593005\pi\)
−0.288043 + 0.957618i \(0.593005\pi\)
\(920\) −2.73818e6 −0.106658
\(921\) −4.97664e6 −0.193324
\(922\) 1.16930e7 0.453001
\(923\) 1.13611e7 0.438951
\(924\) −5.16302e6 −0.198941
\(925\) −7.70102e6 −0.295933
\(926\) −2.27012e7 −0.870003
\(927\) 1.94593e7 0.743750
\(928\) 6.00318e6 0.228829
\(929\) 2.35885e7 0.896729 0.448365 0.893851i \(-0.352007\pi\)
0.448365 + 0.893851i \(0.352007\pi\)
\(930\) 493066. 0.0186938
\(931\) 6.72222e6 0.254178
\(932\) 1.38507e7 0.522315
\(933\) 3.03598e7 1.14181
\(934\) 7.90690e6 0.296578
\(935\) −2.16470e7 −0.809785
\(936\) −1.74408e6 −0.0650692
\(937\) 5.87866e6 0.218741 0.109370 0.994001i \(-0.465117\pi\)
0.109370 + 0.994001i \(0.465117\pi\)
\(938\) −1.83811e7 −0.682126
\(939\) 2.36570e7 0.875581
\(940\) 6.38724e6 0.235773
\(941\) 1.78458e7 0.656996 0.328498 0.944505i \(-0.393458\pi\)
0.328498 + 0.944505i \(0.393458\pi\)
\(942\) −6.34284e6 −0.232893
\(943\) 3.03058e7 1.10981
\(944\) −5.68702e6 −0.207709
\(945\) −7.03979e6 −0.256437
\(946\) −2.33889e7 −0.849731
\(947\) −8.73411e6 −0.316478 −0.158239 0.987401i \(-0.550582\pi\)
−0.158239 + 0.987401i \(0.550582\pi\)
\(948\) 7.09736e6 0.256493
\(949\) −1.13878e7 −0.410463
\(950\) 1.54582e6 0.0555713
\(951\) −1.20628e7 −0.432510
\(952\) −9.21617e6 −0.329578
\(953\) −2.03640e6 −0.0726323 −0.0363162 0.999340i \(-0.511562\pi\)
−0.0363162 + 0.999340i \(0.511562\pi\)
\(954\) −1.80150e7 −0.640860
\(955\) −420115. −0.0149060
\(956\) −1.20765e7 −0.427363
\(957\) 2.45550e7 0.866683
\(958\) −3.00952e7 −1.05946
\(959\) 3.00371e7 1.05466
\(960\) 925859. 0.0324240
\(961\) −2.83318e7 −0.989612
\(962\) −8.32942e6 −0.290187
\(963\) 4.70117e6 0.163358
\(964\) −3.38264e6 −0.117237
\(965\) −1.29454e7 −0.447505
\(966\) −4.76840e6 −0.164411
\(967\) −2.25922e7 −0.776948 −0.388474 0.921460i \(-0.626998\pi\)
−0.388474 + 0.921460i \(0.626998\pi\)
\(968\) −3.42704e6 −0.117552
\(969\) 1.04498e7 0.357520
\(970\) 5.80307e6 0.198029
\(971\) 4.94414e7 1.68284 0.841420 0.540382i \(-0.181720\pi\)
0.841420 + 0.540382i \(0.181720\pi\)
\(972\) −1.50986e7 −0.512589
\(973\) −1.10242e7 −0.373305
\(974\) 1.80521e7 0.609720
\(975\) 955018. 0.0321736
\(976\) 1.41886e6 0.0476777
\(977\) 3.59351e7 1.20443 0.602217 0.798333i \(-0.294284\pi\)
0.602217 + 0.798333i \(0.294284\pi\)
\(978\) −2.28345e7 −0.763385
\(979\) −630494. −0.0210244
\(980\) 4.34864e6 0.144640
\(981\) −5.75836e6 −0.191041
\(982\) −5.95828e6 −0.197171
\(983\) −3.51635e7 −1.16067 −0.580335 0.814378i \(-0.697078\pi\)
−0.580335 + 0.814378i \(0.697078\pi\)
\(984\) −1.02473e7 −0.337381
\(985\) −6.10919e6 −0.200629
\(986\) 4.38316e7 1.43580
\(987\) 1.11230e7 0.363438
\(988\) 1.67196e6 0.0544922
\(989\) −2.16012e7 −0.702243
\(990\) −7.46985e6 −0.242228
\(991\) −3.90004e7 −1.26149 −0.630747 0.775989i \(-0.717251\pi\)
−0.630747 + 0.775989i \(0.717251\pi\)
\(992\) 558419. 0.0180169
\(993\) 6.47409e6 0.208356
\(994\) 2.07166e7 0.665048
\(995\) −5.95446e6 −0.190671
\(996\) −1.81448e6 −0.0579568
\(997\) −868537. −0.0276726 −0.0138363 0.999904i \(-0.504404\pi\)
−0.0138363 + 0.999904i \(0.504404\pi\)
\(998\) 1.30994e7 0.416317
\(999\) −4.50363e7 −1.42774
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.6.a.c.1.1 2
4.3 odd 2 1040.6.a.c.1.2 2
5.2 odd 4 650.6.b.f.599.2 4
5.3 odd 4 650.6.b.f.599.3 4
5.4 even 2 650.6.a.f.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.c.1.1 2 1.1 even 1 trivial
650.6.a.f.1.2 2 5.4 even 2
650.6.b.f.599.2 4 5.2 odd 4
650.6.b.f.599.3 4 5.3 odd 4
1040.6.a.c.1.2 2 4.3 odd 2