Properties

Label 1300.2.y.a.101.1
Level $1300$
Weight $2$
Character 1300.101
Analytic conductor $10.381$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1300,2,Mod(101,1300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1300, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1300.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1300 = 2^{2} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1300.y (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3805522628\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1300.101
Dual form 1300.2.y.a.901.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{3} +(1.50000 + 0.866025i) q^{7} +(1.00000 - 1.73205i) q^{9} +(-4.50000 + 2.59808i) q^{11} +(1.00000 + 3.46410i) q^{13} +(1.50000 - 2.59808i) q^{17} +(4.50000 + 2.59808i) q^{19} -1.73205i q^{21} +(1.50000 + 2.59808i) q^{23} -5.00000 q^{27} +(4.50000 + 7.79423i) q^{29} -3.46410i q^{31} +(4.50000 + 2.59808i) q^{33} +(4.50000 - 2.59808i) q^{37} +(2.50000 - 2.59808i) q^{39} +(-4.50000 + 2.59808i) q^{41} +(2.50000 - 4.33013i) q^{43} +10.3923i q^{47} +(-2.00000 - 3.46410i) q^{49} -3.00000 q^{51} +6.00000 q^{53} -5.19615i q^{57} +(4.50000 + 2.59808i) q^{59} +(2.50000 - 4.33013i) q^{61} +(3.00000 - 1.73205i) q^{63} +(-1.50000 + 0.866025i) q^{67} +(1.50000 - 2.59808i) q^{69} +(4.50000 + 2.59808i) q^{71} -6.92820i q^{73} -9.00000 q^{77} +4.00000 q^{79} +(-0.500000 - 0.866025i) q^{81} +10.3923i q^{83} +(4.50000 - 7.79423i) q^{87} +(13.5000 - 7.79423i) q^{89} +(-1.50000 + 6.06218i) q^{91} +(-3.00000 + 1.73205i) q^{93} +(10.5000 + 6.06218i) q^{97} +10.3923i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 3 q^{7} + 2 q^{9} - 9 q^{11} + 2 q^{13} + 3 q^{17} + 9 q^{19} + 3 q^{23} - 10 q^{27} + 9 q^{29} + 9 q^{33} + 9 q^{37} + 5 q^{39} - 9 q^{41} + 5 q^{43} - 4 q^{49} - 6 q^{51} + 12 q^{53} + 9 q^{59}+ \cdots + 21 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1300\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(651\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 0.866025i −0.288675 0.500000i 0.684819 0.728714i \(-0.259881\pi\)
−0.973494 + 0.228714i \(0.926548\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.50000 + 0.866025i 0.566947 + 0.327327i 0.755929 0.654654i \(-0.227186\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 0 0
\(11\) −4.50000 + 2.59808i −1.35680 + 0.783349i −0.989191 0.146631i \(-0.953157\pi\)
−0.367610 + 0.929980i \(0.619824\pi\)
\(12\) 0 0
\(13\) 1.00000 + 3.46410i 0.277350 + 0.960769i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 0 0
\(19\) 4.50000 + 2.59808i 1.03237 + 0.596040i 0.917663 0.397360i \(-0.130073\pi\)
0.114708 + 0.993399i \(0.463407\pi\)
\(20\) 0 0
\(21\) 1.73205i 0.377964i
\(22\) 0 0
\(23\) 1.50000 + 2.59808i 0.312772 + 0.541736i 0.978961 0.204046i \(-0.0654092\pi\)
−0.666190 + 0.745782i \(0.732076\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) 4.50000 + 7.79423i 0.835629 + 1.44735i 0.893517 + 0.449029i \(0.148230\pi\)
−0.0578882 + 0.998323i \(0.518437\pi\)
\(30\) 0 0
\(31\) 3.46410i 0.622171i −0.950382 0.311086i \(-0.899307\pi\)
0.950382 0.311086i \(-0.100693\pi\)
\(32\) 0 0
\(33\) 4.50000 + 2.59808i 0.783349 + 0.452267i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.50000 2.59808i 0.739795 0.427121i −0.0821995 0.996616i \(-0.526194\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) 2.50000 2.59808i 0.400320 0.416025i
\(40\) 0 0
\(41\) −4.50000 + 2.59808i −0.702782 + 0.405751i −0.808383 0.588657i \(-0.799657\pi\)
0.105601 + 0.994409i \(0.466323\pi\)
\(42\) 0 0
\(43\) 2.50000 4.33013i 0.381246 0.660338i −0.609994 0.792406i \(-0.708828\pi\)
0.991241 + 0.132068i \(0.0421616\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.3923i 1.51587i 0.652328 + 0.757937i \(0.273792\pi\)
−0.652328 + 0.757937i \(0.726208\pi\)
\(48\) 0 0
\(49\) −2.00000 3.46410i −0.285714 0.494872i
\(50\) 0 0
\(51\) −3.00000 −0.420084
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5.19615i 0.688247i
\(58\) 0 0
\(59\) 4.50000 + 2.59808i 0.585850 + 0.338241i 0.763455 0.645861i \(-0.223502\pi\)
−0.177605 + 0.984102i \(0.556835\pi\)
\(60\) 0 0
\(61\) 2.50000 4.33013i 0.320092 0.554416i −0.660415 0.750901i \(-0.729619\pi\)
0.980507 + 0.196485i \(0.0629528\pi\)
\(62\) 0 0
\(63\) 3.00000 1.73205i 0.377964 0.218218i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.50000 + 0.866025i −0.183254 + 0.105802i −0.588821 0.808264i \(-0.700408\pi\)
0.405567 + 0.914066i \(0.367074\pi\)
\(68\) 0 0
\(69\) 1.50000 2.59808i 0.180579 0.312772i
\(70\) 0 0
\(71\) 4.50000 + 2.59808i 0.534052 + 0.308335i 0.742665 0.669663i \(-0.233562\pi\)
−0.208613 + 0.977998i \(0.566895\pi\)
\(72\) 0 0
\(73\) 6.92820i 0.810885i −0.914121 0.405442i \(-0.867117\pi\)
0.914121 0.405442i \(-0.132883\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −9.00000 −1.02565
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 10.3923i 1.14070i 0.821401 + 0.570352i \(0.193193\pi\)
−0.821401 + 0.570352i \(0.806807\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 4.50000 7.79423i 0.482451 0.835629i
\(88\) 0 0
\(89\) 13.5000 7.79423i 1.43100 0.826187i 0.433800 0.901009i \(-0.357172\pi\)
0.997197 + 0.0748225i \(0.0238390\pi\)
\(90\) 0 0
\(91\) −1.50000 + 6.06218i −0.157243 + 0.635489i
\(92\) 0 0
\(93\) −3.00000 + 1.73205i −0.311086 + 0.179605i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.5000 + 6.06218i 1.06611 + 0.615521i 0.927117 0.374772i \(-0.122279\pi\)
0.138996 + 0.990293i \(0.455612\pi\)
\(98\) 0 0
\(99\) 10.3923i 1.04447i
\(100\) 0 0
\(101\) −1.50000 2.59808i −0.149256 0.258518i 0.781697 0.623658i \(-0.214354\pi\)
−0.930953 + 0.365140i \(0.881021\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.50000 + 12.9904i 0.725052 + 1.25583i 0.958952 + 0.283567i \(0.0915178\pi\)
−0.233900 + 0.972261i \(0.575149\pi\)
\(108\) 0 0
\(109\) 13.8564i 1.32720i 0.748086 + 0.663602i \(0.230973\pi\)
−0.748086 + 0.663602i \(0.769027\pi\)
\(110\) 0 0
\(111\) −4.50000 2.59808i −0.427121 0.246598i
\(112\) 0 0
\(113\) 1.50000 2.59808i 0.141108 0.244406i −0.786806 0.617200i \(-0.788267\pi\)
0.927914 + 0.372794i \(0.121600\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 7.00000 + 1.73205i 0.647150 + 0.160128i
\(118\) 0 0
\(119\) 4.50000 2.59808i 0.412514 0.238165i
\(120\) 0 0
\(121\) 8.00000 13.8564i 0.727273 1.25967i
\(122\) 0 0
\(123\) 4.50000 + 2.59808i 0.405751 + 0.234261i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.50000 14.7224i −0.754253 1.30640i −0.945745 0.324910i \(-0.894666\pi\)
0.191492 0.981494i \(-0.438667\pi\)
\(128\) 0 0
\(129\) −5.00000 −0.440225
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 4.50000 + 7.79423i 0.390199 + 0.675845i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.5000 7.79423i −1.15338 0.665906i −0.203674 0.979039i \(-0.565288\pi\)
−0.949709 + 0.313133i \(0.898621\pi\)
\(138\) 0 0
\(139\) 3.50000 6.06218i 0.296866 0.514187i −0.678551 0.734553i \(-0.737392\pi\)
0.975417 + 0.220366i \(0.0707252\pi\)
\(140\) 0 0
\(141\) 9.00000 5.19615i 0.757937 0.437595i
\(142\) 0 0
\(143\) −13.5000 12.9904i −1.12893 1.08631i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −2.00000 + 3.46410i −0.164957 + 0.285714i
\(148\) 0 0
\(149\) −4.50000 2.59808i −0.368654 0.212843i 0.304216 0.952603i \(-0.401606\pi\)
−0.672870 + 0.739760i \(0.734939\pi\)
\(150\) 0 0
\(151\) 10.3923i 0.845714i 0.906196 + 0.422857i \(0.138973\pi\)
−0.906196 + 0.422857i \(0.861027\pi\)
\(152\) 0 0
\(153\) −3.00000 5.19615i −0.242536 0.420084i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) −3.00000 5.19615i −0.237915 0.412082i
\(160\) 0 0
\(161\) 5.19615i 0.409514i
\(162\) 0 0
\(163\) −10.5000 6.06218i −0.822423 0.474826i 0.0288280 0.999584i \(-0.490822\pi\)
−0.851251 + 0.524758i \(0.824156\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −13.5000 + 7.79423i −1.04466 + 0.603136i −0.921150 0.389208i \(-0.872749\pi\)
−0.123511 + 0.992343i \(0.539416\pi\)
\(168\) 0 0
\(169\) −11.0000 + 6.92820i −0.846154 + 0.532939i
\(170\) 0 0
\(171\) 9.00000 5.19615i 0.688247 0.397360i
\(172\) 0 0
\(173\) 1.50000 2.59808i 0.114043 0.197528i −0.803354 0.595502i \(-0.796953\pi\)
0.917397 + 0.397974i \(0.130287\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.19615i 0.390567i
\(178\) 0 0
\(179\) −7.50000 12.9904i −0.560576 0.970947i −0.997446 0.0714220i \(-0.977246\pi\)
0.436870 0.899525i \(-0.356087\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) −5.00000 −0.369611
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 15.5885i 1.13994i
\(188\) 0 0
\(189\) −7.50000 4.33013i −0.545545 0.314970i
\(190\) 0 0
\(191\) −10.5000 + 18.1865i −0.759753 + 1.31593i 0.183223 + 0.983071i \(0.441347\pi\)
−0.942976 + 0.332860i \(0.891986\pi\)
\(192\) 0 0
\(193\) −7.50000 + 4.33013i −0.539862 + 0.311689i −0.745023 0.667039i \(-0.767561\pi\)
0.205161 + 0.978728i \(0.434228\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 22.5000 12.9904i 1.60306 0.925526i 0.612188 0.790712i \(-0.290290\pi\)
0.990871 0.134814i \(-0.0430436\pi\)
\(198\) 0 0
\(199\) −0.500000 + 0.866025i −0.0354441 + 0.0613909i −0.883203 0.468990i \(-0.844618\pi\)
0.847759 + 0.530381i \(0.177951\pi\)
\(200\) 0 0
\(201\) 1.50000 + 0.866025i 0.105802 + 0.0610847i
\(202\) 0 0
\(203\) 15.5885i 1.09410i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) −27.0000 −1.86763
\(210\) 0 0
\(211\) −3.50000 6.06218i −0.240950 0.417338i 0.720035 0.693938i \(-0.244126\pi\)
−0.960985 + 0.276600i \(0.910792\pi\)
\(212\) 0 0
\(213\) 5.19615i 0.356034i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3.00000 5.19615i 0.203653 0.352738i
\(218\) 0 0
\(219\) −6.00000 + 3.46410i −0.405442 + 0.234082i
\(220\) 0 0
\(221\) 10.5000 + 2.59808i 0.706306 + 0.174766i
\(222\) 0 0
\(223\) −13.5000 + 7.79423i −0.904027 + 0.521940i −0.878504 0.477734i \(-0.841458\pi\)
−0.0255224 + 0.999674i \(0.508125\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.50000 2.59808i −0.298675 0.172440i 0.343172 0.939272i \(-0.388499\pi\)
−0.641848 + 0.766832i \(0.721832\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 4.50000 + 7.79423i 0.296078 + 0.512823i
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2.00000 3.46410i −0.129914 0.225018i
\(238\) 0 0
\(239\) 10.3923i 0.672222i 0.941822 + 0.336111i \(0.109112\pi\)
−0.941822 + 0.336111i \(0.890888\pi\)
\(240\) 0 0
\(241\) −4.50000 2.59808i −0.289870 0.167357i 0.348013 0.937490i \(-0.386857\pi\)
−0.637883 + 0.770133i \(0.720190\pi\)
\(242\) 0 0
\(243\) −8.00000 + 13.8564i −0.513200 + 0.888889i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −4.50000 + 18.1865i −0.286328 + 1.15718i
\(248\) 0 0
\(249\) 9.00000 5.19615i 0.570352 0.329293i
\(250\) 0 0
\(251\) −10.5000 + 18.1865i −0.662754 + 1.14792i 0.317135 + 0.948380i \(0.397279\pi\)
−0.979889 + 0.199543i \(0.936054\pi\)
\(252\) 0 0
\(253\) −13.5000 7.79423i −0.848738 0.490019i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.50000 + 2.59808i 0.0935674 + 0.162064i 0.909010 0.416775i \(-0.136840\pi\)
−0.815442 + 0.578838i \(0.803506\pi\)
\(258\) 0 0
\(259\) 9.00000 0.559233
\(260\) 0 0
\(261\) 18.0000 1.11417
\(262\) 0 0
\(263\) −10.5000 18.1865i −0.647458 1.12143i −0.983728 0.179664i \(-0.942499\pi\)
0.336270 0.941766i \(-0.390834\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −13.5000 7.79423i −0.826187 0.476999i
\(268\) 0 0
\(269\) 4.50000 7.79423i 0.274370 0.475223i −0.695606 0.718423i \(-0.744864\pi\)
0.969976 + 0.243201i \(0.0781974\pi\)
\(270\) 0 0
\(271\) −10.5000 + 6.06218i −0.637830 + 0.368251i −0.783778 0.621041i \(-0.786710\pi\)
0.145948 + 0.989292i \(0.453377\pi\)
\(272\) 0 0
\(273\) 6.00000 1.73205i 0.363137 0.104828i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.500000 + 0.866025i −0.0300421 + 0.0520344i −0.880656 0.473757i \(-0.842897\pi\)
0.850613 + 0.525792i \(0.176231\pi\)
\(278\) 0 0
\(279\) −6.00000 3.46410i −0.359211 0.207390i
\(280\) 0 0
\(281\) 20.7846i 1.23991i −0.784639 0.619953i \(-0.787152\pi\)
0.784639 0.619953i \(-0.212848\pi\)
\(282\) 0 0
\(283\) 3.50000 + 6.06218i 0.208053 + 0.360359i 0.951101 0.308879i \(-0.0999539\pi\)
−0.743048 + 0.669238i \(0.766621\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.00000 −0.531253
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 0 0
\(291\) 12.1244i 0.710742i
\(292\) 0 0
\(293\) 4.50000 + 2.59808i 0.262893 + 0.151781i 0.625653 0.780101i \(-0.284832\pi\)
−0.362761 + 0.931882i \(0.618166\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 22.5000 12.9904i 1.30558 0.753778i
\(298\) 0 0
\(299\) −7.50000 + 7.79423i −0.433736 + 0.450752i
\(300\) 0 0
\(301\) 7.50000 4.33013i 0.432293 0.249584i
\(302\) 0 0
\(303\) −1.50000 + 2.59808i −0.0861727 + 0.149256i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 17.3205i 0.988534i −0.869310 0.494267i \(-0.835437\pi\)
0.869310 0.494267i \(-0.164563\pi\)
\(308\) 0 0
\(309\) −8.00000 13.8564i −0.455104 0.788263i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.7846i 1.16738i 0.811977 + 0.583690i \(0.198392\pi\)
−0.811977 + 0.583690i \(0.801608\pi\)
\(318\) 0 0
\(319\) −40.5000 23.3827i −2.26756 1.30918i
\(320\) 0 0
\(321\) 7.50000 12.9904i 0.418609 0.725052i
\(322\) 0 0
\(323\) 13.5000 7.79423i 0.751160 0.433682i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 12.0000 6.92820i 0.663602 0.383131i
\(328\) 0 0
\(329\) −9.00000 + 15.5885i −0.496186 + 0.859419i
\(330\) 0 0
\(331\) 10.5000 + 6.06218i 0.577132 + 0.333207i 0.759993 0.649931i \(-0.225202\pi\)
−0.182861 + 0.983139i \(0.558536\pi\)
\(332\) 0 0
\(333\) 10.3923i 0.569495i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) −3.00000 −0.162938
\(340\) 0 0
\(341\) 9.00000 + 15.5885i 0.487377 + 0.844162i
\(342\) 0 0
\(343\) 19.0526i 1.02874i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.50000 + 2.59808i −0.0805242 + 0.139472i −0.903475 0.428640i \(-0.858993\pi\)
0.822951 + 0.568112i \(0.192326\pi\)
\(348\) 0 0
\(349\) −16.5000 + 9.52628i −0.883225 + 0.509930i −0.871720 0.490004i \(-0.836995\pi\)
−0.0115044 + 0.999934i \(0.503662\pi\)
\(350\) 0 0
\(351\) −5.00000 17.3205i −0.266880 0.924500i
\(352\) 0 0
\(353\) −13.5000 + 7.79423i −0.718532 + 0.414845i −0.814212 0.580567i \(-0.802831\pi\)
0.0956798 + 0.995412i \(0.469498\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −4.50000 2.59808i −0.238165 0.137505i
\(358\) 0 0
\(359\) 31.1769i 1.64545i −0.568436 0.822727i \(-0.692451\pi\)
0.568436 0.822727i \(-0.307549\pi\)
\(360\) 0 0
\(361\) 4.00000 + 6.92820i 0.210526 + 0.364642i
\(362\) 0 0
\(363\) −16.0000 −0.839782
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −6.50000 11.2583i −0.339297 0.587680i 0.645003 0.764180i \(-0.276856\pi\)
−0.984301 + 0.176500i \(0.943523\pi\)
\(368\) 0 0
\(369\) 10.3923i 0.541002i
\(370\) 0 0
\(371\) 9.00000 + 5.19615i 0.467257 + 0.269771i
\(372\) 0 0
\(373\) 3.50000 6.06218i 0.181223 0.313888i −0.761074 0.648665i \(-0.775328\pi\)
0.942297 + 0.334777i \(0.108661\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −22.5000 + 23.3827i −1.15881 + 1.20427i
\(378\) 0 0
\(379\) 7.50000 4.33013i 0.385249 0.222424i −0.294850 0.955543i \(-0.595270\pi\)
0.680100 + 0.733120i \(0.261937\pi\)
\(380\) 0 0
\(381\) −8.50000 + 14.7224i −0.435468 + 0.754253i
\(382\) 0 0
\(383\) −22.5000 12.9904i −1.14970 0.663777i −0.200883 0.979615i \(-0.564381\pi\)
−0.948813 + 0.315838i \(0.897714\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.00000 8.66025i −0.254164 0.440225i
\(388\) 0 0
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 9.00000 0.455150
\(392\) 0 0
\(393\) 6.00000 + 10.3923i 0.302660 + 0.524222i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.50000 0.866025i −0.0752828 0.0434646i 0.461886 0.886939i \(-0.347173\pi\)
−0.537169 + 0.843475i \(0.680506\pi\)
\(398\) 0 0
\(399\) 4.50000 7.79423i 0.225282 0.390199i
\(400\) 0 0
\(401\) −4.50000 + 2.59808i −0.224719 + 0.129742i −0.608134 0.793835i \(-0.708081\pi\)
0.383414 + 0.923576i \(0.374748\pi\)
\(402\) 0 0
\(403\) 12.0000 3.46410i 0.597763 0.172559i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −13.5000 + 23.3827i −0.669170 + 1.15904i
\(408\) 0 0
\(409\) 7.50000 + 4.33013i 0.370851 + 0.214111i 0.673830 0.738886i \(-0.264648\pi\)
−0.302979 + 0.952997i \(0.597981\pi\)
\(410\) 0 0
\(411\) 15.5885i 0.768922i
\(412\) 0 0
\(413\) 4.50000 + 7.79423i 0.221431 + 0.383529i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −7.00000 −0.342791
\(418\) 0 0
\(419\) 10.5000 + 18.1865i 0.512959 + 0.888470i 0.999887 + 0.0150285i \(0.00478389\pi\)
−0.486928 + 0.873442i \(0.661883\pi\)
\(420\) 0 0
\(421\) 13.8564i 0.675320i −0.941268 0.337660i \(-0.890365\pi\)
0.941268 0.337660i \(-0.109635\pi\)
\(422\) 0 0
\(423\) 18.0000 + 10.3923i 0.875190 + 0.505291i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 7.50000 4.33013i 0.362950 0.209550i
\(428\) 0 0
\(429\) −4.50000 + 18.1865i −0.217262 + 0.878054i
\(430\) 0 0
\(431\) −4.50000 + 2.59808i −0.216757 + 0.125145i −0.604448 0.796645i \(-0.706606\pi\)
0.387691 + 0.921790i \(0.373273\pi\)
\(432\) 0 0
\(433\) 9.50000 16.4545i 0.456541 0.790752i −0.542234 0.840227i \(-0.682422\pi\)
0.998775 + 0.0494752i \(0.0157549\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.5885i 0.745697i
\(438\) 0 0
\(439\) −11.5000 19.9186i −0.548865 0.950662i −0.998353 0.0573756i \(-0.981727\pi\)
0.449488 0.893287i \(-0.351607\pi\)
\(440\) 0 0
\(441\) −8.00000 −0.380952
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 5.19615i 0.245770i
\(448\) 0 0
\(449\) −4.50000 2.59808i −0.212368 0.122611i 0.390043 0.920796i \(-0.372460\pi\)
−0.602411 + 0.798186i \(0.705793\pi\)
\(450\) 0 0
\(451\) 13.5000 23.3827i 0.635690 1.10105i
\(452\) 0 0
\(453\) 9.00000 5.19615i 0.422857 0.244137i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 34.5000 19.9186i 1.61384 0.931752i 0.625373 0.780326i \(-0.284947\pi\)
0.988469 0.151426i \(-0.0483867\pi\)
\(458\) 0 0
\(459\) −7.50000 + 12.9904i −0.350070 + 0.606339i
\(460\) 0 0
\(461\) −22.5000 12.9904i −1.04793 0.605022i −0.125860 0.992048i \(-0.540169\pi\)
−0.922069 + 0.387026i \(0.873503\pi\)
\(462\) 0 0
\(463\) 17.3205i 0.804952i 0.915430 + 0.402476i \(0.131850\pi\)
−0.915430 + 0.402476i \(0.868150\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −24.0000 −1.11059 −0.555294 0.831654i \(-0.687394\pi\)
−0.555294 + 0.831654i \(0.687394\pi\)
\(468\) 0 0
\(469\) −3.00000 −0.138527
\(470\) 0 0
\(471\) 1.00000 + 1.73205i 0.0460776 + 0.0798087i
\(472\) 0 0
\(473\) 25.9808i 1.19460i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000 10.3923i 0.274721 0.475831i
\(478\) 0 0
\(479\) 31.5000 18.1865i 1.43927 0.830964i 0.441473 0.897275i \(-0.354456\pi\)
0.997799 + 0.0663107i \(0.0211229\pi\)
\(480\) 0 0
\(481\) 13.5000 + 12.9904i 0.615547 + 0.592310i
\(482\) 0 0
\(483\) 4.50000 2.59808i 0.204757 0.118217i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 31.5000 + 18.1865i 1.42740 + 0.824110i 0.996915 0.0784867i \(-0.0250088\pi\)
0.430486 + 0.902597i \(0.358342\pi\)
\(488\) 0 0
\(489\) 12.1244i 0.548282i
\(490\) 0 0
\(491\) −13.5000 23.3827i −0.609246 1.05525i −0.991365 0.131132i \(-0.958139\pi\)
0.382118 0.924113i \(-0.375195\pi\)
\(492\) 0 0
\(493\) 27.0000 1.21602
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.50000 + 7.79423i 0.201853 + 0.349619i
\(498\) 0 0
\(499\) 31.1769i 1.39567i 0.716258 + 0.697835i \(0.245853\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 13.5000 + 7.79423i 0.603136 + 0.348220i
\(502\) 0 0
\(503\) 10.5000 18.1865i 0.468172 0.810897i −0.531167 0.847267i \(-0.678246\pi\)
0.999338 + 0.0363700i \(0.0115795\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 11.5000 + 6.06218i 0.510733 + 0.269231i
\(508\) 0 0
\(509\) 31.5000 18.1865i 1.39621 0.806104i 0.402219 0.915543i \(-0.368239\pi\)
0.993993 + 0.109439i \(0.0349055\pi\)
\(510\) 0 0
\(511\) 6.00000 10.3923i 0.265424 0.459728i
\(512\) 0 0
\(513\) −22.5000 12.9904i −0.993399 0.573539i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −27.0000 46.7654i −1.18746 2.05674i
\(518\) 0 0
\(519\) −3.00000 −0.131685
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) 5.50000 + 9.52628i 0.240498 + 0.416555i 0.960856 0.277047i \(-0.0893559\pi\)
−0.720358 + 0.693602i \(0.756023\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.00000 5.19615i −0.392046 0.226348i
\(528\) 0 0
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) 0 0
\(531\) 9.00000 5.19615i 0.390567 0.225494i
\(532\) 0 0
\(533\) −13.5000 12.9904i −0.584750 0.562676i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −7.50000 + 12.9904i −0.323649 + 0.560576i
\(538\) 0 0
\(539\) 18.0000 + 10.3923i 0.775315 + 0.447628i
\(540\) 0 0
\(541\) 6.92820i 0.297867i −0.988847 0.148933i \(-0.952416\pi\)
0.988847 0.148933i \(-0.0475840\pi\)
\(542\) 0 0
\(543\) −1.00000 1.73205i −0.0429141 0.0743294i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) 0 0
\(549\) −5.00000 8.66025i −0.213395 0.369611i
\(550\) 0 0
\(551\) 46.7654i 1.99227i
\(552\) 0 0
\(553\) 6.00000 + 3.46410i 0.255146 + 0.147309i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13.5000 + 7.79423i −0.572013 + 0.330252i −0.757953 0.652309i \(-0.773800\pi\)
0.185940 + 0.982561i \(0.440467\pi\)
\(558\) 0 0
\(559\) 17.5000 + 4.33013i 0.740171 + 0.183145i
\(560\) 0 0
\(561\) 13.5000 7.79423i 0.569970 0.329073i
\(562\) 0 0
\(563\) −7.50000 + 12.9904i −0.316087 + 0.547479i −0.979668 0.200625i \(-0.935703\pi\)
0.663581 + 0.748105i \(0.269036\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.73205i 0.0727393i
\(568\) 0 0
\(569\) 4.50000 + 7.79423i 0.188650 + 0.326751i 0.944800 0.327647i \(-0.106256\pi\)
−0.756151 + 0.654398i \(0.772922\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) 21.0000 0.877288
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 20.7846i 0.865275i 0.901568 + 0.432637i \(0.142417\pi\)
−0.901568 + 0.432637i \(0.857583\pi\)
\(578\) 0 0
\(579\) 7.50000 + 4.33013i 0.311689 + 0.179954i
\(580\) 0 0
\(581\) −9.00000 + 15.5885i −0.373383 + 0.646718i
\(582\) 0 0
\(583\) −27.0000 + 15.5885i −1.11823 + 0.645608i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.5000 12.9904i 0.928674 0.536170i 0.0422823 0.999106i \(-0.486537\pi\)
0.886392 + 0.462935i \(0.153204\pi\)
\(588\) 0 0
\(589\) 9.00000 15.5885i 0.370839 0.642311i
\(590\) 0 0
\(591\) −22.5000 12.9904i −0.925526 0.534353i
\(592\) 0 0
\(593\) 20.7846i 0.853522i −0.904365 0.426761i \(-0.859655\pi\)
0.904365 0.426761i \(-0.140345\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.00000 0.0409273
\(598\) 0 0
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) −9.50000 16.4545i −0.387513 0.671192i 0.604601 0.796528i \(-0.293332\pi\)
−0.992114 + 0.125336i \(0.959999\pi\)
\(602\) 0 0
\(603\) 3.46410i 0.141069i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 20.5000 35.5070i 0.832069 1.44119i −0.0643251 0.997929i \(-0.520489\pi\)
0.896394 0.443257i \(-0.146177\pi\)
\(608\) 0 0
\(609\) 13.5000 7.79423i 0.547048 0.315838i
\(610\) 0 0
\(611\) −36.0000 + 10.3923i −1.45640 + 0.420428i
\(612\) 0 0
\(613\) −19.5000 + 11.2583i −0.787598 + 0.454720i −0.839116 0.543952i \(-0.816927\pi\)
0.0515185 + 0.998672i \(0.483594\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22.5000 + 12.9904i 0.905816 + 0.522973i 0.879083 0.476670i \(-0.158156\pi\)
0.0267333 + 0.999643i \(0.491490\pi\)
\(618\) 0 0
\(619\) 45.0333i 1.81004i 0.425367 + 0.905021i \(0.360145\pi\)
−0.425367 + 0.905021i \(0.639855\pi\)
\(620\) 0 0
\(621\) −7.50000 12.9904i −0.300965 0.521286i
\(622\) 0 0
\(623\) 27.0000 1.08173
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 13.5000 + 23.3827i 0.539138 + 0.933815i
\(628\) 0 0
\(629\) 15.5885i 0.621552i
\(630\) 0 0
\(631\) −7.50000 4.33013i −0.298570 0.172380i 0.343230 0.939251i \(-0.388479\pi\)
−0.641800 + 0.766872i \(0.721812\pi\)
\(632\) 0 0
\(633\) −3.50000 + 6.06218i −0.139113 + 0.240950i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 10.0000 10.3923i 0.396214 0.411758i
\(638\) 0 0
\(639\) 9.00000 5.19615i 0.356034 0.205557i
\(640\) 0 0
\(641\) −13.5000 + 23.3827i −0.533218 + 0.923561i 0.466029 + 0.884769i \(0.345684\pi\)
−0.999247 + 0.0387913i \(0.987649\pi\)
\(642\) 0 0
\(643\) 37.5000 + 21.6506i 1.47886 + 0.853818i 0.999714 0.0239198i \(-0.00761465\pi\)
0.479142 + 0.877738i \(0.340948\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.5000 28.5788i −0.648682 1.12355i −0.983438 0.181245i \(-0.941987\pi\)
0.334756 0.942305i \(-0.391346\pi\)
\(648\) 0 0
\(649\) −27.0000 −1.05984
\(650\) 0 0
\(651\) −6.00000 −0.235159
\(652\) 0 0
\(653\) 13.5000 + 23.3827i 0.528296 + 0.915035i 0.999456 + 0.0329874i \(0.0105021\pi\)
−0.471160 + 0.882048i \(0.656165\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −12.0000 6.92820i −0.468165 0.270295i
\(658\) 0 0
\(659\) 13.5000 23.3827i 0.525885 0.910860i −0.473660 0.880708i \(-0.657067\pi\)
0.999545 0.0301523i \(-0.00959924\pi\)
\(660\) 0 0
\(661\) 19.5000 11.2583i 0.758462 0.437898i −0.0702812 0.997527i \(-0.522390\pi\)
0.828743 + 0.559629i \(0.189056\pi\)
\(662\) 0 0
\(663\) −3.00000 10.3923i −0.116510 0.403604i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −13.5000 + 23.3827i −0.522722 + 0.905381i
\(668\) 0 0
\(669\) 13.5000 + 7.79423i 0.521940 + 0.301342i
\(670\) 0 0
\(671\) 25.9808i 1.00298i
\(672\) 0 0
\(673\) 11.5000 + 19.9186i 0.443292 + 0.767805i 0.997932 0.0642860i \(-0.0204770\pi\)
−0.554639 + 0.832091i \(0.687144\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 0 0
\(679\) 10.5000 + 18.1865i 0.402953 + 0.697935i
\(680\) 0 0
\(681\) 5.19615i 0.199117i
\(682\) 0 0
\(683\) −4.50000 2.59808i −0.172188 0.0994126i 0.411429 0.911442i \(-0.365030\pi\)
−0.583617 + 0.812029i \(0.698363\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.00000 + 20.7846i 0.228582 + 0.791831i
\(690\) 0 0
\(691\) 7.50000 4.33013i 0.285313 0.164726i −0.350513 0.936558i \(-0.613993\pi\)
0.635826 + 0.771832i \(0.280659\pi\)
\(692\) 0 0
\(693\) −9.00000 + 15.5885i −0.341882 + 0.592157i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 15.5885i 0.590455i
\(698\) 0 0
\(699\) 3.00000 + 5.19615i 0.113470 + 0.196537i
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) 27.0000 1.01832
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.19615i 0.195421i
\(708\) 0 0
\(709\) 25.5000 + 14.7224i 0.957673 + 0.552913i 0.895456 0.445150i \(-0.146850\pi\)
0.0622167 + 0.998063i \(0.480183\pi\)
\(710\) 0 0
\(711\) 4.00000 6.92820i 0.150012 0.259828i
\(712\) 0 0
\(713\) 9.00000 5.19615i 0.337053 0.194597i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 9.00000 5.19615i 0.336111 0.194054i
\(718\) 0 0
\(719\) 13.5000 23.3827i 0.503465 0.872027i −0.496527 0.868021i \(-0.665392\pi\)
0.999992 0.00400572i \(-0.00127506\pi\)
\(720\) 0 0
\(721\) 24.0000 + 13.8564i 0.893807 + 0.516040i
\(722\) 0 0
\(723\) 5.19615i 0.193247i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −40.0000 −1.48352 −0.741759 0.670667i \(-0.766008\pi\)
−0.741759 + 0.670667i \(0.766008\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −7.50000 12.9904i −0.277398 0.480467i
\(732\) 0 0
\(733\) 34.6410i 1.27950i −0.768585 0.639748i \(-0.779039\pi\)
0.768585 0.639748i \(-0.220961\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.50000 7.79423i 0.165760 0.287104i
\(738\) 0 0
\(739\) 13.5000 7.79423i 0.496606 0.286715i −0.230705 0.973024i \(-0.574103\pi\)
0.727311 + 0.686308i \(0.240770\pi\)
\(740\) 0 0
\(741\) 18.0000 5.19615i 0.661247 0.190885i
\(742\) 0 0
\(743\) 4.50000 2.59808i 0.165089 0.0953142i −0.415179 0.909740i \(-0.636281\pi\)
0.580268 + 0.814426i \(0.302948\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 18.0000 + 10.3923i 0.658586 + 0.380235i
\(748\) 0 0
\(749\) 25.9808i 0.949316i
\(750\) 0 0
\(751\) 6.50000 + 11.2583i 0.237188 + 0.410822i 0.959906 0.280321i \(-0.0904408\pi\)
−0.722718 + 0.691143i \(0.757107\pi\)
\(752\) 0 0
\(753\) 21.0000 0.765283
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 21.5000 + 37.2391i 0.781431 + 1.35348i 0.931108 + 0.364743i \(0.118843\pi\)
−0.149677 + 0.988735i \(0.547824\pi\)
\(758\) 0 0
\(759\) 15.5885i 0.565825i
\(760\) 0 0
\(761\) −4.50000 2.59808i −0.163125 0.0941802i 0.416215 0.909266i \(-0.363356\pi\)
−0.579340 + 0.815086i \(0.696690\pi\)
\(762\) 0 0
\(763\) −12.0000 + 20.7846i −0.434429 + 0.752453i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.50000 + 18.1865i −0.162486 + 0.656678i
\(768\) 0 0
\(769\) 31.5000 18.1865i 1.13592 0.655823i 0.190502 0.981687i \(-0.438988\pi\)
0.945417 + 0.325864i \(0.105655\pi\)
\(770\) 0 0
\(771\) 1.50000 2.59808i 0.0540212 0.0935674i
\(772\) 0 0
\(773\) 22.5000 + 12.9904i 0.809269 + 0.467232i 0.846702 0.532068i \(-0.178585\pi\)
−0.0374331 + 0.999299i \(0.511918\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −4.50000 7.79423i −0.161437 0.279616i
\(778\) 0 0
\(779\) −27.0000 −0.967375
\(780\) 0 0
\(781\) −27.0000 −0.966136
\(782\) 0 0
\(783\) −22.5000 38.9711i −0.804084 1.39272i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.50000 + 0.866025i 0.0534692 + 0.0308705i 0.526496 0.850177i \(-0.323505\pi\)
−0.473027 + 0.881048i \(0.656839\pi\)
\(788\) 0 0
\(789\) −10.5000 + 18.1865i −0.373810 + 0.647458i
\(790\) 0 0
\(791\) 4.50000 2.59808i 0.160002 0.0923770i
\(792\) 0 0
\(793\) 17.5000 + 4.33013i 0.621443 + 0.153767i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13.5000 23.3827i 0.478195 0.828257i −0.521493 0.853256i \(-0.674625\pi\)
0.999687 + 0.0249984i \(0.00795805\pi\)
\(798\) 0 0
\(799\) 27.0000 + 15.5885i 0.955191 + 0.551480i
\(800\) 0 0
\(801\) 31.1769i 1.10158i
\(802\) 0 0
\(803\) 18.0000 + 31.1769i 0.635206 + 1.10021i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −9.00000 −0.316815
\(808\) 0 0
\(809\) 10.5000 + 18.1865i 0.369160 + 0.639404i 0.989434 0.144981i \(-0.0463120\pi\)
−0.620274 + 0.784385i \(0.712979\pi\)
\(810\) 0 0
\(811\) 45.0333i 1.58133i −0.612247 0.790667i \(-0.709734\pi\)
0.612247 0.790667i \(-0.290266\pi\)
\(812\) 0 0
\(813\) 10.5000 + 6.06218i 0.368251 + 0.212610i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 22.5000 12.9904i 0.787175 0.454476i
\(818\) 0 0
\(819\) 9.00000 + 8.66025i 0.314485 + 0.302614i
\(820\) 0 0
\(821\) −22.5000 + 12.9904i −0.785255 + 0.453367i −0.838290 0.545225i \(-0.816444\pi\)
0.0530342 + 0.998593i \(0.483111\pi\)
\(822\) 0 0
\(823\) 20.5000 35.5070i 0.714585 1.23770i −0.248534 0.968623i \(-0.579949\pi\)
0.963119 0.269075i \(-0.0867178\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 10.3923i 0.361376i 0.983540 + 0.180688i \(0.0578324\pi\)
−0.983540 + 0.180688i \(0.942168\pi\)
\(828\) 0 0
\(829\) −27.5000 47.6314i −0.955114 1.65431i −0.734106 0.679035i \(-0.762398\pi\)
−0.221009 0.975272i \(-0.570935\pi\)
\(830\) 0 0
\(831\) 1.00000 0.0346896
\(832\) 0 0
\(833\) −12.0000 −0.415775
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 17.3205i 0.598684i
\(838\) 0 0
\(839\) −31.5000 18.1865i −1.08750 0.627869i −0.154591 0.987979i \(-0.549406\pi\)
−0.932910 + 0.360110i \(0.882739\pi\)
\(840\) 0 0
\(841\) −26.0000 + 45.0333i −0.896552 + 1.55287i
\(842\) 0 0
\(843\) −18.0000 + 10.3923i −0.619953 + 0.357930i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 24.0000 13.8564i 0.824650 0.476112i
\(848\) 0 0
\(849\) 3.50000 6.06218i 0.120120 0.208053i
\(850\) 0 0
\(851\) 13.5000 + 7.79423i 0.462774 + 0.267183i
\(852\) 0 0
\(853\) 13.8564i 0.474434i −0.971457 0.237217i \(-0.923765\pi\)
0.971457 0.237217i \(-0.0762353\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −54.0000 −1.84460 −0.922302 0.386469i \(-0.873695\pi\)
−0.922302 + 0.386469i \(0.873695\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) 4.50000 + 7.79423i 0.153360 + 0.265627i
\(862\) 0 0
\(863\) 10.3923i 0.353758i −0.984233 0.176879i \(-0.943400\pi\)
0.984233 0.176879i \(-0.0566002\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 4.00000 6.92820i 0.135847 0.235294i
\(868\) 0 0
\(869\) −18.0000 + 10.3923i −0.610608 + 0.352535i
\(870\) 0 0
\(871\) −4.50000 4.33013i −0.152477 0.146721i
\(872\) 0 0
\(873\) 21.0000 12.1244i 0.710742 0.410347i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −31.5000 18.1865i −1.06368 0.614116i −0.137232 0.990539i \(-0.543820\pi\)
−0.926448 + 0.376423i \(0.877154\pi\)
\(878\) 0 0
\(879\) 5.19615i 0.175262i
\(880\) 0 0
\(881\) −1.50000 2.59808i −0.0505363 0.0875314i 0.839651 0.543127i \(-0.182760\pi\)
−0.890187 + 0.455595i \(0.849426\pi\)
\(882\) 0 0
\(883\) −28.0000 −0.942275 −0.471138 0.882060i \(-0.656156\pi\)
−0.471138 + 0.882060i \(0.656156\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7.50000 + 12.9904i 0.251825 + 0.436174i 0.964028 0.265799i \(-0.0856358\pi\)
−0.712203 + 0.701974i \(0.752302\pi\)
\(888\) 0 0
\(889\) 29.4449i 0.987549i
\(890\) 0 0
\(891\) 4.50000 + 2.59808i 0.150756 + 0.0870388i
\(892\) 0 0
\(893\) −27.0000 + 46.7654i −0.903521 + 1.56494i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 10.5000 + 2.59808i 0.350585 + 0.0867472i
\(898\) 0 0
\(899\) 27.0000 15.5885i 0.900500 0.519904i
\(900\) 0 0
\(901\) 9.00000 15.5885i 0.299833 0.519327i
\(902\) 0 0
\(903\) −7.50000 4.33013i −0.249584 0.144098i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −8.50000 14.7224i −0.282238 0.488850i 0.689698 0.724097i \(-0.257743\pi\)
−0.971936 + 0.235247i \(0.924410\pi\)
\(908\) 0 0
\(909\) −6.00000 −0.199007
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) −27.0000 46.7654i −0.893570 1.54771i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −18.0000 10.3923i −0.594412 0.343184i
\(918\) 0 0
\(919\) 5.50000 9.52628i 0.181428 0.314243i −0.760939 0.648824i \(-0.775261\pi\)
0.942367 + 0.334581i \(0.108595\pi\)
\(920\) 0 0
\(921\) −15.0000 + 8.66025i −0.494267 + 0.285365i
\(922\) 0 0
\(923\) −4.50000 + 18.1865i −0.148119 + 0.598617i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 16.0000 27.7128i 0.525509 0.910208i
\(928\) 0 0
\(929\) 31.5000 + 18.1865i 1.03348 + 0.596681i 0.917980 0.396627i \(-0.129819\pi\)
0.115501 + 0.993307i \(0.463153\pi\)
\(930\) 0 0
\(931\) 20.7846i 0.681188i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) 11.0000 + 19.0526i 0.358971 + 0.621757i
\(940\) 0 0
\(941\) 20.7846i 0.677559i 0.940866 + 0.338779i \(0.110014\pi\)
−0.940866 + 0.338779i \(0.889986\pi\)
\(942\) 0 0
\(943\) −13.5000 7.79423i −0.439620 0.253815i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40.5000 23.3827i 1.31607 0.759835i 0.332979 0.942934i \(-0.391946\pi\)
0.983094 + 0.183099i \(0.0586129\pi\)
\(948\) 0 0
\(949\) 24.0000 6.92820i 0.779073 0.224899i
\(950\) 0 0
\(951\) 18.0000 10.3923i 0.583690 0.336994i
\(952\) 0 0
\(953\) −4.50000 + 7.79423i −0.145769 + 0.252480i −0.929660 0.368419i \(-0.879899\pi\)
0.783890 + 0.620899i \(0.213232\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 46.7654i 1.51171i
\(958\) 0 0
\(959\) −13.5000 23.3827i −0.435938 0.755066i
\(960\) 0 0
\(961\) 19.0000 0.612903
\(962\) 0 0
\(963\) 30.0000 0.966736
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 10.3923i 0.334194i −0.985940 0.167097i \(-0.946561\pi\)
0.985940 0.167097i \(-0.0534393\pi\)
\(968\) 0 0
\(969\) −13.5000 7.79423i −0.433682 0.250387i
\(970\) 0 0
\(971\) 13.5000 23.3827i 0.433236 0.750386i −0.563914 0.825833i \(-0.690705\pi\)
0.997150 + 0.0754473i \(0.0240385\pi\)
\(972\) 0 0
\(973\) 10.5000 6.06218i 0.336615 0.194344i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −13.5000 + 7.79423i −0.431903 + 0.249359i −0.700157 0.713989i \(-0.746887\pi\)
0.268254 + 0.963348i \(0.413553\pi\)
\(978\) 0 0
\(979\) −40.5000 + 70.1481i −1.29439 + 2.24194i
\(980\) 0 0
\(981\) 24.0000 + 13.8564i 0.766261 + 0.442401i
\(982\) 0 0
\(983\) 10.3923i 0.331463i −0.986171 0.165732i \(-0.947001\pi\)
0.986171 0.165732i \(-0.0529985\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 18.0000 0.572946
\(988\) 0 0
\(989\) 15.0000 0.476972
\(990\) 0 0
\(991\) 12.5000 + 21.6506i 0.397076 + 0.687755i 0.993364 0.115015i \(-0.0366917\pi\)
−0.596288 + 0.802771i \(0.703358\pi\)
\(992\) 0 0
\(993\) 12.1244i 0.384755i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −6.50000 + 11.2583i −0.205857 + 0.356555i −0.950405 0.311014i \(-0.899332\pi\)
0.744548 + 0.667568i \(0.232665\pi\)
\(998\) 0 0
\(999\) −22.5000 + 12.9904i −0.711868 + 0.410997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1300.2.y.a.101.1 2
5.2 odd 4 1300.2.ba.a.49.1 4
5.3 odd 4 1300.2.ba.a.49.2 4
5.4 even 2 52.2.h.a.49.1 yes 2
13.4 even 6 inner 1300.2.y.a.901.1 2
15.14 odd 2 468.2.t.a.361.1 2
20.19 odd 2 208.2.w.a.49.1 2
35.4 even 6 2548.2.bb.b.569.1 2
35.9 even 6 2548.2.bq.a.361.1 2
35.19 odd 6 2548.2.bq.b.361.1 2
35.24 odd 6 2548.2.bb.a.569.1 2
35.34 odd 2 2548.2.u.a.1765.1 2
40.19 odd 2 832.2.w.c.257.1 2
40.29 even 2 832.2.w.b.257.1 2
60.59 even 2 1872.2.by.e.1297.1 2
65.4 even 6 52.2.h.a.17.1 2
65.9 even 6 676.2.h.a.485.1 2
65.17 odd 12 1300.2.ba.a.849.2 4
65.19 odd 12 676.2.e.e.529.2 4
65.24 odd 12 676.2.a.f.1.2 2
65.29 even 6 676.2.d.b.337.2 2
65.34 odd 4 676.2.e.e.653.1 4
65.43 odd 12 1300.2.ba.a.849.1 4
65.44 odd 4 676.2.e.e.653.2 4
65.49 even 6 676.2.d.b.337.1 2
65.54 odd 12 676.2.a.f.1.1 2
65.59 odd 12 676.2.e.e.529.1 4
65.64 even 2 676.2.h.a.361.1 2
195.29 odd 6 6084.2.b.d.4393.2 2
195.89 even 12 6084.2.a.t.1.2 2
195.119 even 12 6084.2.a.t.1.1 2
195.134 odd 6 468.2.t.a.433.1 2
195.179 odd 6 6084.2.b.d.4393.1 2
260.119 even 12 2704.2.a.u.1.2 2
260.159 odd 6 2704.2.f.h.337.1 2
260.179 odd 6 2704.2.f.h.337.2 2
260.199 odd 6 208.2.w.a.17.1 2
260.219 even 12 2704.2.a.u.1.1 2
455.4 even 6 2548.2.bq.a.1941.1 2
455.69 odd 6 2548.2.u.a.589.1 2
455.199 odd 6 2548.2.bq.b.1941.1 2
455.264 odd 6 2548.2.bb.a.1733.1 2
455.394 even 6 2548.2.bb.b.1733.1 2
520.69 even 6 832.2.w.b.641.1 2
520.459 odd 6 832.2.w.c.641.1 2
780.719 even 6 1872.2.by.e.433.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.h.a.17.1 2 65.4 even 6
52.2.h.a.49.1 yes 2 5.4 even 2
208.2.w.a.17.1 2 260.199 odd 6
208.2.w.a.49.1 2 20.19 odd 2
468.2.t.a.361.1 2 15.14 odd 2
468.2.t.a.433.1 2 195.134 odd 6
676.2.a.f.1.1 2 65.54 odd 12
676.2.a.f.1.2 2 65.24 odd 12
676.2.d.b.337.1 2 65.49 even 6
676.2.d.b.337.2 2 65.29 even 6
676.2.e.e.529.1 4 65.59 odd 12
676.2.e.e.529.2 4 65.19 odd 12
676.2.e.e.653.1 4 65.34 odd 4
676.2.e.e.653.2 4 65.44 odd 4
676.2.h.a.361.1 2 65.64 even 2
676.2.h.a.485.1 2 65.9 even 6
832.2.w.b.257.1 2 40.29 even 2
832.2.w.b.641.1 2 520.69 even 6
832.2.w.c.257.1 2 40.19 odd 2
832.2.w.c.641.1 2 520.459 odd 6
1300.2.y.a.101.1 2 1.1 even 1 trivial
1300.2.y.a.901.1 2 13.4 even 6 inner
1300.2.ba.a.49.1 4 5.2 odd 4
1300.2.ba.a.49.2 4 5.3 odd 4
1300.2.ba.a.849.1 4 65.43 odd 12
1300.2.ba.a.849.2 4 65.17 odd 12
1872.2.by.e.433.1 2 780.719 even 6
1872.2.by.e.1297.1 2 60.59 even 2
2548.2.u.a.589.1 2 455.69 odd 6
2548.2.u.a.1765.1 2 35.34 odd 2
2548.2.bb.a.569.1 2 35.24 odd 6
2548.2.bb.a.1733.1 2 455.264 odd 6
2548.2.bb.b.569.1 2 35.4 even 6
2548.2.bb.b.1733.1 2 455.394 even 6
2548.2.bq.a.361.1 2 35.9 even 6
2548.2.bq.a.1941.1 2 455.4 even 6
2548.2.bq.b.361.1 2 35.19 odd 6
2548.2.bq.b.1941.1 2 455.199 odd 6
2704.2.a.u.1.1 2 260.219 even 12
2704.2.a.u.1.2 2 260.119 even 12
2704.2.f.h.337.1 2 260.159 odd 6
2704.2.f.h.337.2 2 260.179 odd 6
6084.2.a.t.1.1 2 195.119 even 12
6084.2.a.t.1.2 2 195.89 even 12
6084.2.b.d.4393.1 2 195.179 odd 6
6084.2.b.d.4393.2 2 195.29 odd 6