Properties

Label 1305.2.a.s.1.1
Level 13051305
Weight 22
Character 1305.1
Self dual yes
Analytic conductor 10.42010.420
Analytic rank 00
Dimension 77
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1305=32529 1305 = 3^{2} \cdot 5 \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 10.420477463810.4204774638
Analytic rank: 00
Dimension: 77
Coefficient field: Q[x]/(x7)\mathbb{Q}[x]/(x^{7} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x7x613x5+12x4+47x337x235x+18 x^{7} - x^{6} - 13x^{5} + 12x^{4} + 47x^{3} - 37x^{2} - 35x + 18 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 2.575012.57501 of defining polynomial
Character χ\chi == 1305.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.57501q2+4.63069q41.00000q52.24826q76.77405q8+2.57501q103.75744q111.55119q13+5.78930q14+8.18188q163.55119q171.18909q194.63069q20+9.67546q223.67991q23+1.00000q25+3.99434q2610.4110q28+1.00000q29+5.18909q317.52034q32+9.14436q34+2.24826q35+0.969518q37+3.06193q38+6.77405q40+11.3809q410.884393q4317.3995q44+9.47581q46+11.2251q471.94533q492.57501q507.18308q5210.6567q53+3.75744q55+15.2298q562.57501q58+8.49652q5910.8743q6113.3620q62+3.00121q64+1.55119q654.05179q6716.4445q685.78930q70+6.37818q713.26017q732.49652q745.50631q76+8.44770q77+6.32579q798.18188q8029.3060q829.03930q83+3.55119q85+2.27732q86+25.4531q88+1.46717q89+3.48748q9117.0405q9228.9047q94+1.18909q95+12.3993q97+5.00924q98+O(q100)q-2.57501 q^{2} +4.63069 q^{4} -1.00000 q^{5} -2.24826 q^{7} -6.77405 q^{8} +2.57501 q^{10} -3.75744 q^{11} -1.55119 q^{13} +5.78930 q^{14} +8.18188 q^{16} -3.55119 q^{17} -1.18909 q^{19} -4.63069 q^{20} +9.67546 q^{22} -3.67991 q^{23} +1.00000 q^{25} +3.99434 q^{26} -10.4110 q^{28} +1.00000 q^{29} +5.18909 q^{31} -7.52034 q^{32} +9.14436 q^{34} +2.24826 q^{35} +0.969518 q^{37} +3.06193 q^{38} +6.77405 q^{40} +11.3809 q^{41} -0.884393 q^{43} -17.3995 q^{44} +9.47581 q^{46} +11.2251 q^{47} -1.94533 q^{49} -2.57501 q^{50} -7.18308 q^{52} -10.6567 q^{53} +3.75744 q^{55} +15.2298 q^{56} -2.57501 q^{58} +8.49652 q^{59} -10.8743 q^{61} -13.3620 q^{62} +3.00121 q^{64} +1.55119 q^{65} -4.05179 q^{67} -16.4445 q^{68} -5.78930 q^{70} +6.37818 q^{71} -3.26017 q^{73} -2.49652 q^{74} -5.50631 q^{76} +8.44770 q^{77} +6.32579 q^{79} -8.18188 q^{80} -29.3060 q^{82} -9.03930 q^{83} +3.55119 q^{85} +2.27732 q^{86} +25.4531 q^{88} +1.46717 q^{89} +3.48748 q^{91} -17.0405 q^{92} -28.9047 q^{94} +1.18909 q^{95} +12.3993 q^{97} +5.00924 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 7qq2+13q47q5+10q7+q10+3q11+6q13+9q14+21q168q17+10q1913q20+9q2211q23+7q253q26+25q28+7q29++20q98+O(q100) 7 q - q^{2} + 13 q^{4} - 7 q^{5} + 10 q^{7} + q^{10} + 3 q^{11} + 6 q^{13} + 9 q^{14} + 21 q^{16} - 8 q^{17} + 10 q^{19} - 13 q^{20} + 9 q^{22} - 11 q^{23} + 7 q^{25} - 3 q^{26} + 25 q^{28} + 7 q^{29}+ \cdots + 20 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.57501 −1.82081 −0.910404 0.413720i 0.864229π-0.864229\pi
−0.910404 + 0.413720i 0.864229π0.864229\pi
33 0 0
44 4.63069 2.31534
55 −1.00000 −0.447214
66 0 0
77 −2.24826 −0.849762 −0.424881 0.905249i 0.639684π-0.639684\pi
−0.424881 + 0.905249i 0.639684π0.639684\pi
88 −6.77405 −2.39499
99 0 0
1010 2.57501 0.814290
1111 −3.75744 −1.13291 −0.566456 0.824092i 0.691686π-0.691686\pi
−0.566456 + 0.824092i 0.691686π0.691686\pi
1212 0 0
1313 −1.55119 −0.430223 −0.215112 0.976589i 0.569012π-0.569012\pi
−0.215112 + 0.976589i 0.569012π0.569012\pi
1414 5.78930 1.54725
1515 0 0
1616 8.18188 2.04547
1717 −3.55119 −0.861291 −0.430645 0.902521i 0.641714π-0.641714\pi
−0.430645 + 0.902521i 0.641714π0.641714\pi
1818 0 0
1919 −1.18909 −0.272796 −0.136398 0.990654i 0.543553π-0.543553\pi
−0.136398 + 0.990654i 0.543553π0.543553\pi
2020 −4.63069 −1.03545
2121 0 0
2222 9.67546 2.06281
2323 −3.67991 −0.767314 −0.383657 0.923476i 0.625336π-0.625336\pi
−0.383657 + 0.923476i 0.625336π0.625336\pi
2424 0 0
2525 1.00000 0.200000
2626 3.99434 0.783354
2727 0 0
2828 −10.4110 −1.96749
2929 1.00000 0.185695
3030 0 0
3131 5.18909 0.931988 0.465994 0.884788i 0.345697π-0.345697\pi
0.465994 + 0.884788i 0.345697π0.345697\pi
3232 −7.52034 −1.32942
3333 0 0
3434 9.14436 1.56825
3535 2.24826 0.380025
3636 0 0
3737 0.969518 0.159388 0.0796939 0.996819i 0.474606π-0.474606\pi
0.0796939 + 0.996819i 0.474606π0.474606\pi
3838 3.06193 0.496710
3939 0 0
4040 6.77405 1.07107
4141 11.3809 1.77740 0.888700 0.458489i 0.151609π-0.151609\pi
0.888700 + 0.458489i 0.151609π0.151609\pi
4242 0 0
4343 −0.884393 −0.134869 −0.0674343 0.997724i 0.521481π-0.521481\pi
−0.0674343 + 0.997724i 0.521481π0.521481\pi
4444 −17.3995 −2.62308
4545 0 0
4646 9.47581 1.39713
4747 11.2251 1.63734 0.818672 0.574262i 0.194711π-0.194711\pi
0.818672 + 0.574262i 0.194711π0.194711\pi
4848 0 0
4949 −1.94533 −0.277904
5050 −2.57501 −0.364162
5151 0 0
5252 −7.18308 −0.996115
5353 −10.6567 −1.46381 −0.731906 0.681406i 0.761369π-0.761369\pi
−0.731906 + 0.681406i 0.761369π0.761369\pi
5454 0 0
5555 3.75744 0.506653
5656 15.2298 2.03517
5757 0 0
5858 −2.57501 −0.338116
5959 8.49652 1.10615 0.553076 0.833131i 0.313454π-0.313454\pi
0.553076 + 0.833131i 0.313454π0.313454\pi
6060 0 0
6161 −10.8743 −1.39231 −0.696154 0.717892i 0.745107π-0.745107\pi
−0.696154 + 0.717892i 0.745107π0.745107\pi
6262 −13.3620 −1.69697
6363 0 0
6464 3.00121 0.375151
6565 1.55119 0.192402
6666 0 0
6767 −4.05179 −0.495005 −0.247502 0.968887i 0.579610π-0.579610\pi
−0.247502 + 0.968887i 0.579610π0.579610\pi
6868 −16.4445 −1.99418
6969 0 0
7070 −5.78930 −0.691953
7171 6.37818 0.756951 0.378476 0.925611i 0.376448π-0.376448\pi
0.378476 + 0.925611i 0.376448π0.376448\pi
7272 0 0
7373 −3.26017 −0.381573 −0.190787 0.981632i 0.561104π-0.561104\pi
−0.190787 + 0.981632i 0.561104π0.561104\pi
7474 −2.49652 −0.290215
7575 0 0
7676 −5.50631 −0.631617
7777 8.44770 0.962705
7878 0 0
7979 6.32579 0.711707 0.355854 0.934542i 0.384190π-0.384190\pi
0.355854 + 0.934542i 0.384190π0.384190\pi
8080 −8.18188 −0.914762
8181 0 0
8282 −29.3060 −3.23630
8383 −9.03930 −0.992193 −0.496096 0.868268i 0.665234π-0.665234\pi
−0.496096 + 0.868268i 0.665234π0.665234\pi
8484 0 0
8585 3.55119 0.385181
8686 2.27732 0.245570
8787 0 0
8888 25.4531 2.71331
8989 1.46717 0.155520 0.0777599 0.996972i 0.475223π-0.475223\pi
0.0777599 + 0.996972i 0.475223π0.475223\pi
9090 0 0
9191 3.48748 0.365588
9292 −17.0405 −1.77660
9393 0 0
9494 −28.9047 −2.98129
9595 1.18909 0.121998
9696 0 0
9797 12.3993 1.25896 0.629478 0.777018i 0.283269π-0.283269\pi
0.629478 + 0.777018i 0.283269π0.283269\pi
9898 5.00924 0.506010
9999 0 0
100100 4.63069 0.463069
101101 3.45196 0.343483 0.171742 0.985142i 0.445061π-0.445061\pi
0.171742 + 0.985142i 0.445061π0.445061\pi
102102 0 0
103103 18.1975 1.79306 0.896528 0.442988i 0.146082π-0.146082\pi
0.896528 + 0.442988i 0.146082π0.146082\pi
104104 10.5078 1.03038
105105 0 0
106106 27.4412 2.66532
107107 8.07919 0.781044 0.390522 0.920594i 0.372294π-0.372294\pi
0.390522 + 0.920594i 0.372294π0.372294\pi
108108 0 0
109109 −14.0114 −1.34205 −0.671026 0.741434i 0.734146π-0.734146\pi
−0.671026 + 0.741434i 0.734146π0.734146\pi
110110 −9.67546 −0.922518
111111 0 0
112112 −18.3950 −1.73816
113113 −0.678491 −0.0638270 −0.0319135 0.999491i 0.510160π-0.510160\pi
−0.0319135 + 0.999491i 0.510160π0.510160\pi
114114 0 0
115115 3.67991 0.343153
116116 4.63069 0.429948
117117 0 0
118118 −21.8786 −2.01409
119119 7.98400 0.731892
120120 0 0
121121 3.11836 0.283488
122122 28.0014 2.53513
123123 0 0
124124 24.0291 2.15787
125125 −1.00000 −0.0894427
126126 0 0
127127 −8.39928 −0.745315 −0.372658 0.927969i 0.621553π-0.621553\pi
−0.372658 + 0.927969i 0.621553π0.621553\pi
128128 7.31254 0.646343
129129 0 0
130130 −3.99434 −0.350327
131131 7.34298 0.641559 0.320779 0.947154i 0.396055π-0.396055\pi
0.320779 + 0.947154i 0.396055π0.396055\pi
132132 0 0
133133 2.67339 0.231812
134134 10.4334 0.901308
135135 0 0
136136 24.0559 2.06278
137137 1.80353 0.154086 0.0770429 0.997028i 0.475452π-0.475452\pi
0.0770429 + 0.997028i 0.475452π0.475452\pi
138138 0 0
139139 0.707451 0.0600052 0.0300026 0.999550i 0.490448π-0.490448\pi
0.0300026 + 0.999550i 0.490448π0.490448\pi
140140 10.4110 0.879889
141141 0 0
142142 −16.4239 −1.37826
143143 5.82851 0.487405
144144 0 0
145145 −1.00000 −0.0830455
146146 8.39496 0.694772
147147 0 0
148148 4.48953 0.369037
149149 16.9930 1.39212 0.696062 0.717982i 0.254934π-0.254934\pi
0.696062 + 0.717982i 0.254934π0.254934\pi
150150 0 0
151151 7.86646 0.640163 0.320082 0.947390i 0.396290π-0.396290\pi
0.320082 + 0.947390i 0.396290π0.396290\pi
152152 8.05497 0.653344
153153 0 0
154154 −21.7529 −1.75290
155155 −5.18909 −0.416798
156156 0 0
157157 9.85591 0.786588 0.393294 0.919413i 0.371336π-0.371336\pi
0.393294 + 0.919413i 0.371336π0.371336\pi
158158 −16.2890 −1.29588
159159 0 0
160160 7.52034 0.594535
161161 8.27340 0.652035
162162 0 0
163163 16.5786 1.29853 0.649267 0.760560i 0.275076π-0.275076\pi
0.649267 + 0.760560i 0.275076π0.275076\pi
164164 52.7014 4.11529
165165 0 0
166166 23.2763 1.80659
167167 4.74360 0.367071 0.183536 0.983013i 0.441246π-0.441246\pi
0.183536 + 0.983013i 0.441246π0.441246\pi
168168 0 0
169169 −10.5938 −0.814908
170170 −9.14436 −0.701341
171171 0 0
172172 −4.09534 −0.312267
173173 19.8201 1.50689 0.753446 0.657510i 0.228390π-0.228390\pi
0.753446 + 0.657510i 0.228390π0.228390\pi
174174 0 0
175175 −2.24826 −0.169952
176176 −30.7429 −2.31734
177177 0 0
178178 −3.77798 −0.283172
179179 −7.42036 −0.554624 −0.277312 0.960780i 0.589443π-0.589443\pi
−0.277312 + 0.960780i 0.589443π0.589443\pi
180180 0 0
181181 19.8411 1.47478 0.737390 0.675468i 0.236058π-0.236058\pi
0.737390 + 0.675468i 0.236058π0.236058\pi
182182 −8.98031 −0.665665
183183 0 0
184184 24.9279 1.83771
185185 −0.969518 −0.0712804
186186 0 0
187187 13.3434 0.975766
188188 51.9797 3.79101
189189 0 0
190190 −3.06193 −0.222136
191191 −5.66409 −0.409839 −0.204920 0.978779i 0.565693π-0.565693\pi
−0.204920 + 0.978779i 0.565693π0.565693\pi
192192 0 0
193193 14.7896 1.06458 0.532289 0.846563i 0.321332π-0.321332\pi
0.532289 + 0.846563i 0.321332π0.321332\pi
194194 −31.9283 −2.29232
195195 0 0
196196 −9.00820 −0.643443
197197 −27.1349 −1.93328 −0.966640 0.256139i 0.917550π-0.917550\pi
−0.966640 + 0.256139i 0.917550π0.917550\pi
198198 0 0
199199 −9.53523 −0.675934 −0.337967 0.941158i 0.609739π-0.609739\pi
−0.337967 + 0.941158i 0.609739π0.609739\pi
200200 −6.77405 −0.478997
201201 0 0
202202 −8.88885 −0.625417
203203 −2.24826 −0.157797
204204 0 0
205205 −11.3809 −0.794877
206206 −46.8588 −3.26481
207207 0 0
208208 −12.6917 −0.880009
209209 4.46794 0.309054
210210 0 0
211211 21.5727 1.48513 0.742564 0.669775i 0.233609π-0.233609\pi
0.742564 + 0.669775i 0.233609π0.233609\pi
212212 −49.3479 −3.38923
213213 0 0
214214 −20.8040 −1.42213
215215 0.884393 0.0603151
216216 0 0
217217 −11.6664 −0.791969
218218 36.0796 2.44362
219219 0 0
220220 17.3995 1.17308
221221 5.50858 0.370547
222222 0 0
223223 22.5140 1.50765 0.753824 0.657076i 0.228207π-0.228207\pi
0.753824 + 0.657076i 0.228207π0.228207\pi
224224 16.9077 1.12969
225225 0 0
226226 1.74712 0.116217
227227 −8.38063 −0.556242 −0.278121 0.960546i 0.589712π-0.589712\pi
−0.278121 + 0.960546i 0.589712π0.589712\pi
228228 0 0
229229 −11.5492 −0.763192 −0.381596 0.924329i 0.624625π-0.624625\pi
−0.381596 + 0.924329i 0.624625π0.624625\pi
230230 −9.47581 −0.624817
231231 0 0
232232 −6.77405 −0.444738
233233 8.85319 0.579991 0.289996 0.957028i 0.406346π-0.406346\pi
0.289996 + 0.957028i 0.406346π0.406346\pi
234234 0 0
235235 −11.2251 −0.732242
236236 39.3447 2.56112
237237 0 0
238238 −20.5589 −1.33264
239239 −13.9536 −0.902584 −0.451292 0.892376i 0.649037π-0.649037\pi
−0.451292 + 0.892376i 0.649037π0.649037\pi
240240 0 0
241241 −24.2138 −1.55975 −0.779874 0.625937i 0.784717π-0.784717\pi
−0.779874 + 0.625937i 0.784717π0.784717\pi
242242 −8.02983 −0.516177
243243 0 0
244244 −50.3554 −3.22367
245245 1.94533 0.124282
246246 0 0
247247 1.84451 0.117363
248248 −35.1512 −2.23210
249249 0 0
250250 2.57501 0.162858
251251 10.1141 0.638397 0.319198 0.947688i 0.396586π-0.396586\pi
0.319198 + 0.947688i 0.396586π0.396586\pi
252252 0 0
253253 13.8270 0.869299
254254 21.6282 1.35708
255255 0 0
256256 −24.8323 −1.55202
257257 18.2290 1.13709 0.568546 0.822652i 0.307506π-0.307506\pi
0.568546 + 0.822652i 0.307506π0.307506\pi
258258 0 0
259259 −2.17973 −0.135442
260260 7.18308 0.445476
261261 0 0
262262 −18.9083 −1.16816
263263 −4.26573 −0.263036 −0.131518 0.991314i 0.541985π-0.541985\pi
−0.131518 + 0.991314i 0.541985π0.541985\pi
264264 0 0
265265 10.6567 0.654637
266266 −6.88401 −0.422086
267267 0 0
268268 −18.7626 −1.14611
269269 −8.10868 −0.494395 −0.247197 0.968965i 0.579510π-0.579510\pi
−0.247197 + 0.968965i 0.579510π0.579510\pi
270270 0 0
271271 26.9259 1.63563 0.817815 0.575481i 0.195185π-0.195185\pi
0.817815 + 0.575481i 0.195185π0.195185\pi
272272 −29.0554 −1.76174
273273 0 0
274274 −4.64410 −0.280561
275275 −3.75744 −0.226582
276276 0 0
277277 29.1380 1.75073 0.875367 0.483459i 0.160620π-0.160620\pi
0.875367 + 0.483459i 0.160620π0.160620\pi
278278 −1.82169 −0.109258
279279 0 0
280280 −15.2298 −0.910156
281281 −21.6594 −1.29209 −0.646047 0.763298i 0.723579π-0.723579\pi
−0.646047 + 0.763298i 0.723579π0.723579\pi
282282 0 0
283283 −16.1608 −0.960660 −0.480330 0.877088i 0.659483π-0.659483\pi
−0.480330 + 0.877088i 0.659483π0.659483\pi
284284 29.5354 1.75260
285285 0 0
286286 −15.0085 −0.887471
287287 −25.5872 −1.51037
288288 0 0
289289 −4.38903 −0.258178
290290 2.57501 0.151210
291291 0 0
292292 −15.0968 −0.883473
293293 −16.5348 −0.965975 −0.482988 0.875627i 0.660448π-0.660448\pi
−0.482988 + 0.875627i 0.660448π0.660448\pi
294294 0 0
295295 −8.49652 −0.494687
296296 −6.56756 −0.381732
297297 0 0
298298 −43.7573 −2.53479
299299 5.70825 0.330117
300300 0 0
301301 1.98834 0.114606
302302 −20.2562 −1.16561
303303 0 0
304304 −9.72901 −0.557997
305305 10.8743 0.622659
306306 0 0
307307 −25.3923 −1.44922 −0.724608 0.689161i 0.757979π-0.757979\pi
−0.724608 + 0.689161i 0.757979π0.757979\pi
308308 39.1187 2.22899
309309 0 0
310310 13.3620 0.758909
311311 −16.8950 −0.958030 −0.479015 0.877807i 0.659006π-0.659006\pi
−0.479015 + 0.877807i 0.659006π0.659006\pi
312312 0 0
313313 −22.1978 −1.25469 −0.627347 0.778740i 0.715859π-0.715859\pi
−0.627347 + 0.778740i 0.715859π0.715859\pi
314314 −25.3791 −1.43223
315315 0 0
316316 29.2927 1.64785
317317 26.1161 1.46683 0.733414 0.679783i 0.237926π-0.237926\pi
0.733414 + 0.679783i 0.237926π0.237926\pi
318318 0 0
319319 −3.75744 −0.210376
320320 −3.00121 −0.167773
321321 0 0
322322 −21.3041 −1.18723
323323 4.22270 0.234957
324324 0 0
325325 −1.55119 −0.0860447
326326 −42.6900 −2.36438
327327 0 0
328328 −77.0948 −4.25685
329329 −25.2369 −1.39135
330330 0 0
331331 24.3439 1.33806 0.669030 0.743236i 0.266710π-0.266710\pi
0.669030 + 0.743236i 0.266710π0.266710\pi
332332 −41.8582 −2.29727
333333 0 0
334334 −12.2148 −0.668366
335335 4.05179 0.221373
336336 0 0
337337 −23.5099 −1.28067 −0.640333 0.768098i 0.721204π-0.721204\pi
−0.640333 + 0.768098i 0.721204π0.721204\pi
338338 27.2792 1.48379
339339 0 0
340340 16.4445 0.891826
341341 −19.4977 −1.05586
342342 0 0
343343 20.1114 1.08591
344344 5.99092 0.323009
345345 0 0
346346 −51.0369 −2.74376
347347 29.9492 1.60776 0.803879 0.594793i 0.202766π-0.202766\pi
0.803879 + 0.594793i 0.202766π0.202766\pi
348348 0 0
349349 −17.0927 −0.914951 −0.457476 0.889222i 0.651246π-0.651246\pi
−0.457476 + 0.889222i 0.651246π0.651246\pi
350350 5.78930 0.309451
351351 0 0
352352 28.2572 1.50612
353353 6.40124 0.340704 0.170352 0.985383i 0.445510π-0.445510\pi
0.170352 + 0.985383i 0.445510π0.445510\pi
354354 0 0
355355 −6.37818 −0.338519
356356 6.79400 0.360082
357357 0 0
358358 19.1075 1.00986
359359 29.2509 1.54380 0.771902 0.635741i 0.219306π-0.219306\pi
0.771902 + 0.635741i 0.219306π0.219306\pi
360360 0 0
361361 −17.5861 −0.925582
362362 −51.0911 −2.68529
363363 0 0
364364 16.1494 0.846461
365365 3.26017 0.170645
366366 0 0
367367 −13.2919 −0.693832 −0.346916 0.937896i 0.612771π-0.612771\pi
−0.346916 + 0.937896i 0.612771π0.612771\pi
368368 −30.1086 −1.56952
369369 0 0
370370 2.49652 0.129788
371371 23.9591 1.24389
372372 0 0
373373 −19.7309 −1.02163 −0.510814 0.859691i 0.670656π-0.670656\pi
−0.510814 + 0.859691i 0.670656π0.670656\pi
374374 −34.3594 −1.77668
375375 0 0
376376 −76.0391 −3.92142
377377 −1.55119 −0.0798905
378378 0 0
379379 25.4806 1.30885 0.654424 0.756128i 0.272911π-0.272911\pi
0.654424 + 0.756128i 0.272911π0.272911\pi
380380 5.50631 0.282468
381381 0 0
382382 14.5851 0.746239
383383 0.542784 0.0277350 0.0138675 0.999904i 0.495586π-0.495586\pi
0.0138675 + 0.999904i 0.495586π0.495586\pi
384384 0 0
385385 −8.44770 −0.430535
386386 −38.0833 −1.93839
387387 0 0
388388 57.4171 2.91491
389389 −19.9301 −1.01050 −0.505249 0.862974i 0.668599π-0.668599\pi
−0.505249 + 0.862974i 0.668599π0.668599\pi
390390 0 0
391391 13.0681 0.660881
392392 13.1777 0.665576
393393 0 0
394394 69.8726 3.52013
395395 −6.32579 −0.318285
396396 0 0
397397 9.40286 0.471916 0.235958 0.971763i 0.424177π-0.424177\pi
0.235958 + 0.971763i 0.424177π0.424177\pi
398398 24.5533 1.23075
399399 0 0
400400 8.18188 0.409094
401401 9.37578 0.468204 0.234102 0.972212i 0.424785π-0.424785\pi
0.234102 + 0.972212i 0.424785π0.424785\pi
402402 0 0
403403 −8.04928 −0.400963
404404 15.9850 0.795282
405405 0 0
406406 5.78930 0.287318
407407 −3.64291 −0.180572
408408 0 0
409409 19.7204 0.975111 0.487556 0.873092i 0.337889π-0.337889\pi
0.487556 + 0.873092i 0.337889π0.337889\pi
410410 29.3060 1.44732
411411 0 0
412412 84.2670 4.15154
413413 −19.1024 −0.939967
414414 0 0
415415 9.03930 0.443722
416416 11.6655 0.571948
417417 0 0
418418 −11.5050 −0.562728
419419 −6.24026 −0.304857 −0.152428 0.988315i 0.548709π-0.548709\pi
−0.152428 + 0.988315i 0.548709π0.548709\pi
420420 0 0
421421 6.31722 0.307882 0.153941 0.988080i 0.450803π-0.450803\pi
0.153941 + 0.988080i 0.450803π0.450803\pi
422422 −55.5500 −2.70413
423423 0 0
424424 72.1891 3.50581
425425 −3.55119 −0.172258
426426 0 0
427427 24.4482 1.18313
428428 37.4122 1.80839
429429 0 0
430430 −2.27732 −0.109822
431431 −37.8006 −1.82079 −0.910396 0.413737i 0.864223π-0.864223\pi
−0.910396 + 0.413737i 0.864223π0.864223\pi
432432 0 0
433433 37.8447 1.81870 0.909350 0.416032i 0.136580π-0.136580\pi
0.909350 + 0.416032i 0.136580π0.136580\pi
434434 30.0412 1.44202
435435 0 0
436436 −64.8825 −3.10731
437437 4.37575 0.209321
438438 0 0
439439 −15.5318 −0.741291 −0.370646 0.928774i 0.620864π-0.620864\pi
−0.370646 + 0.928774i 0.620864π0.620864\pi
440440 −25.4531 −1.21343
441441 0 0
442442 −14.1847 −0.674696
443443 −5.24223 −0.249066 −0.124533 0.992215i 0.539743π-0.539743\pi
−0.124533 + 0.992215i 0.539743π0.539743\pi
444444 0 0
445445 −1.46717 −0.0695505
446446 −57.9738 −2.74514
447447 0 0
448448 −6.74749 −0.318789
449449 −28.0123 −1.32198 −0.660992 0.750393i 0.729864π-0.729864\pi
−0.660992 + 0.750393i 0.729864π0.729864\pi
450450 0 0
451451 −42.7631 −2.01364
452452 −3.14188 −0.147781
453453 0 0
454454 21.5802 1.01281
455455 −3.48748 −0.163496
456456 0 0
457457 1.90391 0.0890610 0.0445305 0.999008i 0.485821π-0.485821\pi
0.0445305 + 0.999008i 0.485821π0.485821\pi
458458 29.7393 1.38963
459459 0 0
460460 17.0405 0.794518
461461 30.5294 1.42190 0.710949 0.703244i 0.248266π-0.248266\pi
0.710949 + 0.703244i 0.248266π0.248266\pi
462462 0 0
463463 32.9230 1.53006 0.765030 0.643995i 0.222724π-0.222724\pi
0.765030 + 0.643995i 0.222724π0.222724\pi
464464 8.18188 0.379834
465465 0 0
466466 −22.7971 −1.05605
467467 −4.42775 −0.204892 −0.102446 0.994739i 0.532667π-0.532667\pi
−0.102446 + 0.994739i 0.532667π0.532667\pi
468468 0 0
469469 9.10947 0.420636
470470 28.9047 1.33327
471471 0 0
472472 −57.5558 −2.64922
473473 3.32305 0.152794
474474 0 0
475475 −1.18909 −0.0545593
476476 36.9714 1.69458
477477 0 0
478478 35.9307 1.64343
479479 −8.27071 −0.377898 −0.188949 0.981987i 0.560508π-0.560508\pi
−0.188949 + 0.981987i 0.560508π0.560508\pi
480480 0 0
481481 −1.50391 −0.0685723
482482 62.3508 2.84000
483483 0 0
484484 14.4402 0.656371
485485 −12.3993 −0.563022
486486 0 0
487487 39.9284 1.80933 0.904665 0.426124i 0.140121π-0.140121\pi
0.904665 + 0.426124i 0.140121π0.140121\pi
488488 73.6628 3.33456
489489 0 0
490490 −5.00924 −0.226294
491491 −33.3896 −1.50685 −0.753427 0.657532i 0.771601π-0.771601\pi
−0.753427 + 0.657532i 0.771601π0.771601\pi
492492 0 0
493493 −3.55119 −0.159938
494494 −4.74964 −0.213696
495495 0 0
496496 42.4565 1.90635
497497 −14.3398 −0.643229
498498 0 0
499499 −3.12737 −0.140000 −0.0700002 0.997547i 0.522300π-0.522300\pi
−0.0700002 + 0.997547i 0.522300π0.522300\pi
500500 −4.63069 −0.207091
501501 0 0
502502 −26.0439 −1.16240
503503 −17.2563 −0.769419 −0.384710 0.923038i 0.625698π-0.625698\pi
−0.384710 + 0.923038i 0.625698π0.625698\pi
504504 0 0
505505 −3.45196 −0.153610
506506 −35.6048 −1.58283
507507 0 0
508508 −38.8944 −1.72566
509509 −4.71879 −0.209157 −0.104578 0.994517i 0.533349π-0.533349\pi
−0.104578 + 0.994517i 0.533349π0.533349\pi
510510 0 0
511511 7.32970 0.324247
512512 49.3183 2.17958
513513 0 0
514514 −46.9398 −2.07043
515515 −18.1975 −0.801879
516516 0 0
517517 −42.1775 −1.85496
518518 5.61283 0.246613
519519 0 0
520520 −10.5078 −0.460800
521521 40.0385 1.75412 0.877060 0.480381i 0.159502π-0.159502\pi
0.877060 + 0.480381i 0.159502π0.159502\pi
522522 0 0
523523 −5.38694 −0.235555 −0.117777 0.993040i 0.537577π-0.537577\pi
−0.117777 + 0.993040i 0.537577π0.537577\pi
524524 34.0030 1.48543
525525 0 0
526526 10.9843 0.478939
527527 −18.4275 −0.802713
528528 0 0
529529 −9.45826 −0.411229
530530 −27.4412 −1.19197
531531 0 0
532532 12.3796 0.536725
533533 −17.6540 −0.764679
534534 0 0
535535 −8.07919 −0.349294
536536 27.4470 1.18553
537537 0 0
538538 20.8799 0.900198
539539 7.30945 0.314840
540540 0 0
541541 35.9892 1.54730 0.773649 0.633614i 0.218429π-0.218429\pi
0.773649 + 0.633614i 0.218429π0.218429\pi
542542 −69.3345 −2.97817
543543 0 0
544544 26.7062 1.14502
545545 14.0114 0.600184
546546 0 0
547547 24.2745 1.03790 0.518951 0.854804i 0.326323π-0.326323\pi
0.518951 + 0.854804i 0.326323π0.326323\pi
548548 8.35157 0.356761
549549 0 0
550550 9.67546 0.412563
551551 −1.18909 −0.0506570
552552 0 0
553553 −14.2220 −0.604782
554554 −75.0307 −3.18775
555555 0 0
556556 3.27598 0.138933
557557 −4.93097 −0.208932 −0.104466 0.994528i 0.533313π-0.533313\pi
−0.104466 + 0.994528i 0.533313π0.533313\pi
558558 0 0
559559 1.37186 0.0580236
560560 18.3950 0.777330
561561 0 0
562562 55.7733 2.35266
563563 −34.7020 −1.46252 −0.731258 0.682101i 0.761067π-0.761067\pi
−0.731258 + 0.682101i 0.761067π0.761067\pi
564564 0 0
565565 0.678491 0.0285443
566566 41.6142 1.74918
567567 0 0
568568 −43.2061 −1.81289
569569 19.9633 0.836903 0.418452 0.908239i 0.362573π-0.362573\pi
0.418452 + 0.908239i 0.362573π0.362573\pi
570570 0 0
571571 −7.22542 −0.302375 −0.151187 0.988505i 0.548310π-0.548310\pi
−0.151187 + 0.988505i 0.548310π0.548310\pi
572572 26.9900 1.12851
573573 0 0
574574 65.8875 2.75009
575575 −3.67991 −0.153463
576576 0 0
577577 17.6693 0.735581 0.367791 0.929909i 0.380114π-0.380114\pi
0.367791 + 0.929909i 0.380114π0.380114\pi
578578 11.3018 0.470093
579579 0 0
580580 −4.63069 −0.192279
581581 20.3227 0.843128
582582 0 0
583583 40.0420 1.65837
584584 22.0845 0.913864
585585 0 0
586586 42.5774 1.75886
587587 −13.1365 −0.542203 −0.271102 0.962551i 0.587388π-0.587388\pi
−0.271102 + 0.962551i 0.587388π0.587388\pi
588588 0 0
589589 −6.17031 −0.254243
590590 21.8786 0.900729
591591 0 0
592592 7.93248 0.326023
593593 −11.3675 −0.466807 −0.233403 0.972380i 0.574986π-0.574986\pi
−0.233403 + 0.972380i 0.574986π0.574986\pi
594594 0 0
595595 −7.98400 −0.327312
596596 78.6894 3.22324
597597 0 0
598598 −14.6988 −0.601079
599599 8.98828 0.367251 0.183626 0.982996i 0.441217π-0.441217\pi
0.183626 + 0.982996i 0.441217π0.441217\pi
600600 0 0
601601 −5.15704 −0.210360 −0.105180 0.994453i 0.533542π-0.533542\pi
−0.105180 + 0.994453i 0.533542π0.533542\pi
602602 −5.12001 −0.208676
603603 0 0
604604 36.4271 1.48220
605605 −3.11836 −0.126780
606606 0 0
607607 −36.3436 −1.47514 −0.737570 0.675271i 0.764027π-0.764027\pi
−0.737570 + 0.675271i 0.764027π0.764027\pi
608608 8.94238 0.362661
609609 0 0
610610 −28.0014 −1.13374
611611 −17.4122 −0.704423
612612 0 0
613613 18.9943 0.767171 0.383585 0.923505i 0.374689π-0.374689\pi
0.383585 + 0.923505i 0.374689π0.374689\pi
614614 65.3855 2.63874
615615 0 0
616616 −57.2251 −2.30567
617617 24.5060 0.986574 0.493287 0.869867i 0.335795π-0.335795\pi
0.493287 + 0.869867i 0.335795π0.335795\pi
618618 0 0
619619 12.5314 0.503680 0.251840 0.967769i 0.418964π-0.418964\pi
0.251840 + 0.967769i 0.418964π0.418964\pi
620620 −24.0291 −0.965030
621621 0 0
622622 43.5049 1.74439
623623 −3.29858 −0.132155
624624 0 0
625625 1.00000 0.0400000
626626 57.1596 2.28456
627627 0 0
628628 45.6396 1.82122
629629 −3.44294 −0.137279
630630 0 0
631631 17.8019 0.708681 0.354340 0.935116i 0.384705π-0.384705\pi
0.354340 + 0.935116i 0.384705π0.384705\pi
632632 −42.8512 −1.70453
633633 0 0
634634 −67.2493 −2.67081
635635 8.39928 0.333315
636636 0 0
637637 3.01758 0.119561
638638 9.67546 0.383055
639639 0 0
640640 −7.31254 −0.289053
641641 −20.3973 −0.805644 −0.402822 0.915278i 0.631971π-0.631971\pi
−0.402822 + 0.915278i 0.631971π0.631971\pi
642642 0 0
643643 −23.6531 −0.932787 −0.466394 0.884577i 0.654447π-0.654447\pi
−0.466394 + 0.884577i 0.654447π0.654447\pi
644644 38.3115 1.50968
645645 0 0
646646 −10.8735 −0.427812
647647 17.5789 0.691096 0.345548 0.938401i 0.387693π-0.387693\pi
0.345548 + 0.938401i 0.387693π0.387693\pi
648648 0 0
649649 −31.9252 −1.25317
650650 3.99434 0.156671
651651 0 0
652652 76.7702 3.00655
653653 −10.4035 −0.407121 −0.203560 0.979062i 0.565251π-0.565251\pi
−0.203560 + 0.979062i 0.565251π0.565251\pi
654654 0 0
655655 −7.34298 −0.286914
656656 93.1172 3.63562
657657 0 0
658658 64.9852 2.53339
659659 43.5638 1.69700 0.848502 0.529192i 0.177505π-0.177505\pi
0.848502 + 0.529192i 0.177505π0.177505\pi
660660 0 0
661661 18.2404 0.709469 0.354734 0.934967i 0.384571π-0.384571\pi
0.354734 + 0.934967i 0.384571π0.384571\pi
662662 −62.6857 −2.43635
663663 0 0
664664 61.2327 2.37629
665665 −2.67339 −0.103670
666666 0 0
667667 −3.67991 −0.142487
668668 21.9661 0.849895
669669 0 0
670670 −10.4334 −0.403077
671671 40.8595 1.57736
672672 0 0
673673 −25.8626 −0.996929 −0.498464 0.866910i 0.666103π-0.666103\pi
−0.498464 + 0.866910i 0.666103π0.666103\pi
674674 60.5383 2.33185
675675 0 0
676676 −49.0566 −1.88679
677677 −30.3287 −1.16563 −0.582813 0.812606i 0.698048π-0.698048\pi
−0.582813 + 0.812606i 0.698048π0.698048\pi
678678 0 0
679679 −27.8768 −1.06981
680680 −24.0559 −0.922503
681681 0 0
682682 50.2068 1.92252
683683 −39.4637 −1.51004 −0.755018 0.655704i 0.772372π-0.772372\pi
−0.755018 + 0.655704i 0.772372π0.772372\pi
684684 0 0
685685 −1.80353 −0.0689092
686686 −51.7871 −1.97724
687687 0 0
688688 −7.23599 −0.275870
689689 16.5306 0.629766
690690 0 0
691691 −24.5853 −0.935269 −0.467635 0.883922i 0.654894π-0.654894\pi
−0.467635 + 0.883922i 0.654894π0.654894\pi
692692 91.7805 3.48897
693693 0 0
694694 −77.1196 −2.92742
695695 −0.707451 −0.0268351
696696 0 0
697697 −40.4158 −1.53086
698698 44.0139 1.66595
699699 0 0
700700 −10.4110 −0.393498
701701 −34.8635 −1.31678 −0.658388 0.752678i 0.728762π-0.728762\pi
−0.658388 + 0.752678i 0.728762π0.728762\pi
702702 0 0
703703 −1.15285 −0.0434804
704704 −11.2769 −0.425012
705705 0 0
706706 −16.4833 −0.620356
707707 −7.76091 −0.291879
708708 0 0
709709 −24.4622 −0.918698 −0.459349 0.888256i 0.651917π-0.651917\pi
−0.459349 + 0.888256i 0.651917π0.651917\pi
710710 16.4239 0.616378
711711 0 0
712712 −9.93868 −0.372468
713713 −19.0954 −0.715128
714714 0 0
715715 −5.82851 −0.217974
716716 −34.3613 −1.28414
717717 0 0
718718 −75.3214 −2.81097
719719 −27.1333 −1.01190 −0.505951 0.862562i 0.668858π-0.668858\pi
−0.505951 + 0.862562i 0.668858π0.668858\pi
720720 0 0
721721 −40.9128 −1.52367
722722 45.2843 1.68531
723723 0 0
724724 91.8780 3.41462
725725 1.00000 0.0371391
726726 0 0
727727 33.9854 1.26045 0.630224 0.776413i 0.282963π-0.282963\pi
0.630224 + 0.776413i 0.282963π0.282963\pi
728728 −23.6244 −0.875578
729729 0 0
730730 −8.39496 −0.310712
731731 3.14065 0.116161
732732 0 0
733733 17.2131 0.635779 0.317889 0.948128i 0.397026π-0.397026\pi
0.317889 + 0.948128i 0.397026π0.397026\pi
734734 34.2268 1.26333
735735 0 0
736736 27.6742 1.02008
737737 15.2244 0.560796
738738 0 0
739739 −12.5603 −0.462039 −0.231019 0.972949i 0.574206π-0.574206\pi
−0.231019 + 0.972949i 0.574206π0.574206\pi
740740 −4.48953 −0.165038
741741 0 0
742742 −61.6949 −2.26489
743743 43.0323 1.57870 0.789350 0.613943i 0.210418π-0.210418\pi
0.789350 + 0.613943i 0.210418π0.210418\pi
744744 0 0
745745 −16.9930 −0.622577
746746 50.8073 1.86019
747747 0 0
748748 61.7891 2.25923
749749 −18.1641 −0.663702
750750 0 0
751751 −12.4133 −0.452969 −0.226485 0.974015i 0.572723π-0.572723\pi
−0.226485 + 0.974015i 0.572723π0.572723\pi
752752 91.8421 3.34914
753753 0 0
754754 3.99434 0.145465
755755 −7.86646 −0.286290
756756 0 0
757757 18.0439 0.655815 0.327907 0.944710i 0.393657π-0.393657\pi
0.327907 + 0.944710i 0.393657π0.393657\pi
758758 −65.6127 −2.38316
759759 0 0
760760 −8.05497 −0.292184
761761 −8.20477 −0.297423 −0.148711 0.988881i 0.547513π-0.547513\pi
−0.148711 + 0.988881i 0.547513π0.547513\pi
762762 0 0
763763 31.5013 1.14043
764764 −26.2286 −0.948919
765765 0 0
766766 −1.39768 −0.0505001
767767 −13.1797 −0.475893
768768 0 0
769769 −23.5524 −0.849320 −0.424660 0.905353i 0.639606π-0.639606\pi
−0.424660 + 0.905353i 0.639606π0.639606\pi
770770 21.7529 0.783921
771771 0 0
772772 68.4859 2.46486
773773 −27.2326 −0.979487 −0.489743 0.871867i 0.662910π-0.662910\pi
−0.489743 + 0.871867i 0.662910π0.662910\pi
774774 0 0
775775 5.18909 0.186398
776776 −83.9933 −3.01518
777777 0 0
778778 51.3203 1.83992
779779 −13.5330 −0.484868
780780 0 0
781781 −23.9657 −0.857559
782782 −33.6504 −1.20334
783783 0 0
784784 −15.9164 −0.568444
785785 −9.85591 −0.351773
786786 0 0
787787 20.2585 0.722137 0.361069 0.932539i 0.382412π-0.382412\pi
0.361069 + 0.932539i 0.382412π0.382412\pi
788788 −125.653 −4.47621
789789 0 0
790790 16.2890 0.579536
791791 1.52542 0.0542378
792792 0 0
793793 16.8681 0.599004
794794 −24.2125 −0.859269
795795 0 0
796796 −44.1546 −1.56502
797797 27.8574 0.986761 0.493381 0.869814i 0.335761π-0.335761\pi
0.493381 + 0.869814i 0.335761π0.335761\pi
798798 0 0
799799 −39.8624 −1.41023
800800 −7.52034 −0.265884
801801 0 0
802802 −24.1427 −0.852510
803803 12.2499 0.432289
804804 0 0
805805 −8.27340 −0.291599
806806 20.7270 0.730077
807807 0 0
808808 −23.3838 −0.822638
809809 −17.5060 −0.615477 −0.307739 0.951471i 0.599572π-0.599572\pi
−0.307739 + 0.951471i 0.599572π0.599572\pi
810810 0 0
811811 39.1690 1.37541 0.687704 0.725991i 0.258619π-0.258619\pi
0.687704 + 0.725991i 0.258619π0.258619\pi
812812 −10.4110 −0.365354
813813 0 0
814814 9.38053 0.328787
815815 −16.5786 −0.580722
816816 0 0
817817 1.05162 0.0367917
818818 −50.7803 −1.77549
819819 0 0
820820 −52.7014 −1.84041
821821 19.8338 0.692203 0.346101 0.938197i 0.387505π-0.387505\pi
0.346101 + 0.938197i 0.387505π0.387505\pi
822822 0 0
823823 10.3727 0.361568 0.180784 0.983523i 0.442136π-0.442136\pi
0.180784 + 0.983523i 0.442136π0.442136\pi
824824 −123.271 −4.29434
825825 0 0
826826 49.1889 1.71150
827827 −3.35272 −0.116586 −0.0582928 0.998300i 0.518566π-0.518566\pi
−0.0582928 + 0.998300i 0.518566π0.518566\pi
828828 0 0
829829 −43.0572 −1.49544 −0.747719 0.664015i 0.768851π-0.768851\pi
−0.747719 + 0.664015i 0.768851π0.768851\pi
830830 −23.2763 −0.807933
831831 0 0
832832 −4.65545 −0.161399
833833 6.90823 0.239356
834834 0 0
835835 −4.74360 −0.164159
836836 20.6896 0.715566
837837 0 0
838838 16.0688 0.555086
839839 39.3736 1.35933 0.679664 0.733523i 0.262125π-0.262125\pi
0.679664 + 0.733523i 0.262125π0.262125\pi
840840 0 0
841841 1.00000 0.0344828
842842 −16.2669 −0.560595
843843 0 0
844844 99.8965 3.43858
845845 10.5938 0.364438
846846 0 0
847847 −7.01089 −0.240897
848848 −87.1919 −2.99418
849849 0 0
850850 9.14436 0.313649
851851 −3.56774 −0.122301
852852 0 0
853853 −45.2743 −1.55016 −0.775081 0.631862i 0.782291π-0.782291\pi
−0.775081 + 0.631862i 0.782291π0.782291\pi
854854 −62.9544 −2.15426
855855 0 0
856856 −54.7288 −1.87059
857857 −24.1619 −0.825353 −0.412677 0.910878i 0.635406π-0.635406\pi
−0.412677 + 0.910878i 0.635406π0.635406\pi
858858 0 0
859859 −22.3680 −0.763185 −0.381593 0.924331i 0.624624π-0.624624\pi
−0.381593 + 0.924331i 0.624624π0.624624\pi
860860 4.09534 0.139650
861861 0 0
862862 97.3371 3.31531
863863 2.98467 0.101599 0.0507997 0.998709i 0.483823π-0.483823\pi
0.0507997 + 0.998709i 0.483823π0.483823\pi
864864 0 0
865865 −19.8201 −0.673902
866866 −97.4505 −3.31150
867867 0 0
868868 −54.0236 −1.83368
869869 −23.7688 −0.806301
870870 0 0
871871 6.28510 0.212963
872872 94.9141 3.21420
873873 0 0
874874 −11.2676 −0.381133
875875 2.24826 0.0760051
876876 0 0
877877 29.5037 0.996269 0.498135 0.867100i 0.334019π-0.334019\pi
0.498135 + 0.867100i 0.334019π0.334019\pi
878878 39.9945 1.34975
879879 0 0
880880 30.7429 1.03634
881881 52.0937 1.75508 0.877541 0.479502i 0.159183π-0.159183\pi
0.877541 + 0.479502i 0.159183π0.159183\pi
882882 0 0
883883 22.2221 0.747832 0.373916 0.927463i 0.378015π-0.378015\pi
0.373916 + 0.927463i 0.378015π0.378015\pi
884884 25.5085 0.857944
885885 0 0
886886 13.4988 0.453502
887887 38.6220 1.29680 0.648400 0.761300i 0.275438π-0.275438\pi
0.648400 + 0.761300i 0.275438π0.275438\pi
888888 0 0
889889 18.8838 0.633341
890890 3.77798 0.126638
891891 0 0
892892 104.255 3.49072
893893 −13.3476 −0.446662
894894 0 0
895895 7.42036 0.248035
896896 −16.4405 −0.549238
897897 0 0
898898 72.1321 2.40708
899899 5.18909 0.173066
900900 0 0
901901 37.8440 1.26077
902902 110.116 3.66645
903903 0 0
904904 4.59613 0.152865
905905 −19.8411 −0.659541
906906 0 0
907907 −29.7861 −0.989030 −0.494515 0.869169i 0.664654π-0.664654\pi
−0.494515 + 0.869169i 0.664654π0.664654\pi
908908 −38.8080 −1.28789
909909 0 0
910910 8.98031 0.297694
911911 53.7163 1.77970 0.889850 0.456254i 0.150809π-0.150809\pi
0.889850 + 0.456254i 0.150809π0.150809\pi
912912 0 0
913913 33.9647 1.12407
914914 −4.90258 −0.162163
915915 0 0
916916 −53.4807 −1.76705
917917 −16.5089 −0.545173
918918 0 0
919919 52.0358 1.71650 0.858251 0.513231i 0.171551π-0.171551\pi
0.858251 + 0.513231i 0.171551π0.171551\pi
920920 −24.9279 −0.821848
921921 0 0
922922 −78.6137 −2.58900
923923 −9.89379 −0.325658
924924 0 0
925925 0.969518 0.0318775
926926 −84.7770 −2.78595
927927 0 0
928928 −7.52034 −0.246867
929929 −52.5081 −1.72273 −0.861367 0.507982i 0.830391π-0.830391\pi
−0.861367 + 0.507982i 0.830391π0.830391\pi
930930 0 0
931931 2.31317 0.0758112
932932 40.9963 1.34288
933933 0 0
934934 11.4015 0.373068
935935 −13.3434 −0.436376
936936 0 0
937937 46.1947 1.50912 0.754558 0.656233i 0.227851π-0.227851\pi
0.754558 + 0.656233i 0.227851π0.227851\pi
938938 −23.4570 −0.765898
939939 0 0
940940 −51.9797 −1.69539
941941 29.8642 0.973545 0.486773 0.873529i 0.338174π-0.338174\pi
0.486773 + 0.873529i 0.338174π0.338174\pi
942942 0 0
943943 −41.8807 −1.36382
944944 69.5175 2.26260
945945 0 0
946946 −8.55690 −0.278209
947947 11.7523 0.381898 0.190949 0.981600i 0.438843π-0.438843\pi
0.190949 + 0.981600i 0.438843π0.438843\pi
948948 0 0
949949 5.05714 0.164162
950950 3.06193 0.0993420
951951 0 0
952952 −54.0840 −1.75287
953953 −17.1653 −0.556040 −0.278020 0.960575i 0.589678π-0.589678\pi
−0.278020 + 0.960575i 0.589678π0.589678\pi
954954 0 0
955955 5.66409 0.183286
956956 −64.6147 −2.08979
957957 0 0
958958 21.2972 0.688081
959959 −4.05480 −0.130936
960960 0 0
961961 −4.07332 −0.131397
962962 3.87258 0.124857
963963 0 0
964964 −112.126 −3.61135
965965 −14.7896 −0.476093
966966 0 0
967967 20.2076 0.649831 0.324916 0.945743i 0.394664π-0.394664\pi
0.324916 + 0.945743i 0.394664π0.394664\pi
968968 −21.1239 −0.678949
969969 0 0
970970 31.9283 1.02516
971971 24.7827 0.795315 0.397658 0.917534i 0.369823π-0.369823\pi
0.397658 + 0.917534i 0.369823π0.369823\pi
972972 0 0
973973 −1.59053 −0.0509902
974974 −102.816 −3.29444
975975 0 0
976976 −88.9720 −2.84792
977977 38.5423 1.23308 0.616539 0.787324i 0.288534π-0.288534\pi
0.616539 + 0.787324i 0.288534π0.288534\pi
978978 0 0
979979 −5.51281 −0.176190
980980 9.00820 0.287756
981981 0 0
982982 85.9787 2.74369
983983 13.0762 0.417065 0.208532 0.978015i 0.433131π-0.433131\pi
0.208532 + 0.978015i 0.433131π0.433131\pi
984984 0 0
985985 27.1349 0.864589
986986 9.14436 0.291216
987987 0 0
988988 8.54135 0.271737
989989 3.25449 0.103487
990990 0 0
991991 −36.8186 −1.16958 −0.584791 0.811184i 0.698823π-0.698823\pi
−0.584791 + 0.811184i 0.698823π0.698823\pi
992992 −39.0237 −1.23900
993993 0 0
994994 36.9252 1.17120
995995 9.53523 0.302287
996996 0 0
997997 −18.5570 −0.587707 −0.293854 0.955850i 0.594938π-0.594938\pi
−0.293854 + 0.955850i 0.594938π0.594938\pi
998998 8.05302 0.254914
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.a.s.1.1 7
3.2 odd 2 1305.2.a.t.1.7 yes 7
5.4 even 2 6525.2.a.bw.1.7 7
15.14 odd 2 6525.2.a.bv.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.2.a.s.1.1 7 1.1 even 1 trivial
1305.2.a.t.1.7 yes 7 3.2 odd 2
6525.2.a.bv.1.1 7 15.14 odd 2
6525.2.a.bw.1.7 7 5.4 even 2