Properties

Label 1303.1.b.a.1302.1
Level 13031303
Weight 11
Character 1303.1302
Self dual yes
Analytic conductor 0.6500.650
Analytic rank 00
Dimension 55
Projective image D11D_{11}
CM discriminant -1303
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1303,1,Mod(1302,1303)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1303, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1303.1302");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1303 1303
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1303.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.6502817114610.650281711461
Analytic rank: 00
Dimension: 55
Coefficient field: Q(ζ22)+\Q(\zeta_{22})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x5x44x3+3x2+3x1 x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D11D_{11}
Projective field: Galois closure of 11.1.3755969686826743.1

Embedding invariants

Embedding label 1302.1
Root 1.309721.30972 of defining polynomial
Character χ\chi == 1303.1302

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.91899q2+2.68251q43.22871q8+1.00000q90.284630q13+3.51334q161.91899q18+0.830830q23+1.00000q25+0.546200q263.51334q32+2.68251q361.30972q411.59435q46+1.00000q491.91899q500.763521q52+0.830830q61+3.22871q641.30972q673.22871q721.30972q79+1.00000q81+2.51334q82+1.68251q83+1.68251q89+2.22871q921.91899q98+O(q100)q-1.91899 q^{2} +2.68251 q^{4} -3.22871 q^{8} +1.00000 q^{9} -0.284630 q^{13} +3.51334 q^{16} -1.91899 q^{18} +0.830830 q^{23} +1.00000 q^{25} +0.546200 q^{26} -3.51334 q^{32} +2.68251 q^{36} -1.30972 q^{41} -1.59435 q^{46} +1.00000 q^{49} -1.91899 q^{50} -0.763521 q^{52} +0.830830 q^{61} +3.22871 q^{64} -1.30972 q^{67} -3.22871 q^{72} -1.30972 q^{79} +1.00000 q^{81} +2.51334 q^{82} +1.68251 q^{83} +1.68251 q^{89} +2.22871 q^{92} -1.91899 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 5qq2+4q42q8+5q9q13+3q16q18q23+5q252q263q32+4q36q412q46+5q49q503q52q61+2q64+q98+O(q100) 5 q - q^{2} + 4 q^{4} - 2 q^{8} + 5 q^{9} - q^{13} + 3 q^{16} - q^{18} - q^{23} + 5 q^{25} - 2 q^{26} - 3 q^{32} + 4 q^{36} - q^{41} - 2 q^{46} + 5 q^{49} - q^{50} - 3 q^{52} - q^{61} + 2 q^{64}+ \cdots - q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1303Z)×\left(\mathbb{Z}/1303\mathbb{Z}\right)^\times.

nn 66
χ(n)\chi(n) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
33 0 0 1.00000 00
−1.00000 π\pi
44 2.68251 2.68251
55 0 0 1.00000 00
−1.00000 π\pi
66 0 0
77 0 0 1.00000 00
−1.00000 π\pi
88 −3.22871 −3.22871
99 1.00000 1.00000
1010 0 0
1111 0 0 1.00000 00
−1.00000 π\pi
1212 0 0
1313 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
1414 0 0
1515 0 0
1616 3.51334 3.51334
1717 0 0 1.00000 00
−1.00000 π\pi
1818 −1.91899 −1.91899
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 0 0
2222 0 0
2323 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
2424 0 0
2525 1.00000 1.00000
2626 0.546200 0.546200
2727 0 0
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 −3.51334 −3.51334
3333 0 0
3434 0 0
3535 0 0
3636 2.68251 2.68251
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 0 0
4040 0 0
4141 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
4242 0 0
4343 0 0 1.00000 00
−1.00000 π\pi
4444 0 0
4545 0 0
4646 −1.59435 −1.59435
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 1.00000 1.00000
5050 −1.91899 −1.91899
5151 0 0
5252 −0.763521 −0.763521
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
6262 0 0
6363 0 0
6464 3.22871 3.22871
6565 0 0
6666 0 0
6767 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 −3.22871 −3.22871
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
8080 0 0
8181 1.00000 1.00000
8282 2.51334 2.51334
8383 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
9090 0 0
9191 0 0
9292 2.22871 2.22871
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 −1.91899 −1.91899
9999 0 0
100100 2.68251 2.68251
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
104104 0.918986 0.918986
105105 0 0
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
110110 0 0
111111 0 0
112112 0 0
113113 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
114114 0 0
115115 0 0
116116 0 0
117117 −0.284630 −0.284630
118118 0 0
119119 0 0
120120 0 0
121121 1.00000 1.00000
122122 −1.59435 −1.59435
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
128128 −2.68251 −2.68251
129129 0 0
130130 0 0
131131 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
132132 0 0
133133 0 0
134134 2.51334 2.51334
135135 0 0
136136 0 0
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 3.51334 3.51334
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
158158 2.51334 2.51334
159159 0 0
160160 0 0
161161 0 0
162162 −1.91899 −1.91899
163163 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
164164 −3.51334 −3.51334
165165 0 0
166166 −3.22871 −3.22871
167167 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
168168 0 0
169169 −0.918986 −0.918986
170170 0 0
171171 0 0
172172 0 0
173173 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 −3.22871 −3.22871
179179 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
180180 0 0
181181 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
182182 0 0
183183 0 0
184184 −2.68251 −2.68251
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
192192 0 0
193193 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
194194 0 0
195195 0 0
196196 2.68251 2.68251
197197 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
198198 0 0
199199 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
200200 −3.22871 −3.22871
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0.546200 0.546200
207207 0.830830 0.830830
208208 −1.00000 −1.00000
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 −3.22871 −3.22871
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 1.00000 1.00000
226226 −1.59435 −1.59435
227227 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
228228 0 0
229229 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0.546200 0.546200
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
242242 −1.91899 −1.91899
243243 0 0
244244 2.22871 2.22871
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 −3.22871 −3.22871
255255 0 0
256256 1.91899 1.91899
257257 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0.546200 0.546200
263263 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 −3.51334 −3.51334
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 −3.51334 −3.51334
289289 1.00000 1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 −0.236479 −0.236479
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
308308 0 0
309309 0 0
310310 0 0
311311 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 2.51334 2.51334
315315 0 0
316316 −3.51334 −3.51334
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 2.68251 2.68251
325325 −0.284630 −0.284630
326326 3.68251 3.68251
327327 0 0
328328 4.22871 4.22871
329329 0 0
330330 0 0
331331 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
332332 4.51334 4.51334
333333 0 0
334334 −3.22871 −3.22871
335335 0 0
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 1.76352 1.76352
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 3.68251 3.68251
347347 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
348348 0 0
349349 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
350350 0 0
351351 0 0
352352 0 0
353353 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
354354 0 0
355355 0 0
356356 4.51334 4.51334
357357 0 0
358358 0.546200 0.546200
359359 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
360360 0 0
361361 1.00000 1.00000
362362 2.51334 2.51334
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 2.91899 2.91899
369369 −1.30972 −1.30972
370370 0 0
371371 0 0
372372 0 0
373373 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
380380 0 0
381381 0 0
382382 3.68251 3.68251
383383 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
384384 0 0
385385 0 0
386386 −1.59435 −1.59435
387387 0 0
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 0 0
392392 −3.22871 −3.22871
393393 0 0
394394 −3.22871 −3.22871
395395 0 0
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 3.68251 3.68251
399399 0 0
400400 3.51334 3.51334
401401 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 −0.763521 −0.763521
413413 0 0
414414 −1.59435 −1.59435
415415 0 0
416416 1.00000 1.00000
417417 0 0
418418 0 0
419419 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
434434 0 0
435435 0 0
436436 4.51334 4.51334
437437 0 0
438438 0 0
439439 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
440440 0 0
441441 1.00000 1.00000
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
450450 −1.91899 −1.91899
451451 0 0
452452 2.22871 2.22871
453453 0 0
454454 −1.59435 −1.59435
455455 0 0
456456 0 0
457457 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
458458 3.68251 3.68251
459459 0 0
460460 0 0
461461 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
462462 0 0
463463 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000 00
−1.00000 π\pi
468468 −0.763521 −0.763521
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 3.68251 3.68251
483483 0 0
484484 2.68251 2.68251
485485 0 0
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 −2.68251 −2.68251
489489 0 0
490490 0 0
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 4.51334 4.51334
509509 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 0 0
514514 −3.22871 −3.22871
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
522522 0 0
523523 0 0 1.00000 00
−1.00000 π\pi
524524 −0.763521 −0.763521
525525 0 0
526526 0.546200 0.546200
527527 0 0
528528 0 0
529529 −0.309721 −0.309721
530530 0 0
531531 0 0
532532 0 0
533533 0.372786 0.372786
534534 0 0
535535 0 0
536536 4.22871 4.22871
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0 0
549549 0.830830 0.830830
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000 00
−1.00000 π\pi
564564 0 0
565565 0 0
566566 3.68251 3.68251
567567 0 0
568568 0 0
569569 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
570570 0 0
571571 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
572572 0 0
573573 0 0
574574 0 0
575575 0.830830 0.830830
576576 3.22871 3.22871
577577 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
578578 −1.91899 −1.91899
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0.453800 0.453800
599599 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
600600 0 0
601601 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
602602 0 0
603603 −1.30972 −1.30972
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 −1.59435 −1.59435
615615 0 0
616616 0 0
617617 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
618618 0 0
619619 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
620620 0 0
621621 0 0
622622 2.51334 2.51334
623623 0 0
624624 0 0
625625 1.00000 1.00000
626626 0 0
627627 0 0
628628 −3.51334 −3.51334
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 4.22871 4.22871
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 −0.284630 −0.284630
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 −3.22871 −3.22871
649649 0 0
650650 0.546200 0.546200
651651 0 0
652652 −5.14769 −5.14769
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 0 0
656656 −4.60149 −4.60149
657657 0 0
658658 0 0
659659 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 −1.59435 −1.59435
663663 0 0
664664 −5.43232 −5.43232
665665 0 0
666666 0 0
667667 0 0
668668 4.51334 4.51334
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 0 0
676676 −2.46519 −2.46519
677677 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
692692 −5.14769 −5.14769
693693 0 0
694694 2.51334 2.51334
695695 0 0
696696 0 0
697697 0 0
698698 −1.59435 −1.59435
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 3.68251 3.68251
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 −1.30972 −1.30972
712712 −5.43232 −5.43232
713713 0 0
714714 0 0
715715 0 0
716716 −0.763521 −0.763521
717717 0 0
718718 0.546200 0.546200
719719 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
720720 0 0
721721 0 0
722722 −1.91899 −1.91899
723723 0 0
724724 −3.51334 −3.51334
725725 0 0
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
734734 0 0
735735 0 0
736736 −2.91899 −2.91899
737737 0 0
738738 2.51334 2.51334
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 0 0
746746 3.68251 3.68251
747747 1.68251 1.68251
748748 0 0
749749 0 0
750750 0 0
751751 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 −3.22871 −3.22871
759759 0 0
760760 0 0
761761 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
762762 0 0
763763 0 0
764764 −5.14769 −5.14769
765765 0 0
766766 2.51334 2.51334
767767 0 0
768768 0 0
769769 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
770770 0 0
771771 0 0
772772 2.22871 2.22871
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 3.51334 3.51334
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 4.51334 4.51334
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 −0.236479 −0.236479
794794 0 0
795795 0 0
796796 −5.14769 −5.14769
797797 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
798798 0 0
799799 0 0
800800 −3.51334 −3.51334
801801 1.68251 1.68251
802802 0.546200 0.546200
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
810810 0 0
811811 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0.918986 0.918986
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 2.22871 2.22871
829829 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
830830 0 0
831831 0 0
832832 −0.918986 −0.918986
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 2.51334 2.51334
839839 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
840840 0 0
841841 1.00000 1.00000
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 0 0
866866 −3.22871 −3.22871
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0.372786 0.372786
872872 −5.43232 −5.43232
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 3.68251 3.68251
879879 0 0
880880 0 0
881881 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
882882 −1.91899 −1.91899
883883 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0.546200 0.546200
899899 0 0
900900 2.68251 2.68251
901901 0 0
902902 0 0
903903 0 0
904904 −2.68251 −2.68251
905905 0 0
906906 0 0
907907 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
908908 2.22871 2.22871
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0.546200 0.546200
915915 0 0
916916 −5.14769 −5.14769
917917 0 0
918918 0 0
919919 0.830830 0.830830 0.415415 0.909632i 0.363636π-0.363636\pi
0.415415 + 0.909632i 0.363636π0.363636\pi
920920 0 0
921921 0 0
922922 2.51334 2.51334
923923 0 0
924924 0 0
925925 0 0
926926 3.68251 3.68251
927927 −0.284630 −0.284630
928928 0 0
929929 0 0 1.00000 00
−1.00000 π\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0.918986 0.918986
937937 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 −1.08816 −1.08816
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 −1.30972 −1.30972 −0.654861 0.755750i 0.727273π-0.727273\pi
−0.654861 + 0.755750i 0.727273π0.727273\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 1.00000 1.00000
962962 0 0
963963 0 0
964964 −5.14769 −5.14769
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 −3.22871 −3.22871
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 2.91899 2.91899
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 0 0
980980 0 0
981981 1.68251 1.68251
982982 0 0
983983 −1.91899 −1.91899 −0.959493 0.281733i 0.909091π-0.909091\pi
−0.959493 + 0.281733i 0.909091π0.909091\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −0.284630 −0.284630 −0.142315 0.989821i 0.545455π-0.545455\pi
−0.142315 + 0.989821i 0.545455π0.545455\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 1.68251 1.68251 0.841254 0.540641i 0.181818π-0.181818\pi
0.841254 + 0.540641i 0.181818π0.181818\pi
998998 0.546200 0.546200
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1303.1.b.a.1302.1 5
1303.1302 odd 2 CM 1303.1.b.a.1302.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1303.1.b.a.1302.1 5 1.1 even 1 trivial
1303.1.b.a.1302.1 5 1303.1302 odd 2 CM