Properties

Label 1305.2.a.s.1.5
Level $1305$
Weight $2$
Character 1305.1
Self dual yes
Analytic conductor $10.420$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 13x^{5} + 12x^{4} + 47x^{3} - 37x^{2} - 35x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.897436\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.897436 q^{2} -1.19461 q^{4} -1.00000 q^{5} +3.83036 q^{7} -2.86696 q^{8} -0.897436 q^{10} -2.82632 q^{11} +0.989088 q^{13} +3.43750 q^{14} -0.183696 q^{16} -1.01091 q^{17} +5.13268 q^{19} +1.19461 q^{20} -2.53645 q^{22} +7.78936 q^{23} +1.00000 q^{25} +0.887643 q^{26} -4.57577 q^{28} +1.00000 q^{29} -1.13268 q^{31} +5.56906 q^{32} -0.907229 q^{34} -3.83036 q^{35} +10.7648 q^{37} +4.60625 q^{38} +2.86696 q^{40} +2.58070 q^{41} -4.24141 q^{43} +3.37635 q^{44} +6.99045 q^{46} +0.252519 q^{47} +7.67162 q^{49} +0.897436 q^{50} -1.18157 q^{52} +5.70648 q^{53} +2.82632 q^{55} -10.9815 q^{56} +0.897436 q^{58} -3.66071 q^{59} -10.3820 q^{61} -1.01651 q^{62} +5.36527 q^{64} -0.989088 q^{65} +3.75939 q^{67} +1.20764 q^{68} -3.43750 q^{70} -6.26536 q^{71} +10.7545 q^{73} +9.66071 q^{74} -6.13154 q^{76} -10.8258 q^{77} +10.7853 q^{79} +0.183696 q^{80} +2.31601 q^{82} +1.06004 q^{83} +1.01091 q^{85} -3.80639 q^{86} +8.10295 q^{88} +14.3024 q^{89} +3.78856 q^{91} -9.30523 q^{92} +0.226620 q^{94} -5.13268 q^{95} +13.8941 q^{97} +6.88479 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - q^{2} + 13 q^{4} - 7 q^{5} + 10 q^{7} + q^{10} + 3 q^{11} + 6 q^{13} + 9 q^{14} + 21 q^{16} - 8 q^{17} + 10 q^{19} - 13 q^{20} + 9 q^{22} - 11 q^{23} + 7 q^{25} - 3 q^{26} + 25 q^{28} + 7 q^{29}+ \cdots + 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.897436 0.634583 0.317292 0.948328i \(-0.397227\pi\)
0.317292 + 0.948328i \(0.397227\pi\)
\(3\) 0 0
\(4\) −1.19461 −0.597304
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 3.83036 1.44774 0.723869 0.689937i \(-0.242362\pi\)
0.723869 + 0.689937i \(0.242362\pi\)
\(8\) −2.86696 −1.01362
\(9\) 0 0
\(10\) −0.897436 −0.283794
\(11\) −2.82632 −0.852169 −0.426084 0.904683i \(-0.640107\pi\)
−0.426084 + 0.904683i \(0.640107\pi\)
\(12\) 0 0
\(13\) 0.989088 0.274324 0.137162 0.990549i \(-0.456202\pi\)
0.137162 + 0.990549i \(0.456202\pi\)
\(14\) 3.43750 0.918711
\(15\) 0 0
\(16\) −0.183696 −0.0459240
\(17\) −1.01091 −0.245182 −0.122591 0.992457i \(-0.539120\pi\)
−0.122591 + 0.992457i \(0.539120\pi\)
\(18\) 0 0
\(19\) 5.13268 1.17752 0.588759 0.808309i \(-0.299617\pi\)
0.588759 + 0.808309i \(0.299617\pi\)
\(20\) 1.19461 0.267122
\(21\) 0 0
\(22\) −2.53645 −0.540772
\(23\) 7.78936 1.62419 0.812097 0.583523i \(-0.198326\pi\)
0.812097 + 0.583523i \(0.198326\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0.887643 0.174081
\(27\) 0 0
\(28\) −4.57577 −0.864740
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −1.13268 −0.203435 −0.101718 0.994813i \(-0.532434\pi\)
−0.101718 + 0.994813i \(0.532434\pi\)
\(32\) 5.56906 0.984480
\(33\) 0 0
\(34\) −0.907229 −0.155589
\(35\) −3.83036 −0.647448
\(36\) 0 0
\(37\) 10.7648 1.76972 0.884860 0.465857i \(-0.154254\pi\)
0.884860 + 0.465857i \(0.154254\pi\)
\(38\) 4.60625 0.747233
\(39\) 0 0
\(40\) 2.86696 0.453306
\(41\) 2.58070 0.403037 0.201519 0.979485i \(-0.435412\pi\)
0.201519 + 0.979485i \(0.435412\pi\)
\(42\) 0 0
\(43\) −4.24141 −0.646809 −0.323404 0.946261i \(-0.604827\pi\)
−0.323404 + 0.946261i \(0.604827\pi\)
\(44\) 3.37635 0.509004
\(45\) 0 0
\(46\) 6.99045 1.03069
\(47\) 0.252519 0.0368337 0.0184168 0.999830i \(-0.494137\pi\)
0.0184168 + 0.999830i \(0.494137\pi\)
\(48\) 0 0
\(49\) 7.67162 1.09595
\(50\) 0.897436 0.126917
\(51\) 0 0
\(52\) −1.18157 −0.163855
\(53\) 5.70648 0.783846 0.391923 0.919998i \(-0.371810\pi\)
0.391923 + 0.919998i \(0.371810\pi\)
\(54\) 0 0
\(55\) 2.82632 0.381101
\(56\) −10.9815 −1.46746
\(57\) 0 0
\(58\) 0.897436 0.117839
\(59\) −3.66071 −0.476584 −0.238292 0.971194i \(-0.576588\pi\)
−0.238292 + 0.971194i \(0.576588\pi\)
\(60\) 0 0
\(61\) −10.3820 −1.32927 −0.664637 0.747166i \(-0.731414\pi\)
−0.664637 + 0.747166i \(0.731414\pi\)
\(62\) −1.01651 −0.129096
\(63\) 0 0
\(64\) 5.36527 0.670659
\(65\) −0.989088 −0.122681
\(66\) 0 0
\(67\) 3.75939 0.459283 0.229641 0.973275i \(-0.426245\pi\)
0.229641 + 0.973275i \(0.426245\pi\)
\(68\) 1.20764 0.146448
\(69\) 0 0
\(70\) −3.43750 −0.410860
\(71\) −6.26536 −0.743561 −0.371781 0.928321i \(-0.621253\pi\)
−0.371781 + 0.928321i \(0.621253\pi\)
\(72\) 0 0
\(73\) 10.7545 1.25872 0.629359 0.777115i \(-0.283318\pi\)
0.629359 + 0.777115i \(0.283318\pi\)
\(74\) 9.66071 1.12303
\(75\) 0 0
\(76\) −6.13154 −0.703336
\(77\) −10.8258 −1.23372
\(78\) 0 0
\(79\) 10.7853 1.21344 0.606722 0.794914i \(-0.292484\pi\)
0.606722 + 0.794914i \(0.292484\pi\)
\(80\) 0.183696 0.0205378
\(81\) 0 0
\(82\) 2.31601 0.255761
\(83\) 1.06004 0.116355 0.0581773 0.998306i \(-0.481471\pi\)
0.0581773 + 0.998306i \(0.481471\pi\)
\(84\) 0 0
\(85\) 1.01091 0.109649
\(86\) −3.80639 −0.410454
\(87\) 0 0
\(88\) 8.10295 0.863777
\(89\) 14.3024 1.51606 0.758028 0.652222i \(-0.226163\pi\)
0.758028 + 0.652222i \(0.226163\pi\)
\(90\) 0 0
\(91\) 3.78856 0.397149
\(92\) −9.30523 −0.970137
\(93\) 0 0
\(94\) 0.226620 0.0233740
\(95\) −5.13268 −0.526602
\(96\) 0 0
\(97\) 13.8941 1.41073 0.705364 0.708845i \(-0.250784\pi\)
0.705364 + 0.708845i \(0.250784\pi\)
\(98\) 6.88479 0.695469
\(99\) 0 0
\(100\) −1.19461 −0.119461
\(101\) −14.4729 −1.44011 −0.720053 0.693919i \(-0.755883\pi\)
−0.720053 + 0.693919i \(0.755883\pi\)
\(102\) 0 0
\(103\) 8.70934 0.858157 0.429079 0.903267i \(-0.358838\pi\)
0.429079 + 0.903267i \(0.358838\pi\)
\(104\) −2.83567 −0.278061
\(105\) 0 0
\(106\) 5.12121 0.497415
\(107\) −1.89530 −0.183226 −0.0916129 0.995795i \(-0.529202\pi\)
−0.0916129 + 0.995795i \(0.529202\pi\)
\(108\) 0 0
\(109\) 6.62461 0.634522 0.317261 0.948338i \(-0.397237\pi\)
0.317261 + 0.948338i \(0.397237\pi\)
\(110\) 2.53645 0.241841
\(111\) 0 0
\(112\) −0.703621 −0.0664859
\(113\) 1.00061 0.0941294 0.0470647 0.998892i \(-0.485013\pi\)
0.0470647 + 0.998892i \(0.485013\pi\)
\(114\) 0 0
\(115\) −7.78936 −0.726361
\(116\) −1.19461 −0.110917
\(117\) 0 0
\(118\) −3.28526 −0.302432
\(119\) −3.87215 −0.354960
\(120\) 0 0
\(121\) −3.01190 −0.273809
\(122\) −9.31715 −0.843535
\(123\) 0 0
\(124\) 1.35311 0.121513
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −9.89406 −0.877955 −0.438978 0.898498i \(-0.644659\pi\)
−0.438978 + 0.898498i \(0.644659\pi\)
\(128\) −6.32313 −0.558891
\(129\) 0 0
\(130\) −0.887643 −0.0778515
\(131\) 13.1169 1.14603 0.573013 0.819546i \(-0.305774\pi\)
0.573013 + 0.819546i \(0.305774\pi\)
\(132\) 0 0
\(133\) 19.6600 1.70474
\(134\) 3.37381 0.291453
\(135\) 0 0
\(136\) 2.89824 0.248522
\(137\) 0.0709655 0.00606299 0.00303149 0.999995i \(-0.499035\pi\)
0.00303149 + 0.999995i \(0.499035\pi\)
\(138\) 0 0
\(139\) −12.2462 −1.03871 −0.519354 0.854559i \(-0.673827\pi\)
−0.519354 + 0.854559i \(0.673827\pi\)
\(140\) 4.57577 0.386723
\(141\) 0 0
\(142\) −5.62276 −0.471851
\(143\) −2.79548 −0.233770
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 9.65147 0.798761
\(147\) 0 0
\(148\) −12.8597 −1.05706
\(149\) −7.32142 −0.599794 −0.299897 0.953972i \(-0.596952\pi\)
−0.299897 + 0.953972i \(0.596952\pi\)
\(150\) 0 0
\(151\) −23.3800 −1.90264 −0.951318 0.308211i \(-0.900270\pi\)
−0.951318 + 0.308211i \(0.900270\pi\)
\(152\) −14.7152 −1.19356
\(153\) 0 0
\(154\) −9.71549 −0.782896
\(155\) 1.13268 0.0909789
\(156\) 0 0
\(157\) −0.931394 −0.0743333 −0.0371667 0.999309i \(-0.511833\pi\)
−0.0371667 + 0.999309i \(0.511833\pi\)
\(158\) 9.67914 0.770031
\(159\) 0 0
\(160\) −5.56906 −0.440273
\(161\) 29.8360 2.35141
\(162\) 0 0
\(163\) −1.03087 −0.0807441 −0.0403721 0.999185i \(-0.512854\pi\)
−0.0403721 + 0.999185i \(0.512854\pi\)
\(164\) −3.08292 −0.240736
\(165\) 0 0
\(166\) 0.951319 0.0738366
\(167\) −22.4729 −1.73900 −0.869502 0.493930i \(-0.835560\pi\)
−0.869502 + 0.493930i \(0.835560\pi\)
\(168\) 0 0
\(169\) −12.0217 −0.924747
\(170\) 0.907229 0.0695813
\(171\) 0 0
\(172\) 5.06682 0.386341
\(173\) −21.2142 −1.61289 −0.806444 0.591310i \(-0.798611\pi\)
−0.806444 + 0.591310i \(0.798611\pi\)
\(174\) 0 0
\(175\) 3.83036 0.289548
\(176\) 0.519184 0.0391350
\(177\) 0 0
\(178\) 12.8355 0.962064
\(179\) 10.8003 0.807249 0.403625 0.914925i \(-0.367750\pi\)
0.403625 + 0.914925i \(0.367750\pi\)
\(180\) 0 0
\(181\) −0.438278 −0.0325770 −0.0162885 0.999867i \(-0.505185\pi\)
−0.0162885 + 0.999867i \(0.505185\pi\)
\(182\) 3.39999 0.252024
\(183\) 0 0
\(184\) −22.3318 −1.64632
\(185\) −10.7648 −0.791443
\(186\) 0 0
\(187\) 2.85716 0.208937
\(188\) −0.301661 −0.0220009
\(189\) 0 0
\(190\) −4.60625 −0.334173
\(191\) 2.64477 0.191369 0.0956844 0.995412i \(-0.469496\pi\)
0.0956844 + 0.995412i \(0.469496\pi\)
\(192\) 0 0
\(193\) −16.4494 −1.18406 −0.592028 0.805917i \(-0.701673\pi\)
−0.592028 + 0.805917i \(0.701673\pi\)
\(194\) 12.4690 0.895224
\(195\) 0 0
\(196\) −9.16458 −0.654613
\(197\) −22.1732 −1.57977 −0.789887 0.613253i \(-0.789861\pi\)
−0.789887 + 0.613253i \(0.789861\pi\)
\(198\) 0 0
\(199\) 11.4778 0.813638 0.406819 0.913509i \(-0.366638\pi\)
0.406819 + 0.913509i \(0.366638\pi\)
\(200\) −2.86696 −0.202724
\(201\) 0 0
\(202\) −12.9885 −0.913867
\(203\) 3.83036 0.268838
\(204\) 0 0
\(205\) −2.58070 −0.180244
\(206\) 7.81608 0.544572
\(207\) 0 0
\(208\) −0.181691 −0.0125980
\(209\) −14.5066 −1.00344
\(210\) 0 0
\(211\) 10.2941 0.708673 0.354337 0.935118i \(-0.384707\pi\)
0.354337 + 0.935118i \(0.384707\pi\)
\(212\) −6.81701 −0.468194
\(213\) 0 0
\(214\) −1.70091 −0.116272
\(215\) 4.24141 0.289262
\(216\) 0 0
\(217\) −4.33856 −0.294521
\(218\) 5.94516 0.402657
\(219\) 0 0
\(220\) −3.37635 −0.227633
\(221\) −0.999881 −0.0672593
\(222\) 0 0
\(223\) −13.3163 −0.891724 −0.445862 0.895102i \(-0.647103\pi\)
−0.445862 + 0.895102i \(0.647103\pi\)
\(224\) 21.3315 1.42527
\(225\) 0 0
\(226\) 0.897984 0.0597330
\(227\) −24.5678 −1.63062 −0.815312 0.579022i \(-0.803434\pi\)
−0.815312 + 0.579022i \(0.803434\pi\)
\(228\) 0 0
\(229\) −25.5488 −1.68831 −0.844157 0.536096i \(-0.819898\pi\)
−0.844157 + 0.536096i \(0.819898\pi\)
\(230\) −6.99045 −0.460937
\(231\) 0 0
\(232\) −2.86696 −0.188225
\(233\) −5.77745 −0.378493 −0.189247 0.981930i \(-0.560605\pi\)
−0.189247 + 0.981930i \(0.560605\pi\)
\(234\) 0 0
\(235\) −0.252519 −0.0164725
\(236\) 4.37311 0.284666
\(237\) 0 0
\(238\) −3.47501 −0.225251
\(239\) −4.16575 −0.269460 −0.134730 0.990882i \(-0.543017\pi\)
−0.134730 + 0.990882i \(0.543017\pi\)
\(240\) 0 0
\(241\) 11.3115 0.728637 0.364319 0.931274i \(-0.381302\pi\)
0.364319 + 0.931274i \(0.381302\pi\)
\(242\) −2.70298 −0.173754
\(243\) 0 0
\(244\) 12.4024 0.793981
\(245\) −7.67162 −0.490122
\(246\) 0 0
\(247\) 5.07667 0.323021
\(248\) 3.24734 0.206206
\(249\) 0 0
\(250\) −0.897436 −0.0567589
\(251\) 6.70959 0.423505 0.211753 0.977323i \(-0.432083\pi\)
0.211753 + 0.977323i \(0.432083\pi\)
\(252\) 0 0
\(253\) −22.0152 −1.38409
\(254\) −8.87929 −0.557136
\(255\) 0 0
\(256\) −16.4051 −1.02532
\(257\) 20.0804 1.25258 0.626290 0.779590i \(-0.284573\pi\)
0.626290 + 0.779590i \(0.284573\pi\)
\(258\) 0 0
\(259\) 41.2330 2.56209
\(260\) 1.18157 0.0732780
\(261\) 0 0
\(262\) 11.7716 0.727249
\(263\) 25.4859 1.57153 0.785765 0.618526i \(-0.212270\pi\)
0.785765 + 0.618526i \(0.212270\pi\)
\(264\) 0 0
\(265\) −5.70648 −0.350546
\(266\) 17.6436 1.08180
\(267\) 0 0
\(268\) −4.49100 −0.274331
\(269\) 26.1794 1.59618 0.798092 0.602535i \(-0.205843\pi\)
0.798092 + 0.602535i \(0.205843\pi\)
\(270\) 0 0
\(271\) 3.60583 0.219039 0.109519 0.993985i \(-0.465069\pi\)
0.109519 + 0.993985i \(0.465069\pi\)
\(272\) 0.185700 0.0112597
\(273\) 0 0
\(274\) 0.0636870 0.00384747
\(275\) −2.82632 −0.170434
\(276\) 0 0
\(277\) 15.4340 0.927336 0.463668 0.886009i \(-0.346533\pi\)
0.463668 + 0.886009i \(0.346533\pi\)
\(278\) −10.9902 −0.659147
\(279\) 0 0
\(280\) 10.9815 0.656268
\(281\) −9.13957 −0.545221 −0.272611 0.962124i \(-0.587887\pi\)
−0.272611 + 0.962124i \(0.587887\pi\)
\(282\) 0 0
\(283\) 13.9174 0.827302 0.413651 0.910436i \(-0.364253\pi\)
0.413651 + 0.910436i \(0.364253\pi\)
\(284\) 7.48464 0.444132
\(285\) 0 0
\(286\) −2.50877 −0.148347
\(287\) 9.88499 0.583493
\(288\) 0 0
\(289\) −15.9781 −0.939886
\(290\) −0.897436 −0.0526993
\(291\) 0 0
\(292\) −12.8474 −0.751837
\(293\) 20.2400 1.18244 0.591218 0.806512i \(-0.298647\pi\)
0.591218 + 0.806512i \(0.298647\pi\)
\(294\) 0 0
\(295\) 3.66071 0.213135
\(296\) −30.8622 −1.79383
\(297\) 0 0
\(298\) −6.57051 −0.380619
\(299\) 7.70436 0.445555
\(300\) 0 0
\(301\) −16.2461 −0.936410
\(302\) −20.9820 −1.20738
\(303\) 0 0
\(304\) −0.942852 −0.0540763
\(305\) 10.3820 0.594470
\(306\) 0 0
\(307\) −2.57263 −0.146828 −0.0734140 0.997302i \(-0.523389\pi\)
−0.0734140 + 0.997302i \(0.523389\pi\)
\(308\) 12.9326 0.736904
\(309\) 0 0
\(310\) 1.01651 0.0577337
\(311\) 19.0082 1.07785 0.538927 0.842352i \(-0.318830\pi\)
0.538927 + 0.842352i \(0.318830\pi\)
\(312\) 0 0
\(313\) 0.555016 0.0313713 0.0156857 0.999877i \(-0.495007\pi\)
0.0156857 + 0.999877i \(0.495007\pi\)
\(314\) −0.835867 −0.0471707
\(315\) 0 0
\(316\) −12.8842 −0.724795
\(317\) 28.5513 1.60360 0.801801 0.597592i \(-0.203876\pi\)
0.801801 + 0.597592i \(0.203876\pi\)
\(318\) 0 0
\(319\) −2.82632 −0.158244
\(320\) −5.36527 −0.299928
\(321\) 0 0
\(322\) 26.7759 1.49216
\(323\) −5.18869 −0.288706
\(324\) 0 0
\(325\) 0.989088 0.0548647
\(326\) −0.925142 −0.0512389
\(327\) 0 0
\(328\) −7.39875 −0.408528
\(329\) 0.967237 0.0533255
\(330\) 0 0
\(331\) 3.88679 0.213637 0.106819 0.994279i \(-0.465934\pi\)
0.106819 + 0.994279i \(0.465934\pi\)
\(332\) −1.26633 −0.0694990
\(333\) 0 0
\(334\) −20.1680 −1.10354
\(335\) −3.75939 −0.205397
\(336\) 0 0
\(337\) 7.48393 0.407676 0.203838 0.979005i \(-0.434658\pi\)
0.203838 + 0.979005i \(0.434658\pi\)
\(338\) −10.7887 −0.586829
\(339\) 0 0
\(340\) −1.20764 −0.0654937
\(341\) 3.20132 0.173361
\(342\) 0 0
\(343\) 2.57255 0.138905
\(344\) 12.1599 0.655620
\(345\) 0 0
\(346\) −19.0384 −1.02351
\(347\) −34.8424 −1.87044 −0.935220 0.354068i \(-0.884798\pi\)
−0.935220 + 0.354068i \(0.884798\pi\)
\(348\) 0 0
\(349\) 16.1457 0.864257 0.432128 0.901812i \(-0.357763\pi\)
0.432128 + 0.901812i \(0.357763\pi\)
\(350\) 3.43750 0.183742
\(351\) 0 0
\(352\) −15.7400 −0.838943
\(353\) −2.02732 −0.107903 −0.0539516 0.998544i \(-0.517182\pi\)
−0.0539516 + 0.998544i \(0.517182\pi\)
\(354\) 0 0
\(355\) 6.26536 0.332531
\(356\) −17.0858 −0.905546
\(357\) 0 0
\(358\) 9.69254 0.512267
\(359\) 9.77827 0.516077 0.258039 0.966135i \(-0.416924\pi\)
0.258039 + 0.966135i \(0.416924\pi\)
\(360\) 0 0
\(361\) 7.34439 0.386547
\(362\) −0.393327 −0.0206728
\(363\) 0 0
\(364\) −4.52584 −0.237219
\(365\) −10.7545 −0.562915
\(366\) 0 0
\(367\) 9.26435 0.483595 0.241797 0.970327i \(-0.422263\pi\)
0.241797 + 0.970327i \(0.422263\pi\)
\(368\) −1.43087 −0.0745894
\(369\) 0 0
\(370\) −9.66071 −0.502236
\(371\) 21.8579 1.13480
\(372\) 0 0
\(373\) −19.3544 −1.00213 −0.501067 0.865408i \(-0.667059\pi\)
−0.501067 + 0.865408i \(0.667059\pi\)
\(374\) 2.56412 0.132588
\(375\) 0 0
\(376\) −0.723961 −0.0373354
\(377\) 0.989088 0.0509406
\(378\) 0 0
\(379\) 15.8048 0.811838 0.405919 0.913909i \(-0.366952\pi\)
0.405919 + 0.913909i \(0.366952\pi\)
\(380\) 6.13154 0.314541
\(381\) 0 0
\(382\) 2.37351 0.121439
\(383\) 2.60067 0.132888 0.0664440 0.997790i \(-0.478835\pi\)
0.0664440 + 0.997790i \(0.478835\pi\)
\(384\) 0 0
\(385\) 10.8258 0.551735
\(386\) −14.7623 −0.751383
\(387\) 0 0
\(388\) −16.5979 −0.842633
\(389\) −13.4068 −0.679750 −0.339875 0.940471i \(-0.610385\pi\)
−0.339875 + 0.940471i \(0.610385\pi\)
\(390\) 0 0
\(391\) −7.87436 −0.398223
\(392\) −21.9942 −1.11088
\(393\) 0 0
\(394\) −19.8990 −1.00250
\(395\) −10.7853 −0.542669
\(396\) 0 0
\(397\) −33.8760 −1.70019 −0.850093 0.526633i \(-0.823454\pi\)
−0.850093 + 0.526633i \(0.823454\pi\)
\(398\) 10.3006 0.516321
\(399\) 0 0
\(400\) −0.183696 −0.00918479
\(401\) 25.8578 1.29128 0.645639 0.763643i \(-0.276591\pi\)
0.645639 + 0.763643i \(0.276591\pi\)
\(402\) 0 0
\(403\) −1.12032 −0.0558070
\(404\) 17.2894 0.860181
\(405\) 0 0
\(406\) 3.43750 0.170600
\(407\) −30.4248 −1.50810
\(408\) 0 0
\(409\) −12.3900 −0.612646 −0.306323 0.951928i \(-0.599099\pi\)
−0.306323 + 0.951928i \(0.599099\pi\)
\(410\) −2.31601 −0.114380
\(411\) 0 0
\(412\) −10.4043 −0.512581
\(413\) −14.0218 −0.689969
\(414\) 0 0
\(415\) −1.06004 −0.0520353
\(416\) 5.50829 0.270066
\(417\) 0 0
\(418\) −13.0188 −0.636768
\(419\) 32.4545 1.58551 0.792753 0.609543i \(-0.208647\pi\)
0.792753 + 0.609543i \(0.208647\pi\)
\(420\) 0 0
\(421\) 13.2642 0.646458 0.323229 0.946321i \(-0.395232\pi\)
0.323229 + 0.946321i \(0.395232\pi\)
\(422\) 9.23828 0.449712
\(423\) 0 0
\(424\) −16.3602 −0.794524
\(425\) −1.01091 −0.0490364
\(426\) 0 0
\(427\) −39.7666 −1.92444
\(428\) 2.26414 0.109441
\(429\) 0 0
\(430\) 3.80639 0.183561
\(431\) 15.5050 0.746849 0.373425 0.927661i \(-0.378183\pi\)
0.373425 + 0.927661i \(0.378183\pi\)
\(432\) 0 0
\(433\) 1.39425 0.0670034 0.0335017 0.999439i \(-0.489334\pi\)
0.0335017 + 0.999439i \(0.489334\pi\)
\(434\) −3.89358 −0.186898
\(435\) 0 0
\(436\) −7.91381 −0.379003
\(437\) 39.9803 1.91252
\(438\) 0 0
\(439\) 20.2277 0.965416 0.482708 0.875781i \(-0.339653\pi\)
0.482708 + 0.875781i \(0.339653\pi\)
\(440\) −8.10295 −0.386293
\(441\) 0 0
\(442\) −0.897330 −0.0426816
\(443\) −15.1065 −0.717731 −0.358865 0.933389i \(-0.616836\pi\)
−0.358865 + 0.933389i \(0.616836\pi\)
\(444\) 0 0
\(445\) −14.3024 −0.678001
\(446\) −11.9505 −0.565873
\(447\) 0 0
\(448\) 20.5509 0.970938
\(449\) 38.3771 1.81113 0.905564 0.424210i \(-0.139448\pi\)
0.905564 + 0.424210i \(0.139448\pi\)
\(450\) 0 0
\(451\) −7.29389 −0.343456
\(452\) −1.19534 −0.0562239
\(453\) 0 0
\(454\) −22.0481 −1.03477
\(455\) −3.78856 −0.177610
\(456\) 0 0
\(457\) −22.2230 −1.03955 −0.519775 0.854303i \(-0.673984\pi\)
−0.519775 + 0.854303i \(0.673984\pi\)
\(458\) −22.9284 −1.07138
\(459\) 0 0
\(460\) 9.30523 0.433858
\(461\) −5.81739 −0.270943 −0.135472 0.990781i \(-0.543255\pi\)
−0.135472 + 0.990781i \(0.543255\pi\)
\(462\) 0 0
\(463\) 26.7453 1.24296 0.621479 0.783431i \(-0.286532\pi\)
0.621479 + 0.783431i \(0.286532\pi\)
\(464\) −0.183696 −0.00852787
\(465\) 0 0
\(466\) −5.18489 −0.240185
\(467\) 13.7869 0.637980 0.318990 0.947758i \(-0.396656\pi\)
0.318990 + 0.947758i \(0.396656\pi\)
\(468\) 0 0
\(469\) 14.3998 0.664921
\(470\) −0.226620 −0.0104532
\(471\) 0 0
\(472\) 10.4951 0.483076
\(473\) 11.9876 0.551190
\(474\) 0 0
\(475\) 5.13268 0.235503
\(476\) 4.62570 0.212019
\(477\) 0 0
\(478\) −3.73849 −0.170995
\(479\) −15.6990 −0.717304 −0.358652 0.933471i \(-0.616764\pi\)
−0.358652 + 0.933471i \(0.616764\pi\)
\(480\) 0 0
\(481\) 10.6473 0.485476
\(482\) 10.1513 0.462381
\(483\) 0 0
\(484\) 3.59803 0.163547
\(485\) −13.8941 −0.630897
\(486\) 0 0
\(487\) 30.0638 1.36232 0.681160 0.732135i \(-0.261476\pi\)
0.681160 + 0.732135i \(0.261476\pi\)
\(488\) 29.7646 1.34738
\(489\) 0 0
\(490\) −6.88479 −0.311023
\(491\) −35.3955 −1.59738 −0.798689 0.601744i \(-0.794473\pi\)
−0.798689 + 0.601744i \(0.794473\pi\)
\(492\) 0 0
\(493\) −1.01091 −0.0455292
\(494\) 4.55599 0.204984
\(495\) 0 0
\(496\) 0.208068 0.00934254
\(497\) −23.9985 −1.07648
\(498\) 0 0
\(499\) 8.84462 0.395940 0.197970 0.980208i \(-0.436565\pi\)
0.197970 + 0.980208i \(0.436565\pi\)
\(500\) 1.19461 0.0534245
\(501\) 0 0
\(502\) 6.02143 0.268749
\(503\) −24.2714 −1.08221 −0.541104 0.840956i \(-0.681993\pi\)
−0.541104 + 0.840956i \(0.681993\pi\)
\(504\) 0 0
\(505\) 14.4729 0.644035
\(506\) −19.7573 −0.878318
\(507\) 0 0
\(508\) 11.8195 0.524406
\(509\) −7.45863 −0.330598 −0.165299 0.986243i \(-0.552859\pi\)
−0.165299 + 0.986243i \(0.552859\pi\)
\(510\) 0 0
\(511\) 41.1935 1.82229
\(512\) −2.07631 −0.0917608
\(513\) 0 0
\(514\) 18.0209 0.794866
\(515\) −8.70934 −0.383780
\(516\) 0 0
\(517\) −0.713700 −0.0313885
\(518\) 37.0040 1.62586
\(519\) 0 0
\(520\) 2.83567 0.124352
\(521\) −30.8783 −1.35280 −0.676401 0.736533i \(-0.736461\pi\)
−0.676401 + 0.736533i \(0.736461\pi\)
\(522\) 0 0
\(523\) −39.1262 −1.71087 −0.855435 0.517910i \(-0.826710\pi\)
−0.855435 + 0.517910i \(0.826710\pi\)
\(524\) −15.6695 −0.684526
\(525\) 0 0
\(526\) 22.8720 0.997266
\(527\) 1.14504 0.0498786
\(528\) 0 0
\(529\) 37.6741 1.63800
\(530\) −5.12121 −0.222451
\(531\) 0 0
\(532\) −23.4860 −1.01825
\(533\) 2.55254 0.110563
\(534\) 0 0
\(535\) 1.89530 0.0819410
\(536\) −10.7780 −0.465539
\(537\) 0 0
\(538\) 23.4943 1.01291
\(539\) −21.6825 −0.933931
\(540\) 0 0
\(541\) −27.9986 −1.20375 −0.601877 0.798589i \(-0.705580\pi\)
−0.601877 + 0.798589i \(0.705580\pi\)
\(542\) 3.23601 0.138998
\(543\) 0 0
\(544\) −5.62983 −0.241377
\(545\) −6.62461 −0.283767
\(546\) 0 0
\(547\) 7.05192 0.301518 0.150759 0.988571i \(-0.451828\pi\)
0.150759 + 0.988571i \(0.451828\pi\)
\(548\) −0.0847759 −0.00362145
\(549\) 0 0
\(550\) −2.53645 −0.108154
\(551\) 5.13268 0.218659
\(552\) 0 0
\(553\) 41.3116 1.75675
\(554\) 13.8510 0.588472
\(555\) 0 0
\(556\) 14.6294 0.620424
\(557\) 38.4865 1.63073 0.815363 0.578949i \(-0.196537\pi\)
0.815363 + 0.578949i \(0.196537\pi\)
\(558\) 0 0
\(559\) −4.19513 −0.177435
\(560\) 0.703621 0.0297334
\(561\) 0 0
\(562\) −8.20218 −0.345988
\(563\) −45.6728 −1.92488 −0.962439 0.271498i \(-0.912481\pi\)
−0.962439 + 0.271498i \(0.912481\pi\)
\(564\) 0 0
\(565\) −1.00061 −0.0420960
\(566\) 12.4900 0.524992
\(567\) 0 0
\(568\) 17.9625 0.753690
\(569\) 44.9498 1.88439 0.942196 0.335062i \(-0.108757\pi\)
0.942196 + 0.335062i \(0.108757\pi\)
\(570\) 0 0
\(571\) −1.65737 −0.0693587 −0.0346793 0.999398i \(-0.511041\pi\)
−0.0346793 + 0.999398i \(0.511041\pi\)
\(572\) 3.33951 0.139632
\(573\) 0 0
\(574\) 8.87115 0.370275
\(575\) 7.78936 0.324839
\(576\) 0 0
\(577\) −9.23893 −0.384622 −0.192311 0.981334i \(-0.561598\pi\)
−0.192311 + 0.981334i \(0.561598\pi\)
\(578\) −14.3393 −0.596436
\(579\) 0 0
\(580\) 1.19461 0.0496034
\(581\) 4.06033 0.168451
\(582\) 0 0
\(583\) −16.1284 −0.667969
\(584\) −30.8326 −1.27586
\(585\) 0 0
\(586\) 18.1641 0.750354
\(587\) 10.6148 0.438120 0.219060 0.975711i \(-0.429701\pi\)
0.219060 + 0.975711i \(0.429701\pi\)
\(588\) 0 0
\(589\) −5.81367 −0.239548
\(590\) 3.28526 0.135252
\(591\) 0 0
\(592\) −1.97745 −0.0812726
\(593\) −39.7432 −1.63206 −0.816029 0.578011i \(-0.803829\pi\)
−0.816029 + 0.578011i \(0.803829\pi\)
\(594\) 0 0
\(595\) 3.87215 0.158743
\(596\) 8.74623 0.358259
\(597\) 0 0
\(598\) 6.91417 0.282742
\(599\) 7.31224 0.298770 0.149385 0.988779i \(-0.452271\pi\)
0.149385 + 0.988779i \(0.452271\pi\)
\(600\) 0 0
\(601\) −21.4162 −0.873585 −0.436793 0.899562i \(-0.643886\pi\)
−0.436793 + 0.899562i \(0.643886\pi\)
\(602\) −14.5798 −0.594230
\(603\) 0 0
\(604\) 27.9299 1.13645
\(605\) 3.01190 0.122451
\(606\) 0 0
\(607\) 19.3315 0.784639 0.392320 0.919829i \(-0.371673\pi\)
0.392320 + 0.919829i \(0.371673\pi\)
\(608\) 28.5842 1.15924
\(609\) 0 0
\(610\) 9.31715 0.377240
\(611\) 0.249763 0.0101043
\(612\) 0 0
\(613\) −27.5848 −1.11414 −0.557069 0.830466i \(-0.688074\pi\)
−0.557069 + 0.830466i \(0.688074\pi\)
\(614\) −2.30878 −0.0931746
\(615\) 0 0
\(616\) 31.0372 1.25052
\(617\) 9.03573 0.363765 0.181882 0.983320i \(-0.441781\pi\)
0.181882 + 0.983320i \(0.441781\pi\)
\(618\) 0 0
\(619\) −41.7871 −1.67956 −0.839782 0.542923i \(-0.817318\pi\)
−0.839782 + 0.542923i \(0.817318\pi\)
\(620\) −1.35311 −0.0543421
\(621\) 0 0
\(622\) 17.0586 0.683989
\(623\) 54.7835 2.19485
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0.498091 0.0199077
\(627\) 0 0
\(628\) 1.11265 0.0443996
\(629\) −10.8823 −0.433904
\(630\) 0 0
\(631\) 44.6303 1.77670 0.888351 0.459164i \(-0.151851\pi\)
0.888351 + 0.459164i \(0.151851\pi\)
\(632\) −30.9211 −1.22997
\(633\) 0 0
\(634\) 25.6230 1.01762
\(635\) 9.89406 0.392634
\(636\) 0 0
\(637\) 7.58791 0.300644
\(638\) −2.53645 −0.100419
\(639\) 0 0
\(640\) 6.32313 0.249944
\(641\) −38.4320 −1.51797 −0.758986 0.651107i \(-0.774305\pi\)
−0.758986 + 0.651107i \(0.774305\pi\)
\(642\) 0 0
\(643\) −3.33226 −0.131411 −0.0657057 0.997839i \(-0.520930\pi\)
−0.0657057 + 0.997839i \(0.520930\pi\)
\(644\) −35.6423 −1.40450
\(645\) 0 0
\(646\) −4.65652 −0.183208
\(647\) −25.0180 −0.983559 −0.491779 0.870720i \(-0.663653\pi\)
−0.491779 + 0.870720i \(0.663653\pi\)
\(648\) 0 0
\(649\) 10.3464 0.406130
\(650\) 0.887643 0.0348162
\(651\) 0 0
\(652\) 1.23149 0.0482288
\(653\) −24.9697 −0.977142 −0.488571 0.872524i \(-0.662482\pi\)
−0.488571 + 0.872524i \(0.662482\pi\)
\(654\) 0 0
\(655\) −13.1169 −0.512519
\(656\) −0.474064 −0.0185091
\(657\) 0 0
\(658\) 0.868034 0.0338395
\(659\) 37.4164 1.45754 0.728769 0.684760i \(-0.240093\pi\)
0.728769 + 0.684760i \(0.240093\pi\)
\(660\) 0 0
\(661\) −39.5042 −1.53653 −0.768267 0.640130i \(-0.778881\pi\)
−0.768267 + 0.640130i \(0.778881\pi\)
\(662\) 3.48814 0.135571
\(663\) 0 0
\(664\) −3.03909 −0.117940
\(665\) −19.6600 −0.762381
\(666\) 0 0
\(667\) 7.78936 0.301605
\(668\) 26.8463 1.03871
\(669\) 0 0
\(670\) −3.37381 −0.130342
\(671\) 29.3428 1.13277
\(672\) 0 0
\(673\) −49.7546 −1.91790 −0.958950 0.283576i \(-0.908479\pi\)
−0.958950 + 0.283576i \(0.908479\pi\)
\(674\) 6.71635 0.258704
\(675\) 0 0
\(676\) 14.3612 0.552355
\(677\) −2.62339 −0.100825 −0.0504126 0.998728i \(-0.516054\pi\)
−0.0504126 + 0.998728i \(0.516054\pi\)
\(678\) 0 0
\(679\) 53.2192 2.04236
\(680\) −2.89824 −0.111142
\(681\) 0 0
\(682\) 2.87298 0.110012
\(683\) 18.9784 0.726188 0.363094 0.931752i \(-0.381720\pi\)
0.363094 + 0.931752i \(0.381720\pi\)
\(684\) 0 0
\(685\) −0.0709655 −0.00271145
\(686\) 2.30870 0.0881467
\(687\) 0 0
\(688\) 0.779129 0.0297040
\(689\) 5.64421 0.215027
\(690\) 0 0
\(691\) 33.6342 1.27951 0.639753 0.768580i \(-0.279037\pi\)
0.639753 + 0.768580i \(0.279037\pi\)
\(692\) 25.3427 0.963385
\(693\) 0 0
\(694\) −31.2689 −1.18695
\(695\) 12.2462 0.464524
\(696\) 0 0
\(697\) −2.60886 −0.0988176
\(698\) 14.4897 0.548443
\(699\) 0 0
\(700\) −4.57577 −0.172948
\(701\) 29.6166 1.11861 0.559303 0.828964i \(-0.311069\pi\)
0.559303 + 0.828964i \(0.311069\pi\)
\(702\) 0 0
\(703\) 55.2522 2.08388
\(704\) −15.1640 −0.571514
\(705\) 0 0
\(706\) −1.81939 −0.0684736
\(707\) −55.4363 −2.08490
\(708\) 0 0
\(709\) −35.4031 −1.32959 −0.664795 0.747026i \(-0.731481\pi\)
−0.664795 + 0.747026i \(0.731481\pi\)
\(710\) 5.62276 0.211018
\(711\) 0 0
\(712\) −41.0045 −1.53671
\(713\) −8.82284 −0.330418
\(714\) 0 0
\(715\) 2.79548 0.104545
\(716\) −12.9021 −0.482173
\(717\) 0 0
\(718\) 8.77538 0.327494
\(719\) −7.78651 −0.290388 −0.145194 0.989403i \(-0.546381\pi\)
−0.145194 + 0.989403i \(0.546381\pi\)
\(720\) 0 0
\(721\) 33.3599 1.24239
\(722\) 6.59112 0.245296
\(723\) 0 0
\(724\) 0.523571 0.0194584
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) −7.78963 −0.288901 −0.144451 0.989512i \(-0.546142\pi\)
−0.144451 + 0.989512i \(0.546142\pi\)
\(728\) −10.8616 −0.402559
\(729\) 0 0
\(730\) −9.65147 −0.357217
\(731\) 4.28769 0.158586
\(732\) 0 0
\(733\) −0.518655 −0.0191570 −0.00957848 0.999954i \(-0.503049\pi\)
−0.00957848 + 0.999954i \(0.503049\pi\)
\(734\) 8.31416 0.306881
\(735\) 0 0
\(736\) 43.3794 1.59899
\(737\) −10.6253 −0.391386
\(738\) 0 0
\(739\) 30.7195 1.13003 0.565017 0.825079i \(-0.308870\pi\)
0.565017 + 0.825079i \(0.308870\pi\)
\(740\) 12.8597 0.472732
\(741\) 0 0
\(742\) 19.6160 0.720127
\(743\) −21.7734 −0.798790 −0.399395 0.916779i \(-0.630780\pi\)
−0.399395 + 0.916779i \(0.630780\pi\)
\(744\) 0 0
\(745\) 7.32142 0.268236
\(746\) −17.3694 −0.635938
\(747\) 0 0
\(748\) −3.41319 −0.124799
\(749\) −7.25968 −0.265263
\(750\) 0 0
\(751\) 24.9369 0.909961 0.454981 0.890501i \(-0.349646\pi\)
0.454981 + 0.890501i \(0.349646\pi\)
\(752\) −0.0463867 −0.00169155
\(753\) 0 0
\(754\) 0.887643 0.0323261
\(755\) 23.3800 0.850885
\(756\) 0 0
\(757\) 1.27972 0.0465123 0.0232561 0.999730i \(-0.492597\pi\)
0.0232561 + 0.999730i \(0.492597\pi\)
\(758\) 14.1838 0.515179
\(759\) 0 0
\(760\) 14.7152 0.533775
\(761\) 1.95635 0.0709177 0.0354588 0.999371i \(-0.488711\pi\)
0.0354588 + 0.999371i \(0.488711\pi\)
\(762\) 0 0
\(763\) 25.3746 0.918622
\(764\) −3.15946 −0.114305
\(765\) 0 0
\(766\) 2.33394 0.0843286
\(767\) −3.62077 −0.130738
\(768\) 0 0
\(769\) −22.1931 −0.800302 −0.400151 0.916449i \(-0.631042\pi\)
−0.400151 + 0.916449i \(0.631042\pi\)
\(770\) 9.71549 0.350122
\(771\) 0 0
\(772\) 19.6506 0.707242
\(773\) 15.6896 0.564317 0.282158 0.959368i \(-0.408950\pi\)
0.282158 + 0.959368i \(0.408950\pi\)
\(774\) 0 0
\(775\) −1.13268 −0.0406870
\(776\) −39.8337 −1.42995
\(777\) 0 0
\(778\) −12.0317 −0.431358
\(779\) 13.2459 0.474583
\(780\) 0 0
\(781\) 17.7079 0.633639
\(782\) −7.06673 −0.252706
\(783\) 0 0
\(784\) −1.40925 −0.0503302
\(785\) 0.931394 0.0332429
\(786\) 0 0
\(787\) −8.82023 −0.314407 −0.157204 0.987566i \(-0.550248\pi\)
−0.157204 + 0.987566i \(0.550248\pi\)
\(788\) 26.4882 0.943605
\(789\) 0 0
\(790\) −9.67914 −0.344368
\(791\) 3.83269 0.136275
\(792\) 0 0
\(793\) −10.2687 −0.364651
\(794\) −30.4015 −1.07891
\(795\) 0 0
\(796\) −13.7114 −0.485989
\(797\) 14.5755 0.516290 0.258145 0.966106i \(-0.416889\pi\)
0.258145 + 0.966106i \(0.416889\pi\)
\(798\) 0 0
\(799\) −0.255274 −0.00903096
\(800\) 5.56906 0.196896
\(801\) 0 0
\(802\) 23.2058 0.819424
\(803\) −30.3957 −1.07264
\(804\) 0 0
\(805\) −29.8360 −1.05158
\(806\) −1.00541 −0.0354142
\(807\) 0 0
\(808\) 41.4932 1.45972
\(809\) 10.4702 0.368111 0.184056 0.982916i \(-0.441077\pi\)
0.184056 + 0.982916i \(0.441077\pi\)
\(810\) 0 0
\(811\) −9.74921 −0.342341 −0.171171 0.985241i \(-0.554755\pi\)
−0.171171 + 0.985241i \(0.554755\pi\)
\(812\) −4.57577 −0.160578
\(813\) 0 0
\(814\) −27.3043 −0.957015
\(815\) 1.03087 0.0361099
\(816\) 0 0
\(817\) −21.7698 −0.761628
\(818\) −11.1192 −0.388775
\(819\) 0 0
\(820\) 3.08292 0.107660
\(821\) −40.9219 −1.42819 −0.714093 0.700051i \(-0.753160\pi\)
−0.714093 + 0.700051i \(0.753160\pi\)
\(822\) 0 0
\(823\) −4.87322 −0.169870 −0.0849348 0.996387i \(-0.527068\pi\)
−0.0849348 + 0.996387i \(0.527068\pi\)
\(824\) −24.9693 −0.869847
\(825\) 0 0
\(826\) −12.5837 −0.437843
\(827\) −15.6198 −0.543153 −0.271577 0.962417i \(-0.587545\pi\)
−0.271577 + 0.962417i \(0.587545\pi\)
\(828\) 0 0
\(829\) −51.5007 −1.78869 −0.894346 0.447375i \(-0.852359\pi\)
−0.894346 + 0.447375i \(0.852359\pi\)
\(830\) −0.951319 −0.0330207
\(831\) 0 0
\(832\) 5.30672 0.183977
\(833\) −7.75534 −0.268706
\(834\) 0 0
\(835\) 22.4729 0.777706
\(836\) 17.3297 0.599361
\(837\) 0 0
\(838\) 29.1258 1.00614
\(839\) −38.1841 −1.31826 −0.659130 0.752029i \(-0.729075\pi\)
−0.659130 + 0.752029i \(0.729075\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 11.9038 0.410232
\(843\) 0 0
\(844\) −12.2974 −0.423293
\(845\) 12.0217 0.413559
\(846\) 0 0
\(847\) −11.5366 −0.396403
\(848\) −1.04826 −0.0359973
\(849\) 0 0
\(850\) −0.907229 −0.0311177
\(851\) 83.8508 2.87437
\(852\) 0 0
\(853\) −38.0575 −1.30306 −0.651531 0.758622i \(-0.725873\pi\)
−0.651531 + 0.758622i \(0.725873\pi\)
\(854\) −35.6880 −1.22122
\(855\) 0 0
\(856\) 5.43375 0.185722
\(857\) −21.8229 −0.745455 −0.372728 0.927941i \(-0.621577\pi\)
−0.372728 + 0.927941i \(0.621577\pi\)
\(858\) 0 0
\(859\) −55.1041 −1.88013 −0.940065 0.340996i \(-0.889236\pi\)
−0.940065 + 0.340996i \(0.889236\pi\)
\(860\) −5.06682 −0.172777
\(861\) 0 0
\(862\) 13.9147 0.473938
\(863\) 10.5055 0.357612 0.178806 0.983884i \(-0.442777\pi\)
0.178806 + 0.983884i \(0.442777\pi\)
\(864\) 0 0
\(865\) 21.2142 0.721306
\(866\) 1.25125 0.0425192
\(867\) 0 0
\(868\) 5.18288 0.175918
\(869\) −30.4828 −1.03406
\(870\) 0 0
\(871\) 3.71837 0.125992
\(872\) −18.9925 −0.643166
\(873\) 0 0
\(874\) 35.8797 1.21365
\(875\) −3.83036 −0.129490
\(876\) 0 0
\(877\) −12.0379 −0.406492 −0.203246 0.979128i \(-0.565149\pi\)
−0.203246 + 0.979128i \(0.565149\pi\)
\(878\) 18.1531 0.612637
\(879\) 0 0
\(880\) −0.519184 −0.0175017
\(881\) −40.8416 −1.37599 −0.687994 0.725716i \(-0.741509\pi\)
−0.687994 + 0.725716i \(0.741509\pi\)
\(882\) 0 0
\(883\) 41.6187 1.40058 0.700290 0.713858i \(-0.253054\pi\)
0.700290 + 0.713858i \(0.253054\pi\)
\(884\) 1.19447 0.0401742
\(885\) 0 0
\(886\) −13.5571 −0.455460
\(887\) 17.0891 0.573797 0.286898 0.957961i \(-0.407376\pi\)
0.286898 + 0.957961i \(0.407376\pi\)
\(888\) 0 0
\(889\) −37.8978 −1.27105
\(890\) −12.8355 −0.430248
\(891\) 0 0
\(892\) 15.9077 0.532630
\(893\) 1.29610 0.0433723
\(894\) 0 0
\(895\) −10.8003 −0.361013
\(896\) −24.2198 −0.809128
\(897\) 0 0
\(898\) 34.4410 1.14931
\(899\) −1.13268 −0.0377769
\(900\) 0 0
\(901\) −5.76875 −0.192185
\(902\) −6.54580 −0.217951
\(903\) 0 0
\(904\) −2.86871 −0.0954117
\(905\) 0.438278 0.0145689
\(906\) 0 0
\(907\) 22.8887 0.760006 0.380003 0.924985i \(-0.375923\pi\)
0.380003 + 0.924985i \(0.375923\pi\)
\(908\) 29.3489 0.973978
\(909\) 0 0
\(910\) −3.39999 −0.112709
\(911\) 36.0929 1.19581 0.597906 0.801566i \(-0.296000\pi\)
0.597906 + 0.801566i \(0.296000\pi\)
\(912\) 0 0
\(913\) −2.99602 −0.0991537
\(914\) −19.9437 −0.659681
\(915\) 0 0
\(916\) 30.5208 1.00844
\(917\) 50.2423 1.65915
\(918\) 0 0
\(919\) 9.94627 0.328097 0.164049 0.986452i \(-0.447545\pi\)
0.164049 + 0.986452i \(0.447545\pi\)
\(920\) 22.3318 0.736256
\(921\) 0 0
\(922\) −5.22074 −0.171936
\(923\) −6.19699 −0.203976
\(924\) 0 0
\(925\) 10.7648 0.353944
\(926\) 24.0022 0.788760
\(927\) 0 0
\(928\) 5.56906 0.182813
\(929\) 30.2310 0.991846 0.495923 0.868366i \(-0.334830\pi\)
0.495923 + 0.868366i \(0.334830\pi\)
\(930\) 0 0
\(931\) 39.3760 1.29050
\(932\) 6.90179 0.226076
\(933\) 0 0
\(934\) 12.3728 0.404852
\(935\) −2.85716 −0.0934393
\(936\) 0 0
\(937\) 28.4312 0.928808 0.464404 0.885624i \(-0.346269\pi\)
0.464404 + 0.885624i \(0.346269\pi\)
\(938\) 12.9229 0.421948
\(939\) 0 0
\(940\) 0.301661 0.00983910
\(941\) 7.18322 0.234166 0.117083 0.993122i \(-0.462646\pi\)
0.117083 + 0.993122i \(0.462646\pi\)
\(942\) 0 0
\(943\) 20.1020 0.654610
\(944\) 0.672458 0.0218866
\(945\) 0 0
\(946\) 10.7581 0.349776
\(947\) 44.1518 1.43474 0.717370 0.696692i \(-0.245346\pi\)
0.717370 + 0.696692i \(0.245346\pi\)
\(948\) 0 0
\(949\) 10.6371 0.345296
\(950\) 4.60625 0.149447
\(951\) 0 0
\(952\) 11.1013 0.359795
\(953\) −21.5308 −0.697452 −0.348726 0.937225i \(-0.613386\pi\)
−0.348726 + 0.937225i \(0.613386\pi\)
\(954\) 0 0
\(955\) −2.64477 −0.0855827
\(956\) 4.97644 0.160949
\(957\) 0 0
\(958\) −14.0888 −0.455189
\(959\) 0.271823 0.00877762
\(960\) 0 0
\(961\) −29.7170 −0.958614
\(962\) 9.55529 0.308075
\(963\) 0 0
\(964\) −13.5128 −0.435218
\(965\) 16.4494 0.529526
\(966\) 0 0
\(967\) −25.0483 −0.805498 −0.402749 0.915310i \(-0.631945\pi\)
−0.402749 + 0.915310i \(0.631945\pi\)
\(968\) 8.63498 0.277539
\(969\) 0 0
\(970\) −12.4690 −0.400356
\(971\) 52.1718 1.67427 0.837136 0.546995i \(-0.184228\pi\)
0.837136 + 0.546995i \(0.184228\pi\)
\(972\) 0 0
\(973\) −46.9072 −1.50378
\(974\) 26.9803 0.864506
\(975\) 0 0
\(976\) 1.90712 0.0610456
\(977\) −21.1021 −0.675115 −0.337557 0.941305i \(-0.609601\pi\)
−0.337557 + 0.941305i \(0.609601\pi\)
\(978\) 0 0
\(979\) −40.4233 −1.29194
\(980\) 9.16458 0.292752
\(981\) 0 0
\(982\) −31.7652 −1.01367
\(983\) 19.1395 0.610457 0.305228 0.952279i \(-0.401267\pi\)
0.305228 + 0.952279i \(0.401267\pi\)
\(984\) 0 0
\(985\) 22.1732 0.706496
\(986\) −0.907229 −0.0288921
\(987\) 0 0
\(988\) −6.06463 −0.192942
\(989\) −33.0378 −1.05054
\(990\) 0 0
\(991\) −19.2995 −0.613069 −0.306535 0.951860i \(-0.599170\pi\)
−0.306535 + 0.951860i \(0.599170\pi\)
\(992\) −6.30795 −0.200278
\(993\) 0 0
\(994\) −21.5372 −0.683117
\(995\) −11.4778 −0.363870
\(996\) 0 0
\(997\) 27.8422 0.881771 0.440886 0.897563i \(-0.354664\pi\)
0.440886 + 0.897563i \(0.354664\pi\)
\(998\) 7.93749 0.251257
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.a.s.1.5 7
3.2 odd 2 1305.2.a.t.1.3 yes 7
5.4 even 2 6525.2.a.bw.1.3 7
15.14 odd 2 6525.2.a.bv.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.2.a.s.1.5 7 1.1 even 1 trivial
1305.2.a.t.1.3 yes 7 3.2 odd 2
6525.2.a.bv.1.5 7 15.14 odd 2
6525.2.a.bw.1.3 7 5.4 even 2