Properties

Label 1305.2.c.j.784.10
Level $1305$
Weight $2$
Character 1305.784
Analytic conductor $10.420$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(784,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.784");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.3899266318336.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 2x^{8} + 6x^{7} + 19x^{6} - 12x^{5} + 4x^{4} + 2x^{3} + 9x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 784.10
Root \(-1.20964 - 1.20964i\) of defining polynomial
Character \(\chi\) \(=\) 1305.784
Dual form 1305.2.c.j.784.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.51908i q^{2} -4.34577 q^{4} +(1.27413 - 1.83755i) q^{5} -0.173311i q^{7} -5.90919i q^{8} +(4.62893 + 3.20964i) q^{10} -5.08250 q^{11} +1.82669i q^{13} +0.436584 q^{14} +6.19418 q^{16} -4.24598i q^{17} +8.62093 q^{19} +(-5.53709 + 7.98556i) q^{20} -12.8032i q^{22} -3.16348i q^{23} +(-1.75317 - 4.68256i) q^{25} -4.60158 q^{26} +0.753170i q^{28} +1.00000 q^{29} +3.22185 q^{31} +3.78527i q^{32} +10.6960 q^{34} +(-0.318467 - 0.220821i) q^{35} -1.97828i q^{37} +21.7168i q^{38} +(-10.8584 - 7.52909i) q^{40} +9.96541 q^{41} +7.91070i q^{43} +22.0874 q^{44} +7.96907 q^{46} -8.66893i q^{47} +6.96996 q^{49} +(11.7958 - 4.41638i) q^{50} -7.93837i q^{52} -5.40285i q^{53} +(-6.47578 + 9.33933i) q^{55} -1.02413 q^{56} +2.51908i q^{58} +7.66286 q^{59} +2.76215 q^{61} +8.11611i q^{62} +2.85296 q^{64} +(3.35663 + 2.32744i) q^{65} -8.13872i q^{67} +18.4520i q^{68} +(0.556267 - 0.802245i) q^{70} +6.25938 q^{71} -6.74356i q^{73} +4.98345 q^{74} -37.4646 q^{76} +0.880853i q^{77} -4.54763 q^{79} +(7.89221 - 11.3821i) q^{80} +25.1037i q^{82} +11.6224i q^{83} +(-7.80219 - 5.40994i) q^{85} -19.9277 q^{86} +30.0334i q^{88} -16.4911 q^{89} +0.316585 q^{91} +13.7478i q^{92} +21.8377 q^{94} +(10.9842 - 15.8414i) q^{95} -2.74419i q^{97} +17.5579i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{4} + 4 q^{10} - 24 q^{11} + 12 q^{14} + 2 q^{16} + 4 q^{19} - 8 q^{20} + 2 q^{25} + 10 q^{29} + 4 q^{31} - 8 q^{34} - 2 q^{35} - 14 q^{40} + 28 q^{41} + 40 q^{44} - 12 q^{46} + 14 q^{49} + 12 q^{50}+ \cdots + 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51908i 1.78126i 0.454729 + 0.890630i \(0.349736\pi\)
−0.454729 + 0.890630i \(0.650264\pi\)
\(3\) 0 0
\(4\) −4.34577 −2.17289
\(5\) 1.27413 1.83755i 0.569810 0.821777i
\(6\) 0 0
\(7\) 0.173311i 0.0655054i −0.999463 0.0327527i \(-0.989573\pi\)
0.999463 0.0327527i \(-0.0104274\pi\)
\(8\) 5.90919i 2.08921i
\(9\) 0 0
\(10\) 4.62893 + 3.20964i 1.46380 + 1.01498i
\(11\) −5.08250 −1.53243 −0.766215 0.642584i \(-0.777862\pi\)
−0.766215 + 0.642584i \(0.777862\pi\)
\(12\) 0 0
\(13\) 1.82669i 0.506632i 0.967384 + 0.253316i \(0.0815213\pi\)
−0.967384 + 0.253316i \(0.918479\pi\)
\(14\) 0.436584 0.116682
\(15\) 0 0
\(16\) 6.19418 1.54854
\(17\) 4.24598i 1.02980i −0.857250 0.514901i \(-0.827829\pi\)
0.857250 0.514901i \(-0.172171\pi\)
\(18\) 0 0
\(19\) 8.62093 1.97778 0.988889 0.148656i \(-0.0474948\pi\)
0.988889 + 0.148656i \(0.0474948\pi\)
\(20\) −5.53709 + 7.98556i −1.23813 + 1.78563i
\(21\) 0 0
\(22\) 12.8032i 2.72966i
\(23\) 3.16348i 0.659632i −0.944045 0.329816i \(-0.893013\pi\)
0.944045 0.329816i \(-0.106987\pi\)
\(24\) 0 0
\(25\) −1.75317 4.68256i −0.350634 0.936513i
\(26\) −4.60158 −0.902444
\(27\) 0 0
\(28\) 0.753170i 0.142336i
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 3.22185 0.578662 0.289331 0.957229i \(-0.406567\pi\)
0.289331 + 0.957229i \(0.406567\pi\)
\(32\) 3.78527i 0.669147i
\(33\) 0 0
\(34\) 10.6960 1.83434
\(35\) −0.318467 0.220821i −0.0538308 0.0373256i
\(36\) 0 0
\(37\) 1.97828i 0.325227i −0.986690 0.162614i \(-0.948008\pi\)
0.986690 0.162614i \(-0.0519924\pi\)
\(38\) 21.7168i 3.52294i
\(39\) 0 0
\(40\) −10.8584 7.52909i −1.71687 1.19045i
\(41\) 9.96541 1.55634 0.778168 0.628056i \(-0.216149\pi\)
0.778168 + 0.628056i \(0.216149\pi\)
\(42\) 0 0
\(43\) 7.91070i 1.20637i 0.797601 + 0.603185i \(0.206102\pi\)
−0.797601 + 0.603185i \(0.793898\pi\)
\(44\) 22.0874 3.32980
\(45\) 0 0
\(46\) 7.96907 1.17497
\(47\) 8.66893i 1.26449i −0.774767 0.632246i \(-0.782133\pi\)
0.774767 0.632246i \(-0.217867\pi\)
\(48\) 0 0
\(49\) 6.96996 0.995709
\(50\) 11.7958 4.41638i 1.66817 0.624570i
\(51\) 0 0
\(52\) 7.93837i 1.10085i
\(53\) 5.40285i 0.742138i −0.928605 0.371069i \(-0.878991\pi\)
0.928605 0.371069i \(-0.121009\pi\)
\(54\) 0 0
\(55\) −6.47578 + 9.33933i −0.873194 + 1.25932i
\(56\) −1.02413 −0.136855
\(57\) 0 0
\(58\) 2.51908i 0.330772i
\(59\) 7.66286 0.997619 0.498810 0.866712i \(-0.333771\pi\)
0.498810 + 0.866712i \(0.333771\pi\)
\(60\) 0 0
\(61\) 2.76215 0.353657 0.176828 0.984242i \(-0.443416\pi\)
0.176828 + 0.984242i \(0.443416\pi\)
\(62\) 8.11611i 1.03075i
\(63\) 0 0
\(64\) 2.85296 0.356620
\(65\) 3.35663 + 2.32744i 0.416339 + 0.288684i
\(66\) 0 0
\(67\) 8.13872i 0.994303i −0.867664 0.497152i \(-0.834379\pi\)
0.867664 0.497152i \(-0.165621\pi\)
\(68\) 18.4520i 2.23764i
\(69\) 0 0
\(70\) 0.556267 0.802245i 0.0664866 0.0958866i
\(71\) 6.25938 0.742852 0.371426 0.928463i \(-0.378869\pi\)
0.371426 + 0.928463i \(0.378869\pi\)
\(72\) 0 0
\(73\) 6.74356i 0.789274i −0.918837 0.394637i \(-0.870870\pi\)
0.918837 0.394637i \(-0.129130\pi\)
\(74\) 4.98345 0.579314
\(75\) 0 0
\(76\) −37.4646 −4.29748
\(77\) 0.880853i 0.100382i
\(78\) 0 0
\(79\) −4.54763 −0.511649 −0.255824 0.966723i \(-0.582347\pi\)
−0.255824 + 0.966723i \(0.582347\pi\)
\(80\) 7.89221 11.3821i 0.882376 1.27256i
\(81\) 0 0
\(82\) 25.1037i 2.77224i
\(83\) 11.6224i 1.27573i 0.770149 + 0.637865i \(0.220182\pi\)
−0.770149 + 0.637865i \(0.779818\pi\)
\(84\) 0 0
\(85\) −7.80219 5.40994i −0.846267 0.586791i
\(86\) −19.9277 −2.14886
\(87\) 0 0
\(88\) 30.0334i 3.20157i
\(89\) −16.4911 −1.74805 −0.874024 0.485882i \(-0.838499\pi\)
−0.874024 + 0.485882i \(0.838499\pi\)
\(90\) 0 0
\(91\) 0.316585 0.0331872
\(92\) 13.7478i 1.43330i
\(93\) 0 0
\(94\) 21.8377 2.25239
\(95\) 10.9842 15.8414i 1.12696 1.62529i
\(96\) 0 0
\(97\) 2.74419i 0.278631i −0.990248 0.139315i \(-0.955510\pi\)
0.990248 0.139315i \(-0.0444901\pi\)
\(98\) 17.5579i 1.77362i
\(99\) 0 0
\(100\) 7.61887 + 20.3493i 0.761887 + 2.03493i
\(101\) −6.41474 −0.638290 −0.319145 0.947706i \(-0.603396\pi\)
−0.319145 + 0.947706i \(0.603396\pi\)
\(102\) 0 0
\(103\) 7.08642i 0.698245i −0.937077 0.349123i \(-0.886480\pi\)
0.937077 0.349123i \(-0.113520\pi\)
\(104\) 10.7942 1.05846
\(105\) 0 0
\(106\) 13.6102 1.32194
\(107\) 0.925187i 0.0894412i 0.999000 + 0.0447206i \(0.0142398\pi\)
−0.999000 + 0.0447206i \(0.985760\pi\)
\(108\) 0 0
\(109\) −4.11700 −0.394337 −0.197169 0.980370i \(-0.563175\pi\)
−0.197169 + 0.980370i \(0.563175\pi\)
\(110\) −23.5265 16.3130i −2.24317 1.55538i
\(111\) 0 0
\(112\) 1.07352i 0.101438i
\(113\) 6.84626i 0.644042i −0.946732 0.322021i \(-0.895638\pi\)
0.946732 0.322021i \(-0.104362\pi\)
\(114\) 0 0
\(115\) −5.81305 4.03070i −0.542070 0.375864i
\(116\) −4.34577 −0.403495
\(117\) 0 0
\(118\) 19.3034i 1.77702i
\(119\) −0.735875 −0.0674575
\(120\) 0 0
\(121\) 14.8318 1.34834
\(122\) 6.95807i 0.629954i
\(123\) 0 0
\(124\) −14.0014 −1.25737
\(125\) −10.8382 2.74467i −0.969399 0.245491i
\(126\) 0 0
\(127\) 5.25850i 0.466617i 0.972403 + 0.233308i \(0.0749551\pi\)
−0.972403 + 0.233308i \(0.925045\pi\)
\(128\) 14.7574i 1.30438i
\(129\) 0 0
\(130\) −5.86302 + 8.45562i −0.514221 + 0.741607i
\(131\) −17.7157 −1.54783 −0.773913 0.633293i \(-0.781703\pi\)
−0.773913 + 0.633293i \(0.781703\pi\)
\(132\) 0 0
\(133\) 1.49410i 0.129555i
\(134\) 20.5021 1.77111
\(135\) 0 0
\(136\) −25.0903 −2.15147
\(137\) 1.14479i 0.0978057i −0.998804 0.0489028i \(-0.984428\pi\)
0.998804 0.0489028i \(-0.0155725\pi\)
\(138\) 0 0
\(139\) −4.08670 −0.346630 −0.173315 0.984866i \(-0.555448\pi\)
−0.173315 + 0.984866i \(0.555448\pi\)
\(140\) 1.38399 + 0.959639i 0.116968 + 0.0811043i
\(141\) 0 0
\(142\) 15.7679i 1.32321i
\(143\) 9.28414i 0.776379i
\(144\) 0 0
\(145\) 1.27413 1.83755i 0.105811 0.152600i
\(146\) 16.9876 1.40590
\(147\) 0 0
\(148\) 8.59715i 0.706682i
\(149\) 1.50268 0.123105 0.0615523 0.998104i \(-0.480395\pi\)
0.0615523 + 0.998104i \(0.480395\pi\)
\(150\) 0 0
\(151\) −21.4897 −1.74881 −0.874404 0.485199i \(-0.838747\pi\)
−0.874404 + 0.485199i \(0.838747\pi\)
\(152\) 50.9427i 4.13200i
\(153\) 0 0
\(154\) −2.21894 −0.178807
\(155\) 4.10507 5.92031i 0.329727 0.475531i
\(156\) 0 0
\(157\) 11.1167i 0.887206i −0.896223 0.443603i \(-0.853700\pi\)
0.896223 0.443603i \(-0.146300\pi\)
\(158\) 11.4559i 0.911379i
\(159\) 0 0
\(160\) 6.95561 + 4.82293i 0.549889 + 0.381286i
\(161\) −0.548266 −0.0432094
\(162\) 0 0
\(163\) 12.2180i 0.956988i −0.878091 0.478494i \(-0.841183\pi\)
0.878091 0.478494i \(-0.158817\pi\)
\(164\) −43.3074 −3.38174
\(165\) 0 0
\(166\) −29.2779 −2.27240
\(167\) 21.3634i 1.65315i 0.562826 + 0.826576i \(0.309714\pi\)
−0.562826 + 0.826576i \(0.690286\pi\)
\(168\) 0 0
\(169\) 9.66321 0.743324
\(170\) 13.6281 19.6544i 1.04523 1.50742i
\(171\) 0 0
\(172\) 34.3781i 2.62130i
\(173\) 13.1686i 1.00119i −0.865682 0.500594i \(-0.833115\pi\)
0.865682 0.500594i \(-0.166885\pi\)
\(174\) 0 0
\(175\) −0.811540 + 0.303844i −0.0613466 + 0.0229684i
\(176\) −31.4819 −2.37304
\(177\) 0 0
\(178\) 41.5423i 3.11373i
\(179\) 10.6947 0.799357 0.399679 0.916655i \(-0.369122\pi\)
0.399679 + 0.916655i \(0.369122\pi\)
\(180\) 0 0
\(181\) −15.2511 −1.13361 −0.566804 0.823852i \(-0.691820\pi\)
−0.566804 + 0.823852i \(0.691820\pi\)
\(182\) 0.797504i 0.0591149i
\(183\) 0 0
\(184\) −18.6936 −1.37811
\(185\) −3.63519 2.52059i −0.267264 0.185318i
\(186\) 0 0
\(187\) 21.5802i 1.57810i
\(188\) 37.6732i 2.74760i
\(189\) 0 0
\(190\) 39.9057 + 27.6701i 2.89507 + 2.00740i
\(191\) 25.7131 1.86053 0.930266 0.366885i \(-0.119576\pi\)
0.930266 + 0.366885i \(0.119576\pi\)
\(192\) 0 0
\(193\) 22.8935i 1.64791i −0.566658 0.823953i \(-0.691764\pi\)
0.566658 0.823953i \(-0.308236\pi\)
\(194\) 6.91284 0.496313
\(195\) 0 0
\(196\) −30.2899 −2.16356
\(197\) 0.840810i 0.0599052i 0.999551 + 0.0299526i \(0.00953564\pi\)
−0.999551 + 0.0299526i \(0.990464\pi\)
\(198\) 0 0
\(199\) 26.5996 1.88560 0.942799 0.333361i \(-0.108183\pi\)
0.942799 + 0.333361i \(0.108183\pi\)
\(200\) −27.6701 + 10.3598i −1.95657 + 0.732549i
\(201\) 0 0
\(202\) 16.1592i 1.13696i
\(203\) 0.173311i 0.0121640i
\(204\) 0 0
\(205\) 12.6973 18.3119i 0.886815 1.27896i
\(206\) 17.8513 1.24376
\(207\) 0 0
\(208\) 11.3148i 0.784543i
\(209\) −43.8159 −3.03081
\(210\) 0 0
\(211\) 1.86360 0.128296 0.0641478 0.997940i \(-0.479567\pi\)
0.0641478 + 0.997940i \(0.479567\pi\)
\(212\) 23.4795i 1.61258i
\(213\) 0 0
\(214\) −2.33062 −0.159318
\(215\) 14.5363 + 10.0793i 0.991367 + 0.687401i
\(216\) 0 0
\(217\) 0.558382i 0.0379055i
\(218\) 10.3711i 0.702417i
\(219\) 0 0
\(220\) 28.1422 40.5866i 1.89735 2.73635i
\(221\) 7.75608 0.521731
\(222\) 0 0
\(223\) 25.0759i 1.67920i 0.543202 + 0.839602i \(0.317212\pi\)
−0.543202 + 0.839602i \(0.682788\pi\)
\(224\) 0.656028 0.0438327
\(225\) 0 0
\(226\) 17.2463 1.14721
\(227\) 20.3877i 1.35318i 0.736360 + 0.676590i \(0.236543\pi\)
−0.736360 + 0.676590i \(0.763457\pi\)
\(228\) 0 0
\(229\) 5.84179 0.386037 0.193018 0.981195i \(-0.438172\pi\)
0.193018 + 0.981195i \(0.438172\pi\)
\(230\) 10.1537 14.6435i 0.669512 0.965567i
\(231\) 0 0
\(232\) 5.90919i 0.387957i
\(233\) 14.1216i 0.925134i −0.886584 0.462567i \(-0.846928\pi\)
0.886584 0.462567i \(-0.153072\pi\)
\(234\) 0 0
\(235\) −15.9296 11.0454i −1.03913 0.720520i
\(236\) −33.3010 −2.16771
\(237\) 0 0
\(238\) 1.85373i 0.120159i
\(239\) −6.39059 −0.413373 −0.206686 0.978407i \(-0.566268\pi\)
−0.206686 + 0.978407i \(0.566268\pi\)
\(240\) 0 0
\(241\) −10.1713 −0.655188 −0.327594 0.944819i \(-0.606238\pi\)
−0.327594 + 0.944819i \(0.606238\pi\)
\(242\) 37.3624i 2.40175i
\(243\) 0 0
\(244\) −12.0037 −0.768455
\(245\) 8.88066 12.8076i 0.567365 0.818251i
\(246\) 0 0
\(247\) 15.7478i 1.00201i
\(248\) 19.0385i 1.20895i
\(249\) 0 0
\(250\) 6.91406 27.3023i 0.437283 1.72675i
\(251\) 15.7587 0.994678 0.497339 0.867556i \(-0.334310\pi\)
0.497339 + 0.867556i \(0.334310\pi\)
\(252\) 0 0
\(253\) 16.0784i 1.01084i
\(254\) −13.2466 −0.831165
\(255\) 0 0
\(256\) −31.4691 −1.96682
\(257\) 12.3486i 0.770283i 0.922858 + 0.385142i \(0.125847\pi\)
−0.922858 + 0.385142i \(0.874153\pi\)
\(258\) 0 0
\(259\) −0.342858 −0.0213041
\(260\) −14.5871 10.1145i −0.904656 0.627277i
\(261\) 0 0
\(262\) 44.6272i 2.75708i
\(263\) 4.16928i 0.257089i 0.991704 + 0.128545i \(0.0410305\pi\)
−0.991704 + 0.128545i \(0.958969\pi\)
\(264\) 0 0
\(265\) −9.92799 6.88395i −0.609872 0.422877i
\(266\) 3.76377 0.230771
\(267\) 0 0
\(268\) 35.3690i 2.16051i
\(269\) −1.36011 −0.0829273 −0.0414636 0.999140i \(-0.513202\pi\)
−0.0414636 + 0.999140i \(0.513202\pi\)
\(270\) 0 0
\(271\) 11.1448 0.676998 0.338499 0.940967i \(-0.390081\pi\)
0.338499 + 0.940967i \(0.390081\pi\)
\(272\) 26.3003i 1.59469i
\(273\) 0 0
\(274\) 2.88381 0.174217
\(275\) 8.91048 + 23.7991i 0.537322 + 1.43514i
\(276\) 0 0
\(277\) 0.704673i 0.0423397i −0.999776 0.0211699i \(-0.993261\pi\)
0.999776 0.0211699i \(-0.00673908\pi\)
\(278\) 10.2947i 0.617437i
\(279\) 0 0
\(280\) −1.30487 + 1.88188i −0.0779811 + 0.112464i
\(281\) 13.8119 0.823950 0.411975 0.911195i \(-0.364839\pi\)
0.411975 + 0.911195i \(0.364839\pi\)
\(282\) 0 0
\(283\) 8.92142i 0.530324i 0.964204 + 0.265162i \(0.0854254\pi\)
−0.964204 + 0.265162i \(0.914575\pi\)
\(284\) −27.2018 −1.61413
\(285\) 0 0
\(286\) 23.3875 1.38293
\(287\) 1.72712i 0.101948i
\(288\) 0 0
\(289\) −1.02833 −0.0604902
\(290\) 4.62893 + 3.20964i 0.271820 + 0.188477i
\(291\) 0 0
\(292\) 29.3060i 1.71500i
\(293\) 31.2817i 1.82750i 0.406278 + 0.913749i \(0.366826\pi\)
−0.406278 + 0.913749i \(0.633174\pi\)
\(294\) 0 0
\(295\) 9.76350 14.0809i 0.568453 0.819820i
\(296\) −11.6900 −0.679469
\(297\) 0 0
\(298\) 3.78538i 0.219281i
\(299\) 5.77870 0.334191
\(300\) 0 0
\(301\) 1.37101 0.0790238
\(302\) 54.1343i 3.11508i
\(303\) 0 0
\(304\) 53.3996 3.06268
\(305\) 3.51934 5.07558i 0.201517 0.290627i
\(306\) 0 0
\(307\) 21.8533i 1.24723i 0.781730 + 0.623617i \(0.214338\pi\)
−0.781730 + 0.623617i \(0.785662\pi\)
\(308\) 3.82798i 0.218120i
\(309\) 0 0
\(310\) 14.9137 + 10.3410i 0.847043 + 0.587329i
\(311\) −28.8838 −1.63785 −0.818925 0.573901i \(-0.805430\pi\)
−0.818925 + 0.573901i \(0.805430\pi\)
\(312\) 0 0
\(313\) 8.24232i 0.465884i 0.972491 + 0.232942i \(0.0748352\pi\)
−0.972491 + 0.232942i \(0.925165\pi\)
\(314\) 28.0038 1.58034
\(315\) 0 0
\(316\) 19.7630 1.11175
\(317\) 7.15829i 0.402050i −0.979586 0.201025i \(-0.935573\pi\)
0.979586 0.201025i \(-0.0644272\pi\)
\(318\) 0 0
\(319\) −5.08250 −0.284565
\(320\) 3.63505 5.24246i 0.203206 0.293062i
\(321\) 0 0
\(322\) 1.38113i 0.0769672i
\(323\) 36.6043i 2.03672i
\(324\) 0 0
\(325\) 8.55359 3.20250i 0.474468 0.177643i
\(326\) 30.7781 1.70464
\(327\) 0 0
\(328\) 58.8875i 3.25152i
\(329\) −1.50242 −0.0828311
\(330\) 0 0
\(331\) −24.6936 −1.35728 −0.678642 0.734470i \(-0.737431\pi\)
−0.678642 + 0.734470i \(0.737431\pi\)
\(332\) 50.5085i 2.77201i
\(333\) 0 0
\(334\) −53.8162 −2.94469
\(335\) −14.9553 10.3698i −0.817095 0.566563i
\(336\) 0 0
\(337\) 11.7142i 0.638116i −0.947735 0.319058i \(-0.896634\pi\)
0.947735 0.319058i \(-0.103366\pi\)
\(338\) 24.3424i 1.32405i
\(339\) 0 0
\(340\) 33.9065 + 23.5104i 1.83884 + 1.27503i
\(341\) −16.3751 −0.886759
\(342\) 0 0
\(343\) 2.42115i 0.130730i
\(344\) 46.7458 2.52036
\(345\) 0 0
\(346\) 33.1727 1.78337
\(347\) 0.828990i 0.0445025i 0.999752 + 0.0222513i \(0.00708338\pi\)
−0.999752 + 0.0222513i \(0.992917\pi\)
\(348\) 0 0
\(349\) 8.44370 0.451981 0.225991 0.974129i \(-0.427438\pi\)
0.225991 + 0.974129i \(0.427438\pi\)
\(350\) −0.765407 2.04433i −0.0409127 0.109274i
\(351\) 0 0
\(352\) 19.2386i 1.02542i
\(353\) 4.90553i 0.261095i 0.991442 + 0.130547i \(0.0416735\pi\)
−0.991442 + 0.130547i \(0.958327\pi\)
\(354\) 0 0
\(355\) 7.97528 11.5019i 0.423284 0.610458i
\(356\) 71.6664 3.79831
\(357\) 0 0
\(358\) 26.9407i 1.42386i
\(359\) 4.69044 0.247552 0.123776 0.992310i \(-0.460500\pi\)
0.123776 + 0.992310i \(0.460500\pi\)
\(360\) 0 0
\(361\) 55.3205 2.91161
\(362\) 38.4189i 2.01925i
\(363\) 0 0
\(364\) −1.37581 −0.0721119
\(365\) −12.3916 8.59219i −0.648607 0.449736i
\(366\) 0 0
\(367\) 29.2460i 1.52663i −0.646028 0.763314i \(-0.723571\pi\)
0.646028 0.763314i \(-0.276429\pi\)
\(368\) 19.5952i 1.02147i
\(369\) 0 0
\(370\) 6.34958 9.15733i 0.330099 0.476067i
\(371\) −0.936373 −0.0486140
\(372\) 0 0
\(373\) 34.5171i 1.78723i 0.448839 + 0.893613i \(0.351838\pi\)
−0.448839 + 0.893613i \(0.648162\pi\)
\(374\) −54.3622 −2.81100
\(375\) 0 0
\(376\) −51.2263 −2.64179
\(377\) 1.82669i 0.0940793i
\(378\) 0 0
\(379\) 3.20131 0.164440 0.0822201 0.996614i \(-0.473799\pi\)
0.0822201 + 0.996614i \(0.473799\pi\)
\(380\) −47.7349 + 68.8430i −2.44875 + 3.53157i
\(381\) 0 0
\(382\) 64.7733i 3.31409i
\(383\) 19.4424i 0.993458i −0.867906 0.496729i \(-0.834534\pi\)
0.867906 0.496729i \(-0.165466\pi\)
\(384\) 0 0
\(385\) 1.61861 + 1.12232i 0.0824920 + 0.0571989i
\(386\) 57.6705 2.93535
\(387\) 0 0
\(388\) 11.9256i 0.605432i
\(389\) 2.55875 0.129734 0.0648669 0.997894i \(-0.479338\pi\)
0.0648669 + 0.997894i \(0.479338\pi\)
\(390\) 0 0
\(391\) −13.4321 −0.679289
\(392\) 41.1868i 2.08025i
\(393\) 0 0
\(394\) −2.11807 −0.106707
\(395\) −5.79429 + 8.35650i −0.291542 + 0.420461i
\(396\) 0 0
\(397\) 30.6583i 1.53869i −0.638831 0.769347i \(-0.720582\pi\)
0.638831 0.769347i \(-0.279418\pi\)
\(398\) 67.0067i 3.35874i
\(399\) 0 0
\(400\) −10.8594 29.0046i −0.542972 1.45023i
\(401\) −11.1628 −0.557446 −0.278723 0.960372i \(-0.589911\pi\)
−0.278723 + 0.960372i \(0.589911\pi\)
\(402\) 0 0
\(403\) 5.88532i 0.293169i
\(404\) 27.8770 1.38693
\(405\) 0 0
\(406\) 0.436584 0.0216673
\(407\) 10.0546i 0.498388i
\(408\) 0 0
\(409\) −13.3880 −0.661994 −0.330997 0.943632i \(-0.607385\pi\)
−0.330997 + 0.943632i \(0.607385\pi\)
\(410\) 46.1292 + 31.9854i 2.27816 + 1.57965i
\(411\) 0 0
\(412\) 30.7959i 1.51721i
\(413\) 1.32806i 0.0653495i
\(414\) 0 0
\(415\) 21.3568 + 14.8085i 1.04836 + 0.726923i
\(416\) −6.91451 −0.339012
\(417\) 0 0
\(418\) 110.376i 5.39865i
\(419\) 29.2982 1.43131 0.715655 0.698454i \(-0.246128\pi\)
0.715655 + 0.698454i \(0.246128\pi\)
\(420\) 0 0
\(421\) 10.1098 0.492724 0.246362 0.969178i \(-0.420765\pi\)
0.246362 + 0.969178i \(0.420765\pi\)
\(422\) 4.69456i 0.228528i
\(423\) 0 0
\(424\) −31.9264 −1.55048
\(425\) −19.8821 + 7.44392i −0.964422 + 0.361083i
\(426\) 0 0
\(427\) 0.478710i 0.0231664i
\(428\) 4.02065i 0.194345i
\(429\) 0 0
\(430\) −25.3905 + 36.6181i −1.22444 + 1.76588i
\(431\) −30.3330 −1.46109 −0.730545 0.682865i \(-0.760734\pi\)
−0.730545 + 0.682865i \(0.760734\pi\)
\(432\) 0 0
\(433\) 6.50520i 0.312620i −0.987708 0.156310i \(-0.950040\pi\)
0.987708 0.156310i \(-0.0499599\pi\)
\(434\) 1.40661 0.0675195
\(435\) 0 0
\(436\) 17.8915 0.856850
\(437\) 27.2722i 1.30460i
\(438\) 0 0
\(439\) 9.40248 0.448756 0.224378 0.974502i \(-0.427965\pi\)
0.224378 + 0.974502i \(0.427965\pi\)
\(440\) 55.1879 + 38.2666i 2.63098 + 1.82429i
\(441\) 0 0
\(442\) 19.5382i 0.929337i
\(443\) 28.1657i 1.33819i −0.743175 0.669097i \(-0.766681\pi\)
0.743175 0.669097i \(-0.233319\pi\)
\(444\) 0 0
\(445\) −21.0118 + 30.3031i −0.996055 + 1.43651i
\(446\) −63.1682 −2.99110
\(447\) 0 0
\(448\) 0.494450i 0.0233605i
\(449\) −32.2625 −1.52256 −0.761281 0.648422i \(-0.775429\pi\)
−0.761281 + 0.648422i \(0.775429\pi\)
\(450\) 0 0
\(451\) −50.6492 −2.38498
\(452\) 29.7523i 1.39943i
\(453\) 0 0
\(454\) −51.3583 −2.41037
\(455\) 0.403372 0.581741i 0.0189104 0.0272724i
\(456\) 0 0
\(457\) 27.1466i 1.26986i −0.772568 0.634932i \(-0.781028\pi\)
0.772568 0.634932i \(-0.218972\pi\)
\(458\) 14.7160i 0.687631i
\(459\) 0 0
\(460\) 25.2622 + 17.5165i 1.17786 + 0.816710i
\(461\) −7.00940 −0.326460 −0.163230 0.986588i \(-0.552191\pi\)
−0.163230 + 0.986588i \(0.552191\pi\)
\(462\) 0 0
\(463\) 21.7590i 1.01123i −0.862760 0.505613i \(-0.831266\pi\)
0.862760 0.505613i \(-0.168734\pi\)
\(464\) 6.19418 0.287558
\(465\) 0 0
\(466\) 35.5733 1.64790
\(467\) 30.7825i 1.42445i 0.701953 + 0.712223i \(0.252312\pi\)
−0.701953 + 0.712223i \(0.747688\pi\)
\(468\) 0 0
\(469\) −1.41053 −0.0651322
\(470\) 27.8242 40.1279i 1.28343 1.85096i
\(471\) 0 0
\(472\) 45.2813i 2.08424i
\(473\) 40.2061i 1.84868i
\(474\) 0 0
\(475\) −15.1140 40.3681i −0.693476 1.85221i
\(476\) 3.19794 0.146577
\(477\) 0 0
\(478\) 16.0984i 0.736324i
\(479\) −6.29237 −0.287506 −0.143753 0.989614i \(-0.545917\pi\)
−0.143753 + 0.989614i \(0.545917\pi\)
\(480\) 0 0
\(481\) 3.61370 0.164771
\(482\) 25.6222i 1.16706i
\(483\) 0 0
\(484\) −64.4555 −2.92979
\(485\) −5.04259 3.49647i −0.228972 0.158766i
\(486\) 0 0
\(487\) 30.3406i 1.37487i 0.726248 + 0.687433i \(0.241262\pi\)
−0.726248 + 0.687433i \(0.758738\pi\)
\(488\) 16.3220i 0.738864i
\(489\) 0 0
\(490\) 32.2635 + 22.3711i 1.45752 + 1.01062i
\(491\) −17.7822 −0.802502 −0.401251 0.915968i \(-0.631424\pi\)
−0.401251 + 0.915968i \(0.631424\pi\)
\(492\) 0 0
\(493\) 4.24598i 0.191229i
\(494\) −39.6699 −1.78483
\(495\) 0 0
\(496\) 19.9567 0.896083
\(497\) 1.08482i 0.0486608i
\(498\) 0 0
\(499\) −0.262248 −0.0117399 −0.00586993 0.999983i \(-0.501868\pi\)
−0.00586993 + 0.999983i \(0.501868\pi\)
\(500\) 47.1004 + 11.9277i 2.10639 + 0.533424i
\(501\) 0 0
\(502\) 39.6974i 1.77178i
\(503\) 15.0486i 0.670986i 0.942043 + 0.335493i \(0.108903\pi\)
−0.942043 + 0.335493i \(0.891097\pi\)
\(504\) 0 0
\(505\) −8.17323 + 11.7874i −0.363704 + 0.524532i
\(506\) −40.5028 −1.80057
\(507\) 0 0
\(508\) 22.8522i 1.01390i
\(509\) 39.8752 1.76744 0.883719 0.468019i \(-0.155032\pi\)
0.883719 + 0.468019i \(0.155032\pi\)
\(510\) 0 0
\(511\) −1.16873 −0.0517017
\(512\) 49.7585i 2.19904i
\(513\) 0 0
\(514\) −31.1071 −1.37207
\(515\) −13.0216 9.02904i −0.573802 0.397867i
\(516\) 0 0
\(517\) 44.0598i 1.93775i
\(518\) 0.863687i 0.0379482i
\(519\) 0 0
\(520\) 13.7533 19.8349i 0.603122 0.869820i
\(521\) −18.3187 −0.802557 −0.401279 0.915956i \(-0.631434\pi\)
−0.401279 + 0.915956i \(0.631434\pi\)
\(522\) 0 0
\(523\) 6.04576i 0.264363i −0.991226 0.132181i \(-0.957802\pi\)
0.991226 0.132181i \(-0.0421981\pi\)
\(524\) 76.9882 3.36325
\(525\) 0 0
\(526\) −10.5028 −0.457942
\(527\) 13.6799i 0.595906i
\(528\) 0 0
\(529\) 12.9924 0.564886
\(530\) 17.3412 25.0094i 0.753254 1.08634i
\(531\) 0 0
\(532\) 6.49303i 0.281508i
\(533\) 18.2037i 0.788490i
\(534\) 0 0
\(535\) 1.70008 + 1.17881i 0.0735007 + 0.0509645i
\(536\) −48.0932 −2.07731
\(537\) 0 0
\(538\) 3.42622i 0.147715i
\(539\) −35.4248 −1.52585
\(540\) 0 0
\(541\) −35.6643 −1.53333 −0.766664 0.642049i \(-0.778085\pi\)
−0.766664 + 0.642049i \(0.778085\pi\)
\(542\) 28.0746i 1.20591i
\(543\) 0 0
\(544\) 16.0722 0.689088
\(545\) −5.24561 + 7.56519i −0.224697 + 0.324057i
\(546\) 0 0
\(547\) 5.23087i 0.223656i 0.993728 + 0.111828i \(0.0356706\pi\)
−0.993728 + 0.111828i \(0.964329\pi\)
\(548\) 4.97498i 0.212520i
\(549\) 0 0
\(550\) −59.9519 + 22.4462i −2.55636 + 0.957110i
\(551\) 8.62093 0.367264
\(552\) 0 0
\(553\) 0.788155i 0.0335157i
\(554\) 1.77513 0.0754180
\(555\) 0 0
\(556\) 17.7599 0.753186
\(557\) 32.9893i 1.39780i 0.715219 + 0.698900i \(0.246327\pi\)
−0.715219 + 0.698900i \(0.753673\pi\)
\(558\) 0 0
\(559\) −14.4504 −0.611186
\(560\) −1.97264 1.36781i −0.0833594 0.0578004i
\(561\) 0 0
\(562\) 34.7933i 1.46767i
\(563\) 5.94931i 0.250734i −0.992110 0.125367i \(-0.959989\pi\)
0.992110 0.125367i \(-0.0400108\pi\)
\(564\) 0 0
\(565\) −12.5803 8.72305i −0.529259 0.366981i
\(566\) −22.4738 −0.944644
\(567\) 0 0
\(568\) 36.9878i 1.55198i
\(569\) −14.6940 −0.616003 −0.308002 0.951386i \(-0.599660\pi\)
−0.308002 + 0.951386i \(0.599660\pi\)
\(570\) 0 0
\(571\) 7.86509 0.329144 0.164572 0.986365i \(-0.447376\pi\)
0.164572 + 0.986365i \(0.447376\pi\)
\(572\) 40.3467i 1.68698i
\(573\) 0 0
\(574\) 4.35074 0.181597
\(575\) −14.8132 + 5.54612i −0.617753 + 0.231289i
\(576\) 0 0
\(577\) 29.7454i 1.23832i −0.785265 0.619159i \(-0.787474\pi\)
0.785265 0.619159i \(-0.212526\pi\)
\(578\) 2.59045i 0.107749i
\(579\) 0 0
\(580\) −5.53709 + 7.98556i −0.229915 + 0.331582i
\(581\) 2.01430 0.0835671
\(582\) 0 0
\(583\) 27.4599i 1.13727i
\(584\) −39.8489 −1.64896
\(585\) 0 0
\(586\) −78.8013 −3.25525
\(587\) 46.1639i 1.90539i −0.303929 0.952695i \(-0.598299\pi\)
0.303929 0.952695i \(-0.401701\pi\)
\(588\) 0 0
\(589\) 27.7754 1.14446
\(590\) 35.4709 + 24.5951i 1.46031 + 1.01256i
\(591\) 0 0
\(592\) 12.2538i 0.503629i
\(593\) 22.6806i 0.931382i 0.884948 + 0.465691i \(0.154194\pi\)
−0.884948 + 0.465691i \(0.845806\pi\)
\(594\) 0 0
\(595\) −0.937602 + 1.35221i −0.0384379 + 0.0554350i
\(596\) −6.53031 −0.267492
\(597\) 0 0
\(598\) 14.5570i 0.595280i
\(599\) 22.8764 0.934704 0.467352 0.884071i \(-0.345208\pi\)
0.467352 + 0.884071i \(0.345208\pi\)
\(600\) 0 0
\(601\) 14.6918 0.599291 0.299646 0.954051i \(-0.403132\pi\)
0.299646 + 0.954051i \(0.403132\pi\)
\(602\) 3.45369i 0.140762i
\(603\) 0 0
\(604\) 93.3893 3.79996
\(605\) 18.8977 27.2541i 0.768299 1.10804i
\(606\) 0 0
\(607\) 20.9484i 0.850270i 0.905130 + 0.425135i \(0.139773\pi\)
−0.905130 + 0.425135i \(0.860227\pi\)
\(608\) 32.6325i 1.32342i
\(609\) 0 0
\(610\) 12.7858 + 8.86551i 0.517682 + 0.358954i
\(611\) 15.8354 0.640633
\(612\) 0 0
\(613\) 42.0373i 1.69787i −0.528496 0.848936i \(-0.677244\pi\)
0.528496 0.848936i \(-0.322756\pi\)
\(614\) −55.0503 −2.22165
\(615\) 0 0
\(616\) 5.20512 0.209720
\(617\) 44.6853i 1.79896i 0.436958 + 0.899482i \(0.356056\pi\)
−0.436958 + 0.899482i \(0.643944\pi\)
\(618\) 0 0
\(619\) 22.1966 0.892157 0.446079 0.894994i \(-0.352820\pi\)
0.446079 + 0.894994i \(0.352820\pi\)
\(620\) −17.8397 + 25.7283i −0.716459 + 1.03327i
\(621\) 0 0
\(622\) 72.7606i 2.91744i
\(623\) 2.85808i 0.114507i
\(624\) 0 0
\(625\) −18.8528 + 16.4187i −0.754112 + 0.656746i
\(626\) −20.7631 −0.829859
\(627\) 0 0
\(628\) 48.3104i 1.92780i
\(629\) −8.39974 −0.334919
\(630\) 0 0
\(631\) −5.29765 −0.210896 −0.105448 0.994425i \(-0.533628\pi\)
−0.105448 + 0.994425i \(0.533628\pi\)
\(632\) 26.8728i 1.06894i
\(633\) 0 0
\(634\) 18.0323 0.716155
\(635\) 9.66275 + 6.70003i 0.383455 + 0.265883i
\(636\) 0 0
\(637\) 12.7320i 0.504458i
\(638\) 12.8032i 0.506884i
\(639\) 0 0
\(640\) 27.1174 + 18.8029i 1.07191 + 0.743248i
\(641\) −3.21592 −0.127021 −0.0635107 0.997981i \(-0.520230\pi\)
−0.0635107 + 0.997981i \(0.520230\pi\)
\(642\) 0 0
\(643\) 32.0630i 1.26444i 0.774788 + 0.632221i \(0.217857\pi\)
−0.774788 + 0.632221i \(0.782143\pi\)
\(644\) 2.38264 0.0938891
\(645\) 0 0
\(646\) 92.2092 3.62792
\(647\) 9.26571i 0.364273i 0.983273 + 0.182136i \(0.0583012\pi\)
−0.983273 + 0.182136i \(0.941699\pi\)
\(648\) 0 0
\(649\) −38.9465 −1.52878
\(650\) 8.06735 + 21.5472i 0.316427 + 0.845150i
\(651\) 0 0
\(652\) 53.0966i 2.07942i
\(653\) 22.2362i 0.870171i −0.900389 0.435085i \(-0.856718\pi\)
0.900389 0.435085i \(-0.143282\pi\)
\(654\) 0 0
\(655\) −22.5721 + 32.5534i −0.881966 + 1.27197i
\(656\) 61.7275 2.41006
\(657\) 0 0
\(658\) 3.78472i 0.147544i
\(659\) 34.6708 1.35058 0.675291 0.737552i \(-0.264018\pi\)
0.675291 + 0.737552i \(0.264018\pi\)
\(660\) 0 0
\(661\) −9.67217 −0.376204 −0.188102 0.982150i \(-0.560234\pi\)
−0.188102 + 0.982150i \(0.560234\pi\)
\(662\) 62.2052i 2.41767i
\(663\) 0 0
\(664\) 68.6792 2.66527
\(665\) −2.74549 1.90369i −0.106465 0.0738218i
\(666\) 0 0
\(667\) 3.16348i 0.122491i
\(668\) 92.8405i 3.59211i
\(669\) 0 0
\(670\) 26.1224 37.6736i 1.00920 1.45546i
\(671\) −14.0386 −0.541954
\(672\) 0 0
\(673\) 24.7689i 0.954770i 0.878694 + 0.477385i \(0.158415\pi\)
−0.878694 + 0.477385i \(0.841585\pi\)
\(674\) 29.5091 1.13665
\(675\) 0 0
\(676\) −41.9941 −1.61516
\(677\) 33.3636i 1.28227i 0.767430 + 0.641133i \(0.221535\pi\)
−0.767430 + 0.641133i \(0.778465\pi\)
\(678\) 0 0
\(679\) −0.475599 −0.0182518
\(680\) −31.9684 + 46.1046i −1.22593 + 1.76803i
\(681\) 0 0
\(682\) 41.2501i 1.57955i
\(683\) 13.9516i 0.533842i 0.963718 + 0.266921i \(0.0860063\pi\)
−0.963718 + 0.266921i \(0.913994\pi\)
\(684\) 0 0
\(685\) −2.10360 1.45861i −0.0803744 0.0557306i
\(686\) 6.09907 0.232864
\(687\) 0 0
\(688\) 49.0003i 1.86812i
\(689\) 9.86932 0.375991
\(690\) 0 0
\(691\) 50.5611 1.92344 0.961718 0.274042i \(-0.0883607\pi\)
0.961718 + 0.274042i \(0.0883607\pi\)
\(692\) 57.2276i 2.17547i
\(693\) 0 0
\(694\) −2.08829 −0.0792705
\(695\) −5.20700 + 7.50952i −0.197513 + 0.284852i
\(696\) 0 0
\(697\) 42.3129i 1.60272i
\(698\) 21.2704i 0.805096i
\(699\) 0 0
\(700\) 3.52676 1.32043i 0.133299 0.0499077i
\(701\) 24.0803 0.909499 0.454749 0.890620i \(-0.349729\pi\)
0.454749 + 0.890620i \(0.349729\pi\)
\(702\) 0 0
\(703\) 17.0546i 0.643227i
\(704\) −14.5002 −0.546496
\(705\) 0 0
\(706\) −12.3574 −0.465078
\(707\) 1.11174i 0.0418114i
\(708\) 0 0
\(709\) −0.769569 −0.0289018 −0.0144509 0.999896i \(-0.504600\pi\)
−0.0144509 + 0.999896i \(0.504600\pi\)
\(710\) 28.9743 + 20.0904i 1.08738 + 0.753979i
\(711\) 0 0
\(712\) 97.4487i 3.65205i
\(713\) 10.1923i 0.381703i
\(714\) 0 0
\(715\) −17.0601 11.8292i −0.638010 0.442388i
\(716\) −46.4766 −1.73691
\(717\) 0 0
\(718\) 11.8156i 0.440955i
\(719\) 4.92456 0.183655 0.0918275 0.995775i \(-0.470729\pi\)
0.0918275 + 0.995775i \(0.470729\pi\)
\(720\) 0 0
\(721\) −1.22815 −0.0457388
\(722\) 139.357i 5.18632i
\(723\) 0 0
\(724\) 66.2780 2.46320
\(725\) −1.75317 4.68256i −0.0651111 0.173906i
\(726\) 0 0
\(727\) 41.8838i 1.55339i 0.629880 + 0.776693i \(0.283104\pi\)
−0.629880 + 0.776693i \(0.716896\pi\)
\(728\) 1.87076i 0.0693350i
\(729\) 0 0
\(730\) 21.6444 31.2155i 0.801096 1.15534i
\(731\) 33.5887 1.24232
\(732\) 0 0
\(733\) 27.1372i 1.00234i 0.865350 + 0.501168i \(0.167096\pi\)
−0.865350 + 0.501168i \(0.832904\pi\)
\(734\) 73.6730 2.71932
\(735\) 0 0
\(736\) 11.9746 0.441390
\(737\) 41.3650i 1.52370i
\(738\) 0 0
\(739\) 3.41445 0.125603 0.0628013 0.998026i \(-0.479997\pi\)
0.0628013 + 0.998026i \(0.479997\pi\)
\(740\) 15.7977 + 10.9539i 0.580735 + 0.402674i
\(741\) 0 0
\(742\) 2.35880i 0.0865942i
\(743\) 3.73961i 0.137193i 0.997644 + 0.0685966i \(0.0218521\pi\)
−0.997644 + 0.0685966i \(0.978148\pi\)
\(744\) 0 0
\(745\) 1.91462 2.76125i 0.0701461 0.101164i
\(746\) −86.9513 −3.18351
\(747\) 0 0
\(748\) 93.7825i 3.42903i
\(749\) 0.160345 0.00585888
\(750\) 0 0
\(751\) −24.1900 −0.882707 −0.441354 0.897333i \(-0.645502\pi\)
−0.441354 + 0.897333i \(0.645502\pi\)
\(752\) 53.6969i 1.95812i
\(753\) 0 0
\(754\) −4.60158 −0.167580
\(755\) −27.3807 + 39.4884i −0.996487 + 1.43713i
\(756\) 0 0
\(757\) 3.55451i 0.129191i −0.997912 0.0645953i \(-0.979424\pi\)
0.997912 0.0645953i \(-0.0205757\pi\)
\(758\) 8.06436i 0.292911i
\(759\) 0 0
\(760\) −93.6097 64.9078i −3.39558 2.35445i
\(761\) 44.2390 1.60366 0.801832 0.597550i \(-0.203859\pi\)
0.801832 + 0.597550i \(0.203859\pi\)
\(762\) 0 0
\(763\) 0.713522i 0.0258312i
\(764\) −111.743 −4.04272
\(765\) 0 0
\(766\) 48.9769 1.76961
\(767\) 13.9977i 0.505426i
\(768\) 0 0
\(769\) −6.30558 −0.227385 −0.113692 0.993516i \(-0.536268\pi\)
−0.113692 + 0.993516i \(0.536268\pi\)
\(770\) −2.82722 + 4.07741i −0.101886 + 0.146940i
\(771\) 0 0
\(772\) 99.4897i 3.58071i
\(773\) 24.2649i 0.872747i −0.899766 0.436374i \(-0.856263\pi\)
0.899766 0.436374i \(-0.143737\pi\)
\(774\) 0 0
\(775\) −5.64845 15.0865i −0.202898 0.541924i
\(776\) −16.2159 −0.582118
\(777\) 0 0
\(778\) 6.44570i 0.231090i
\(779\) 85.9111 3.07809
\(780\) 0 0
\(781\) −31.8133 −1.13837
\(782\) 33.8365i 1.20999i
\(783\) 0 0
\(784\) 43.1732 1.54190
\(785\) −20.4274 14.1641i −0.729085 0.505538i
\(786\) 0 0
\(787\) 39.1338i 1.39497i 0.716600 + 0.697484i \(0.245697\pi\)
−0.716600 + 0.697484i \(0.754303\pi\)
\(788\) 3.65397i 0.130167i
\(789\) 0 0
\(790\) −21.0507 14.5963i −0.748950 0.519312i
\(791\) −1.18653 −0.0421882
\(792\) 0 0
\(793\) 5.04558i 0.179174i
\(794\) 77.2307 2.74081
\(795\) 0 0
\(796\) −115.596 −4.09719
\(797\) 29.3166i 1.03845i 0.854638 + 0.519224i \(0.173779\pi\)
−0.854638 + 0.519224i \(0.826221\pi\)
\(798\) 0 0
\(799\) −36.8081 −1.30218
\(800\) 17.7248 6.63622i 0.626665 0.234626i
\(801\) 0 0
\(802\) 28.1201i 0.992956i
\(803\) 34.2741i 1.20951i
\(804\) 0 0
\(805\) −0.698564 + 1.00747i −0.0246211 + 0.0355085i
\(806\) −14.8256 −0.522210
\(807\) 0 0
\(808\) 37.9059i 1.33352i
\(809\) −28.7412 −1.01049 −0.505244 0.862977i \(-0.668597\pi\)
−0.505244 + 0.862977i \(0.668597\pi\)
\(810\) 0 0
\(811\) 4.04326 0.141978 0.0709891 0.997477i \(-0.477384\pi\)
0.0709891 + 0.997477i \(0.477384\pi\)
\(812\) 0.753170i 0.0264311i
\(813\) 0 0
\(814\) −25.3284 −0.887759
\(815\) −22.4512 15.5674i −0.786430 0.545301i
\(816\) 0 0
\(817\) 68.1976i 2.38593i
\(818\) 33.7255i 1.17918i
\(819\) 0 0
\(820\) −55.1794 + 79.5794i −1.92695 + 2.77903i
\(821\) −1.38325 −0.0482758 −0.0241379 0.999709i \(-0.507684\pi\)
−0.0241379 + 0.999709i \(0.507684\pi\)
\(822\) 0 0
\(823\) 11.7734i 0.410395i −0.978721 0.205197i \(-0.934216\pi\)
0.978721 0.205197i \(-0.0657836\pi\)
\(824\) −41.8749 −1.45878
\(825\) 0 0
\(826\) 3.34549 0.116404
\(827\) 19.4700i 0.677040i 0.940959 + 0.338520i \(0.109926\pi\)
−0.940959 + 0.338520i \(0.890074\pi\)
\(828\) 0 0
\(829\) −16.9194 −0.587634 −0.293817 0.955862i \(-0.594926\pi\)
−0.293817 + 0.955862i \(0.594926\pi\)
\(830\) −37.3039 + 53.7995i −1.29484 + 1.86741i
\(831\) 0 0
\(832\) 5.21147i 0.180675i
\(833\) 29.5943i 1.02538i
\(834\) 0 0
\(835\) 39.2563 + 27.2198i 1.35852 + 0.941982i
\(836\) 190.414 6.58560
\(837\) 0 0
\(838\) 73.8045i 2.54953i
\(839\) 17.9764 0.620615 0.310308 0.950636i \(-0.399568\pi\)
0.310308 + 0.950636i \(0.399568\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 25.4675i 0.877669i
\(843\) 0 0
\(844\) −8.09878 −0.278772
\(845\) 12.3122 17.7566i 0.423553 0.610846i
\(846\) 0 0
\(847\) 2.57051i 0.0883237i
\(848\) 33.4662i 1.14923i
\(849\) 0 0
\(850\) −18.7518 50.0845i −0.643183 1.71789i
\(851\) −6.25826 −0.214530
\(852\) 0 0
\(853\) 25.1608i 0.861489i −0.902474 0.430744i \(-0.858251\pi\)
0.902474 0.430744i \(-0.141749\pi\)
\(854\) 1.20591 0.0412654
\(855\) 0 0
\(856\) 5.46710 0.186862
\(857\) 27.8748i 0.952184i 0.879395 + 0.476092i \(0.157947\pi\)
−0.879395 + 0.476092i \(0.842053\pi\)
\(858\) 0 0
\(859\) −21.0421 −0.717947 −0.358973 0.933348i \(-0.616873\pi\)
−0.358973 + 0.933348i \(0.616873\pi\)
\(860\) −63.1714 43.8022i −2.15413 1.49364i
\(861\) 0 0
\(862\) 76.4113i 2.60258i
\(863\) 29.1647i 0.992779i 0.868100 + 0.496390i \(0.165341\pi\)
−0.868100 + 0.496390i \(0.834659\pi\)
\(864\) 0 0
\(865\) −24.1979 16.7785i −0.822753 0.570486i
\(866\) 16.3871 0.556858
\(867\) 0 0
\(868\) 2.42660i 0.0823642i
\(869\) 23.1133 0.784066
\(870\) 0 0
\(871\) 14.8669 0.503746
\(872\) 24.3281i 0.823854i
\(873\) 0 0
\(874\) 68.7008 2.32384
\(875\) −0.475682 + 1.87838i −0.0160810 + 0.0635009i
\(876\) 0 0
\(877\) 11.5743i 0.390836i −0.980720 0.195418i \(-0.937394\pi\)
0.980720 0.195418i \(-0.0626064\pi\)
\(878\) 23.6856i 0.799350i
\(879\) 0 0
\(880\) −40.1121 + 57.8495i −1.35218 + 1.95011i
\(881\) −21.8843 −0.737299 −0.368650 0.929568i \(-0.620180\pi\)
−0.368650 + 0.929568i \(0.620180\pi\)
\(882\) 0 0
\(883\) 20.2591i 0.681773i −0.940104 0.340887i \(-0.889273\pi\)
0.940104 0.340887i \(-0.110727\pi\)
\(884\) −33.7062 −1.13366
\(885\) 0 0
\(886\) 70.9517 2.38367
\(887\) 37.5330i 1.26023i −0.776500 0.630117i \(-0.783007\pi\)
0.776500 0.630117i \(-0.216993\pi\)
\(888\) 0 0
\(889\) 0.911356 0.0305659
\(890\) −76.3360 52.9304i −2.55879 1.77423i
\(891\) 0 0
\(892\) 108.974i 3.64872i
\(893\) 74.7342i 2.50089i
\(894\) 0 0
\(895\) 13.6264 19.6520i 0.455481 0.656893i
\(896\) 2.55762 0.0854439
\(897\) 0 0
\(898\) 81.2719i 2.71208i
\(899\) 3.22185 0.107455
\(900\) 0 0
\(901\) −22.9404 −0.764254
\(902\) 127.589i 4.24826i
\(903\) 0 0
\(904\) −40.4558 −1.34554
\(905\) −19.4320 + 28.0247i −0.645941 + 0.931573i
\(906\) 0 0
\(907\) 17.7096i 0.588037i −0.955800 0.294018i \(-0.905007\pi\)
0.955800 0.294018i \(-0.0949927\pi\)
\(908\) 88.6004i 2.94031i
\(909\) 0 0
\(910\) 1.46545 + 1.01613i 0.0485793 + 0.0336843i
\(911\) 6.63407 0.219796 0.109898 0.993943i \(-0.464948\pi\)
0.109898 + 0.993943i \(0.464948\pi\)
\(912\) 0 0
\(913\) 59.0710i 1.95497i
\(914\) 68.3845 2.26196
\(915\) 0 0
\(916\) −25.3871 −0.838813
\(917\) 3.07032i 0.101391i
\(918\) 0 0
\(919\) −4.71782 −0.155626 −0.0778132 0.996968i \(-0.524794\pi\)
−0.0778132 + 0.996968i \(0.524794\pi\)
\(920\) −23.8181 + 34.3504i −0.785261 + 1.13250i
\(921\) 0 0
\(922\) 17.6572i 0.581510i
\(923\) 11.4339i 0.376353i
\(924\) 0 0
\(925\) −9.26342 + 3.46826i −0.304580 + 0.114036i
\(926\) 54.8127 1.80126
\(927\) 0 0
\(928\) 3.78527i 0.124257i
\(929\) 43.4668 1.42610 0.713049 0.701114i \(-0.247314\pi\)
0.713049 + 0.701114i \(0.247314\pi\)
\(930\) 0 0
\(931\) 60.0876 1.96929
\(932\) 61.3690i 2.01021i
\(933\) 0 0
\(934\) −77.5437 −2.53731
\(935\) 39.6546 + 27.4960i 1.29684 + 0.899216i
\(936\) 0 0
\(937\) 50.9680i 1.66505i −0.553986 0.832526i \(-0.686894\pi\)
0.553986 0.832526i \(-0.313106\pi\)
\(938\) 3.55324i 0.116017i
\(939\) 0 0
\(940\) 69.2263 + 48.0006i 2.25791 + 1.56561i
\(941\) −11.0790 −0.361165 −0.180583 0.983560i \(-0.557798\pi\)
−0.180583 + 0.983560i \(0.557798\pi\)
\(942\) 0 0
\(943\) 31.5254i 1.02661i
\(944\) 47.4651 1.54486
\(945\) 0 0
\(946\) 101.282 3.29298
\(947\) 58.5923i 1.90399i 0.306107 + 0.951997i \(0.400974\pi\)
−0.306107 + 0.951997i \(0.599026\pi\)
\(948\) 0 0
\(949\) 12.3184 0.399872
\(950\) 101.690 38.0733i 3.29927 1.23526i
\(951\) 0 0
\(952\) 4.34842i 0.140933i
\(953\) 22.9017i 0.741859i −0.928661 0.370929i \(-0.879039\pi\)
0.928661 0.370929i \(-0.120961\pi\)
\(954\) 0 0
\(955\) 32.7619 47.2490i 1.06015 1.52894i
\(956\) 27.7720 0.898211
\(957\) 0 0
\(958\) 15.8510i 0.512123i
\(959\) −0.198404 −0.00640680
\(960\) 0 0
\(961\) −20.6197 −0.665151
\(962\) 9.10321i 0.293499i
\(963\) 0 0
\(964\) 44.2019 1.42365
\(965\) −42.0678 29.1693i −1.35421 0.938993i
\(966\) 0 0
\(967\) 49.6623i 1.59703i 0.601973 + 0.798516i \(0.294381\pi\)
−0.601973 + 0.798516i \(0.705619\pi\)
\(968\) 87.6437i 2.81698i
\(969\) 0 0
\(970\) 8.80788 12.7027i 0.282804 0.407859i
\(971\) 6.90899 0.221720 0.110860 0.993836i \(-0.464639\pi\)
0.110860 + 0.993836i \(0.464639\pi\)
\(972\) 0 0
\(973\) 0.708271i 0.0227061i
\(974\) −76.4305 −2.44899
\(975\) 0 0
\(976\) 17.1092 0.547653
\(977\) 8.17310i 0.261481i −0.991417 0.130740i \(-0.958265\pi\)
0.991417 0.130740i \(-0.0417354\pi\)
\(978\) 0 0
\(979\) 83.8158 2.67876
\(980\) −38.5933 + 55.6591i −1.23282 + 1.77796i
\(981\) 0 0
\(982\) 44.7949i 1.42946i
\(983\) 24.1451i 0.770108i 0.922894 + 0.385054i \(0.125817\pi\)
−0.922894 + 0.385054i \(0.874183\pi\)
\(984\) 0 0
\(985\) 1.54503 + 1.07130i 0.0492287 + 0.0341346i
\(986\) 10.6960 0.340629
\(987\) 0 0
\(988\) 68.4362i 2.17724i
\(989\) 25.0253 0.795760
\(990\) 0 0
\(991\) −51.7396 −1.64356 −0.821781 0.569803i \(-0.807020\pi\)
−0.821781 + 0.569803i \(0.807020\pi\)
\(992\) 12.1956i 0.387210i
\(993\) 0 0
\(994\) 2.73275 0.0866775
\(995\) 33.8915 48.8781i 1.07443 1.54954i
\(996\) 0 0
\(997\) 9.07880i 0.287528i 0.989612 + 0.143764i \(0.0459207\pi\)
−0.989612 + 0.143764i \(0.954079\pi\)
\(998\) 0.660625i 0.0209117i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.c.j.784.10 10
3.2 odd 2 435.2.c.e.349.1 10
5.2 odd 4 6525.2.a.bl.1.1 5
5.3 odd 4 6525.2.a.bs.1.5 5
5.4 even 2 inner 1305.2.c.j.784.1 10
15.2 even 4 2175.2.a.z.1.5 5
15.8 even 4 2175.2.a.w.1.1 5
15.14 odd 2 435.2.c.e.349.10 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.c.e.349.1 10 3.2 odd 2
435.2.c.e.349.10 yes 10 15.14 odd 2
1305.2.c.j.784.1 10 5.4 even 2 inner
1305.2.c.j.784.10 10 1.1 even 1 trivial
2175.2.a.w.1.1 5 15.8 even 4
2175.2.a.z.1.5 5 15.2 even 4
6525.2.a.bl.1.1 5 5.2 odd 4
6525.2.a.bs.1.5 5 5.3 odd 4