Properties

Label 1305.4.a.m.1.6
Level $1305$
Weight $4$
Character 1305.1
Self dual yes
Analytic conductor $76.997$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,4,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9974925575\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 35x^{5} + 18x^{4} + 329x^{3} - 167x^{2} - 767x + 638 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(3.07921\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.07921 q^{2} +1.48151 q^{4} +5.00000 q^{5} +23.1532 q^{7} -20.0718 q^{8} +15.3960 q^{10} +43.1165 q^{11} -74.6173 q^{13} +71.2934 q^{14} -73.6572 q^{16} -82.7951 q^{17} -88.2501 q^{19} +7.40754 q^{20} +132.765 q^{22} -175.920 q^{23} +25.0000 q^{25} -229.762 q^{26} +34.3016 q^{28} +29.0000 q^{29} +14.1415 q^{31} -66.2315 q^{32} -254.943 q^{34} +115.766 q^{35} -176.503 q^{37} -271.740 q^{38} -100.359 q^{40} +138.356 q^{41} +64.7784 q^{43} +63.8775 q^{44} -541.695 q^{46} +101.341 q^{47} +193.070 q^{49} +76.9801 q^{50} -110.546 q^{52} -265.178 q^{53} +215.583 q^{55} -464.726 q^{56} +89.2970 q^{58} +645.434 q^{59} -386.696 q^{61} +43.5447 q^{62} +385.317 q^{64} -373.087 q^{65} -737.103 q^{67} -122.662 q^{68} +356.467 q^{70} +1014.53 q^{71} -1158.89 q^{73} -543.489 q^{74} -130.743 q^{76} +998.285 q^{77} +714.039 q^{79} -368.286 q^{80} +426.027 q^{82} -747.521 q^{83} -413.976 q^{85} +199.466 q^{86} -865.426 q^{88} +518.363 q^{89} -1727.63 q^{91} -260.628 q^{92} +312.051 q^{94} -441.250 q^{95} -946.328 q^{97} +594.502 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} + 15 q^{4} + 35 q^{5} - 37 q^{7} + 36 q^{8} + 5 q^{10} + 11 q^{11} - 133 q^{13} + 75 q^{14} - 53 q^{16} - 21 q^{17} - 170 q^{19} + 75 q^{20} - 369 q^{22} + 68 q^{23} + 175 q^{25} - 181 q^{26}+ \cdots - 1068 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.07921 1.08866 0.544332 0.838870i \(-0.316783\pi\)
0.544332 + 0.838870i \(0.316783\pi\)
\(3\) 0 0
\(4\) 1.48151 0.185189
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 23.1532 1.25015 0.625077 0.780563i \(-0.285067\pi\)
0.625077 + 0.780563i \(0.285067\pi\)
\(8\) −20.0718 −0.887056
\(9\) 0 0
\(10\) 15.3960 0.486865
\(11\) 43.1165 1.18183 0.590915 0.806734i \(-0.298767\pi\)
0.590915 + 0.806734i \(0.298767\pi\)
\(12\) 0 0
\(13\) −74.6173 −1.59193 −0.795966 0.605341i \(-0.793037\pi\)
−0.795966 + 0.605341i \(0.793037\pi\)
\(14\) 71.2934 1.36100
\(15\) 0 0
\(16\) −73.6572 −1.15089
\(17\) −82.7951 −1.18122 −0.590611 0.806956i \(-0.701113\pi\)
−0.590611 + 0.806956i \(0.701113\pi\)
\(18\) 0 0
\(19\) −88.2501 −1.06558 −0.532788 0.846248i \(-0.678856\pi\)
−0.532788 + 0.846248i \(0.678856\pi\)
\(20\) 7.40754 0.0828188
\(21\) 0 0
\(22\) 132.765 1.28662
\(23\) −175.920 −1.59487 −0.797434 0.603407i \(-0.793810\pi\)
−0.797434 + 0.603407i \(0.793810\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −229.762 −1.73308
\(27\) 0 0
\(28\) 34.3016 0.231514
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) 14.1415 0.0819321 0.0409661 0.999161i \(-0.486956\pi\)
0.0409661 + 0.999161i \(0.486956\pi\)
\(32\) −66.2315 −0.365881
\(33\) 0 0
\(34\) −254.943 −1.28595
\(35\) 115.766 0.559086
\(36\) 0 0
\(37\) −176.503 −0.784241 −0.392120 0.919914i \(-0.628258\pi\)
−0.392120 + 0.919914i \(0.628258\pi\)
\(38\) −271.740 −1.16005
\(39\) 0 0
\(40\) −100.359 −0.396703
\(41\) 138.356 0.527015 0.263508 0.964657i \(-0.415121\pi\)
0.263508 + 0.964657i \(0.415121\pi\)
\(42\) 0 0
\(43\) 64.7784 0.229735 0.114868 0.993381i \(-0.463356\pi\)
0.114868 + 0.993381i \(0.463356\pi\)
\(44\) 63.8775 0.218861
\(45\) 0 0
\(46\) −541.695 −1.73627
\(47\) 101.341 0.314514 0.157257 0.987558i \(-0.449735\pi\)
0.157257 + 0.987558i \(0.449735\pi\)
\(48\) 0 0
\(49\) 193.070 0.562886
\(50\) 76.9801 0.217733
\(51\) 0 0
\(52\) −110.546 −0.294808
\(53\) −265.178 −0.687265 −0.343633 0.939104i \(-0.611657\pi\)
−0.343633 + 0.939104i \(0.611657\pi\)
\(54\) 0 0
\(55\) 215.583 0.528530
\(56\) −464.726 −1.10896
\(57\) 0 0
\(58\) 89.2970 0.202160
\(59\) 645.434 1.42421 0.712105 0.702073i \(-0.247742\pi\)
0.712105 + 0.702073i \(0.247742\pi\)
\(60\) 0 0
\(61\) −386.696 −0.811662 −0.405831 0.913948i \(-0.633018\pi\)
−0.405831 + 0.913948i \(0.633018\pi\)
\(62\) 43.5447 0.0891966
\(63\) 0 0
\(64\) 385.317 0.752573
\(65\) −373.087 −0.711934
\(66\) 0 0
\(67\) −737.103 −1.34405 −0.672026 0.740528i \(-0.734576\pi\)
−0.672026 + 0.740528i \(0.734576\pi\)
\(68\) −122.662 −0.218749
\(69\) 0 0
\(70\) 356.467 0.608657
\(71\) 1014.53 1.69580 0.847902 0.530152i \(-0.177865\pi\)
0.847902 + 0.530152i \(0.177865\pi\)
\(72\) 0 0
\(73\) −1158.89 −1.85805 −0.929025 0.370016i \(-0.879352\pi\)
−0.929025 + 0.370016i \(0.879352\pi\)
\(74\) −543.489 −0.853775
\(75\) 0 0
\(76\) −130.743 −0.197333
\(77\) 998.285 1.47747
\(78\) 0 0
\(79\) 714.039 1.01691 0.508453 0.861089i \(-0.330217\pi\)
0.508453 + 0.861089i \(0.330217\pi\)
\(80\) −368.286 −0.514695
\(81\) 0 0
\(82\) 426.027 0.573742
\(83\) −747.521 −0.988567 −0.494284 0.869301i \(-0.664570\pi\)
−0.494284 + 0.869301i \(0.664570\pi\)
\(84\) 0 0
\(85\) −413.976 −0.528258
\(86\) 199.466 0.250104
\(87\) 0 0
\(88\) −865.426 −1.04835
\(89\) 518.363 0.617375 0.308688 0.951163i \(-0.400110\pi\)
0.308688 + 0.951163i \(0.400110\pi\)
\(90\) 0 0
\(91\) −1727.63 −1.99016
\(92\) −260.628 −0.295351
\(93\) 0 0
\(94\) 312.051 0.342400
\(95\) −441.250 −0.476540
\(96\) 0 0
\(97\) −946.328 −0.990568 −0.495284 0.868731i \(-0.664936\pi\)
−0.495284 + 0.868731i \(0.664936\pi\)
\(98\) 594.502 0.612794
\(99\) 0 0
\(100\) 37.0377 0.0370377
\(101\) −864.251 −0.851448 −0.425724 0.904853i \(-0.639981\pi\)
−0.425724 + 0.904853i \(0.639981\pi\)
\(102\) 0 0
\(103\) −1385.74 −1.32564 −0.662819 0.748780i \(-0.730640\pi\)
−0.662819 + 0.748780i \(0.730640\pi\)
\(104\) 1497.70 1.41213
\(105\) 0 0
\(106\) −816.539 −0.748201
\(107\) 335.496 0.303118 0.151559 0.988448i \(-0.451571\pi\)
0.151559 + 0.988448i \(0.451571\pi\)
\(108\) 0 0
\(109\) −769.498 −0.676189 −0.338094 0.941112i \(-0.609782\pi\)
−0.338094 + 0.941112i \(0.609782\pi\)
\(110\) 663.824 0.575392
\(111\) 0 0
\(112\) −1705.40 −1.43879
\(113\) −1066.98 −0.888261 −0.444131 0.895962i \(-0.646487\pi\)
−0.444131 + 0.895962i \(0.646487\pi\)
\(114\) 0 0
\(115\) −879.602 −0.713246
\(116\) 42.9637 0.0343887
\(117\) 0 0
\(118\) 1987.43 1.55049
\(119\) −1916.97 −1.47671
\(120\) 0 0
\(121\) 528.036 0.396722
\(122\) −1190.72 −0.883627
\(123\) 0 0
\(124\) 20.9508 0.0151729
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1071.24 −0.748482 −0.374241 0.927332i \(-0.622097\pi\)
−0.374241 + 0.927332i \(0.622097\pi\)
\(128\) 1716.32 1.18518
\(129\) 0 0
\(130\) −1148.81 −0.775057
\(131\) 2192.32 1.46217 0.731083 0.682288i \(-0.239015\pi\)
0.731083 + 0.682288i \(0.239015\pi\)
\(132\) 0 0
\(133\) −2043.27 −1.33214
\(134\) −2269.69 −1.46322
\(135\) 0 0
\(136\) 1661.85 1.04781
\(137\) −592.283 −0.369359 −0.184679 0.982799i \(-0.559125\pi\)
−0.184679 + 0.982799i \(0.559125\pi\)
\(138\) 0 0
\(139\) 1980.19 1.20833 0.604164 0.796860i \(-0.293507\pi\)
0.604164 + 0.796860i \(0.293507\pi\)
\(140\) 171.508 0.103536
\(141\) 0 0
\(142\) 3123.94 1.84616
\(143\) −3217.24 −1.88139
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) −3568.46 −2.02279
\(147\) 0 0
\(148\) −261.491 −0.145232
\(149\) −1366.49 −0.751326 −0.375663 0.926756i \(-0.622585\pi\)
−0.375663 + 0.926756i \(0.622585\pi\)
\(150\) 0 0
\(151\) −2204.75 −1.18821 −0.594105 0.804387i \(-0.702494\pi\)
−0.594105 + 0.804387i \(0.702494\pi\)
\(152\) 1771.34 0.945226
\(153\) 0 0
\(154\) 3073.93 1.60847
\(155\) 70.7077 0.0366412
\(156\) 0 0
\(157\) −1798.31 −0.914144 −0.457072 0.889430i \(-0.651102\pi\)
−0.457072 + 0.889430i \(0.651102\pi\)
\(158\) 2198.67 1.10707
\(159\) 0 0
\(160\) −331.157 −0.163627
\(161\) −4073.12 −1.99383
\(162\) 0 0
\(163\) 358.581 0.172308 0.0861540 0.996282i \(-0.472542\pi\)
0.0861540 + 0.996282i \(0.472542\pi\)
\(164\) 204.976 0.0975972
\(165\) 0 0
\(166\) −2301.77 −1.07622
\(167\) 3993.78 1.85059 0.925293 0.379253i \(-0.123819\pi\)
0.925293 + 0.379253i \(0.123819\pi\)
\(168\) 0 0
\(169\) 3370.75 1.53425
\(170\) −1274.72 −0.575096
\(171\) 0 0
\(172\) 95.9698 0.0425443
\(173\) −902.727 −0.396723 −0.198362 0.980129i \(-0.563562\pi\)
−0.198362 + 0.980129i \(0.563562\pi\)
\(174\) 0 0
\(175\) 578.830 0.250031
\(176\) −3175.84 −1.36016
\(177\) 0 0
\(178\) 1596.15 0.672114
\(179\) −438.007 −0.182895 −0.0914474 0.995810i \(-0.529149\pi\)
−0.0914474 + 0.995810i \(0.529149\pi\)
\(180\) 0 0
\(181\) 4385.45 1.80093 0.900464 0.434930i \(-0.143227\pi\)
0.900464 + 0.434930i \(0.143227\pi\)
\(182\) −5319.72 −2.16662
\(183\) 0 0
\(184\) 3531.04 1.41474
\(185\) −882.515 −0.350723
\(186\) 0 0
\(187\) −3569.84 −1.39600
\(188\) 150.138 0.0582444
\(189\) 0 0
\(190\) −1358.70 −0.518792
\(191\) −1188.68 −0.450313 −0.225156 0.974323i \(-0.572289\pi\)
−0.225156 + 0.974323i \(0.572289\pi\)
\(192\) 0 0
\(193\) 2256.44 0.841565 0.420782 0.907162i \(-0.361756\pi\)
0.420782 + 0.907162i \(0.361756\pi\)
\(194\) −2913.94 −1.07840
\(195\) 0 0
\(196\) 286.035 0.104240
\(197\) 944.551 0.341606 0.170803 0.985305i \(-0.445364\pi\)
0.170803 + 0.985305i \(0.445364\pi\)
\(198\) 0 0
\(199\) −172.934 −0.0616030 −0.0308015 0.999526i \(-0.509806\pi\)
−0.0308015 + 0.999526i \(0.509806\pi\)
\(200\) −501.794 −0.177411
\(201\) 0 0
\(202\) −2661.21 −0.926940
\(203\) 671.442 0.232148
\(204\) 0 0
\(205\) 691.781 0.235688
\(206\) −4266.97 −1.44317
\(207\) 0 0
\(208\) 5496.10 1.83215
\(209\) −3805.04 −1.25933
\(210\) 0 0
\(211\) −3980.90 −1.29885 −0.649423 0.760427i \(-0.724990\pi\)
−0.649423 + 0.760427i \(0.724990\pi\)
\(212\) −392.864 −0.127274
\(213\) 0 0
\(214\) 1033.06 0.329994
\(215\) 323.892 0.102741
\(216\) 0 0
\(217\) 327.422 0.102428
\(218\) −2369.44 −0.736142
\(219\) 0 0
\(220\) 319.388 0.0978778
\(221\) 6177.95 1.88043
\(222\) 0 0
\(223\) 1939.43 0.582392 0.291196 0.956663i \(-0.405947\pi\)
0.291196 + 0.956663i \(0.405947\pi\)
\(224\) −1533.47 −0.457407
\(225\) 0 0
\(226\) −3285.47 −0.967017
\(227\) 6457.84 1.88820 0.944101 0.329656i \(-0.106933\pi\)
0.944101 + 0.329656i \(0.106933\pi\)
\(228\) 0 0
\(229\) −1271.99 −0.367054 −0.183527 0.983015i \(-0.558751\pi\)
−0.183527 + 0.983015i \(0.558751\pi\)
\(230\) −2708.48 −0.776485
\(231\) 0 0
\(232\) −582.082 −0.164722
\(233\) −1029.14 −0.289361 −0.144681 0.989478i \(-0.546215\pi\)
−0.144681 + 0.989478i \(0.546215\pi\)
\(234\) 0 0
\(235\) 506.706 0.140655
\(236\) 956.216 0.263747
\(237\) 0 0
\(238\) −5902.75 −1.60764
\(239\) −2592.45 −0.701639 −0.350819 0.936443i \(-0.614097\pi\)
−0.350819 + 0.936443i \(0.614097\pi\)
\(240\) 0 0
\(241\) −5132.31 −1.37179 −0.685894 0.727701i \(-0.740589\pi\)
−0.685894 + 0.727701i \(0.740589\pi\)
\(242\) 1625.93 0.431896
\(243\) 0 0
\(244\) −572.894 −0.150311
\(245\) 965.350 0.251730
\(246\) 0 0
\(247\) 6584.99 1.69633
\(248\) −283.846 −0.0726784
\(249\) 0 0
\(250\) 384.901 0.0973730
\(251\) −96.4840 −0.0242630 −0.0121315 0.999926i \(-0.503862\pi\)
−0.0121315 + 0.999926i \(0.503862\pi\)
\(252\) 0 0
\(253\) −7585.08 −1.88486
\(254\) −3298.57 −0.814845
\(255\) 0 0
\(256\) 2202.37 0.537689
\(257\) −1022.96 −0.248290 −0.124145 0.992264i \(-0.539619\pi\)
−0.124145 + 0.992264i \(0.539619\pi\)
\(258\) 0 0
\(259\) −4086.61 −0.980422
\(260\) −552.731 −0.131842
\(261\) 0 0
\(262\) 6750.60 1.59181
\(263\) −2925.05 −0.685805 −0.342902 0.939371i \(-0.611410\pi\)
−0.342902 + 0.939371i \(0.611410\pi\)
\(264\) 0 0
\(265\) −1325.89 −0.307354
\(266\) −6291.65 −1.45025
\(267\) 0 0
\(268\) −1092.02 −0.248903
\(269\) −3935.68 −0.892055 −0.446028 0.895019i \(-0.647162\pi\)
−0.446028 + 0.895019i \(0.647162\pi\)
\(270\) 0 0
\(271\) 7099.87 1.59146 0.795731 0.605650i \(-0.207087\pi\)
0.795731 + 0.605650i \(0.207087\pi\)
\(272\) 6098.46 1.35946
\(273\) 0 0
\(274\) −1823.76 −0.402107
\(275\) 1077.91 0.236366
\(276\) 0 0
\(277\) 5100.47 1.10634 0.553172 0.833067i \(-0.313417\pi\)
0.553172 + 0.833067i \(0.313417\pi\)
\(278\) 6097.41 1.31546
\(279\) 0 0
\(280\) −2323.63 −0.495940
\(281\) −7835.19 −1.66337 −0.831687 0.555245i \(-0.812625\pi\)
−0.831687 + 0.555245i \(0.812625\pi\)
\(282\) 0 0
\(283\) 7148.56 1.50155 0.750773 0.660560i \(-0.229681\pi\)
0.750773 + 0.660560i \(0.229681\pi\)
\(284\) 1503.03 0.314044
\(285\) 0 0
\(286\) −9906.55 −2.04820
\(287\) 3203.39 0.658850
\(288\) 0 0
\(289\) 1942.04 0.395285
\(290\) 446.485 0.0904086
\(291\) 0 0
\(292\) −1716.90 −0.344090
\(293\) 6053.67 1.20703 0.603514 0.797352i \(-0.293767\pi\)
0.603514 + 0.797352i \(0.293767\pi\)
\(294\) 0 0
\(295\) 3227.17 0.636926
\(296\) 3542.73 0.695665
\(297\) 0 0
\(298\) −4207.72 −0.817941
\(299\) 13126.7 2.53892
\(300\) 0 0
\(301\) 1499.83 0.287204
\(302\) −6788.87 −1.29356
\(303\) 0 0
\(304\) 6500.25 1.22637
\(305\) −1933.48 −0.362986
\(306\) 0 0
\(307\) 5697.09 1.05912 0.529560 0.848272i \(-0.322357\pi\)
0.529560 + 0.848272i \(0.322357\pi\)
\(308\) 1478.97 0.273611
\(309\) 0 0
\(310\) 217.724 0.0398899
\(311\) 10242.2 1.86747 0.933737 0.357960i \(-0.116528\pi\)
0.933737 + 0.357960i \(0.116528\pi\)
\(312\) 0 0
\(313\) 3018.38 0.545077 0.272539 0.962145i \(-0.412137\pi\)
0.272539 + 0.962145i \(0.412137\pi\)
\(314\) −5537.36 −0.995195
\(315\) 0 0
\(316\) 1057.85 0.188320
\(317\) −3757.10 −0.665678 −0.332839 0.942984i \(-0.608007\pi\)
−0.332839 + 0.942984i \(0.608007\pi\)
\(318\) 0 0
\(319\) 1250.38 0.219460
\(320\) 1926.59 0.336561
\(321\) 0 0
\(322\) −12542.0 −2.17061
\(323\) 7306.68 1.25868
\(324\) 0 0
\(325\) −1865.43 −0.318386
\(326\) 1104.14 0.187585
\(327\) 0 0
\(328\) −2777.06 −0.467492
\(329\) 2346.37 0.393191
\(330\) 0 0
\(331\) 2883.87 0.478888 0.239444 0.970910i \(-0.423035\pi\)
0.239444 + 0.970910i \(0.423035\pi\)
\(332\) −1107.46 −0.183071
\(333\) 0 0
\(334\) 12297.7 2.01467
\(335\) −3685.52 −0.601078
\(336\) 0 0
\(337\) −1692.21 −0.273532 −0.136766 0.990603i \(-0.543671\pi\)
−0.136766 + 0.990603i \(0.543671\pi\)
\(338\) 10379.2 1.67028
\(339\) 0 0
\(340\) −613.309 −0.0978274
\(341\) 609.735 0.0968298
\(342\) 0 0
\(343\) −3471.36 −0.546460
\(344\) −1300.22 −0.203788
\(345\) 0 0
\(346\) −2779.68 −0.431898
\(347\) −4744.08 −0.733935 −0.366967 0.930234i \(-0.619604\pi\)
−0.366967 + 0.930234i \(0.619604\pi\)
\(348\) 0 0
\(349\) −6690.03 −1.02610 −0.513050 0.858359i \(-0.671485\pi\)
−0.513050 + 0.858359i \(0.671485\pi\)
\(350\) 1782.34 0.272200
\(351\) 0 0
\(352\) −2855.67 −0.432409
\(353\) −2218.76 −0.334541 −0.167270 0.985911i \(-0.553495\pi\)
−0.167270 + 0.985911i \(0.553495\pi\)
\(354\) 0 0
\(355\) 5072.63 0.758387
\(356\) 767.959 0.114331
\(357\) 0 0
\(358\) −1348.71 −0.199111
\(359\) 2749.37 0.404195 0.202098 0.979365i \(-0.435224\pi\)
0.202098 + 0.979365i \(0.435224\pi\)
\(360\) 0 0
\(361\) 929.079 0.135454
\(362\) 13503.7 1.96061
\(363\) 0 0
\(364\) −2559.50 −0.368555
\(365\) −5794.44 −0.830945
\(366\) 0 0
\(367\) 8213.16 1.16818 0.584092 0.811687i \(-0.301451\pi\)
0.584092 + 0.811687i \(0.301451\pi\)
\(368\) 12957.8 1.83552
\(369\) 0 0
\(370\) −2717.45 −0.381820
\(371\) −6139.73 −0.859188
\(372\) 0 0
\(373\) −8062.31 −1.11917 −0.559585 0.828773i \(-0.689039\pi\)
−0.559585 + 0.828773i \(0.689039\pi\)
\(374\) −10992.3 −1.51978
\(375\) 0 0
\(376\) −2034.10 −0.278991
\(377\) −2163.90 −0.295614
\(378\) 0 0
\(379\) −5523.37 −0.748593 −0.374296 0.927309i \(-0.622116\pi\)
−0.374296 + 0.927309i \(0.622116\pi\)
\(380\) −653.716 −0.0882498
\(381\) 0 0
\(382\) −3660.18 −0.490239
\(383\) −10435.1 −1.39219 −0.696095 0.717950i \(-0.745081\pi\)
−0.696095 + 0.717950i \(0.745081\pi\)
\(384\) 0 0
\(385\) 4991.43 0.660745
\(386\) 6948.04 0.916181
\(387\) 0 0
\(388\) −1401.99 −0.183442
\(389\) 4033.70 0.525749 0.262875 0.964830i \(-0.415329\pi\)
0.262875 + 0.964830i \(0.415329\pi\)
\(390\) 0 0
\(391\) 14565.4 1.88389
\(392\) −3875.26 −0.499311
\(393\) 0 0
\(394\) 2908.47 0.371894
\(395\) 3570.19 0.454775
\(396\) 0 0
\(397\) −14474.2 −1.82982 −0.914911 0.403655i \(-0.867740\pi\)
−0.914911 + 0.403655i \(0.867740\pi\)
\(398\) −532.500 −0.0670649
\(399\) 0 0
\(400\) −1841.43 −0.230179
\(401\) 3695.34 0.460191 0.230095 0.973168i \(-0.426096\pi\)
0.230095 + 0.973168i \(0.426096\pi\)
\(402\) 0 0
\(403\) −1055.20 −0.130430
\(404\) −1280.40 −0.157678
\(405\) 0 0
\(406\) 2067.51 0.252731
\(407\) −7610.20 −0.926839
\(408\) 0 0
\(409\) 5880.15 0.710892 0.355446 0.934697i \(-0.384329\pi\)
0.355446 + 0.934697i \(0.384329\pi\)
\(410\) 2130.14 0.256585
\(411\) 0 0
\(412\) −2052.98 −0.245493
\(413\) 14943.9 1.78048
\(414\) 0 0
\(415\) −3737.60 −0.442101
\(416\) 4942.01 0.582457
\(417\) 0 0
\(418\) −11716.5 −1.37099
\(419\) 10799.8 1.25921 0.629603 0.776917i \(-0.283218\pi\)
0.629603 + 0.776917i \(0.283218\pi\)
\(420\) 0 0
\(421\) 5520.52 0.639083 0.319541 0.947572i \(-0.396471\pi\)
0.319541 + 0.947572i \(0.396471\pi\)
\(422\) −12258.0 −1.41401
\(423\) 0 0
\(424\) 5322.60 0.609642
\(425\) −2069.88 −0.236244
\(426\) 0 0
\(427\) −8953.25 −1.01470
\(428\) 497.040 0.0561340
\(429\) 0 0
\(430\) 997.330 0.111850
\(431\) 3360.04 0.375516 0.187758 0.982215i \(-0.439878\pi\)
0.187758 + 0.982215i \(0.439878\pi\)
\(432\) 0 0
\(433\) −5326.35 −0.591150 −0.295575 0.955320i \(-0.595511\pi\)
−0.295575 + 0.955320i \(0.595511\pi\)
\(434\) 1008.20 0.111509
\(435\) 0 0
\(436\) −1140.02 −0.125222
\(437\) 15525.0 1.69945
\(438\) 0 0
\(439\) −2837.77 −0.308518 −0.154259 0.988030i \(-0.549299\pi\)
−0.154259 + 0.988030i \(0.549299\pi\)
\(440\) −4327.13 −0.468836
\(441\) 0 0
\(442\) 19023.2 2.04715
\(443\) −10702.1 −1.14779 −0.573896 0.818928i \(-0.694569\pi\)
−0.573896 + 0.818928i \(0.694569\pi\)
\(444\) 0 0
\(445\) 2591.82 0.276099
\(446\) 5971.89 0.634029
\(447\) 0 0
\(448\) 8921.32 0.940832
\(449\) −7956.43 −0.836275 −0.418137 0.908384i \(-0.637317\pi\)
−0.418137 + 0.908384i \(0.637317\pi\)
\(450\) 0 0
\(451\) 5965.44 0.622842
\(452\) −1580.75 −0.164496
\(453\) 0 0
\(454\) 19885.0 2.05562
\(455\) −8638.14 −0.890027
\(456\) 0 0
\(457\) 7365.10 0.753884 0.376942 0.926237i \(-0.376976\pi\)
0.376942 + 0.926237i \(0.376976\pi\)
\(458\) −3916.71 −0.399598
\(459\) 0 0
\(460\) −1303.14 −0.132085
\(461\) −15891.5 −1.60551 −0.802754 0.596310i \(-0.796633\pi\)
−0.802754 + 0.596310i \(0.796633\pi\)
\(462\) 0 0
\(463\) 14456.8 1.45111 0.725555 0.688164i \(-0.241583\pi\)
0.725555 + 0.688164i \(0.241583\pi\)
\(464\) −2136.06 −0.213716
\(465\) 0 0
\(466\) −3168.93 −0.315017
\(467\) 14908.2 1.47724 0.738618 0.674124i \(-0.235479\pi\)
0.738618 + 0.674124i \(0.235479\pi\)
\(468\) 0 0
\(469\) −17066.3 −1.68027
\(470\) 1560.25 0.153126
\(471\) 0 0
\(472\) −12955.0 −1.26335
\(473\) 2793.02 0.271508
\(474\) 0 0
\(475\) −2206.25 −0.213115
\(476\) −2840.01 −0.273470
\(477\) 0 0
\(478\) −7982.68 −0.763848
\(479\) −11758.0 −1.12158 −0.560791 0.827957i \(-0.689503\pi\)
−0.560791 + 0.827957i \(0.689503\pi\)
\(480\) 0 0
\(481\) 13170.2 1.24846
\(482\) −15803.4 −1.49342
\(483\) 0 0
\(484\) 782.290 0.0734683
\(485\) −4731.64 −0.442995
\(486\) 0 0
\(487\) −8795.82 −0.818433 −0.409216 0.912437i \(-0.634198\pi\)
−0.409216 + 0.912437i \(0.634198\pi\)
\(488\) 7761.68 0.719989
\(489\) 0 0
\(490\) 2972.51 0.274050
\(491\) 14778.8 1.35837 0.679185 0.733967i \(-0.262333\pi\)
0.679185 + 0.733967i \(0.262333\pi\)
\(492\) 0 0
\(493\) −2401.06 −0.219347
\(494\) 20276.5 1.84673
\(495\) 0 0
\(496\) −1041.63 −0.0942952
\(497\) 23489.5 2.12002
\(498\) 0 0
\(499\) 10941.0 0.981538 0.490769 0.871290i \(-0.336716\pi\)
0.490769 + 0.871290i \(0.336716\pi\)
\(500\) 185.189 0.0165638
\(501\) 0 0
\(502\) −297.094 −0.0264143
\(503\) 7424.36 0.658123 0.329062 0.944308i \(-0.393268\pi\)
0.329062 + 0.944308i \(0.393268\pi\)
\(504\) 0 0
\(505\) −4321.26 −0.380779
\(506\) −23356.0 −2.05198
\(507\) 0 0
\(508\) −1587.05 −0.138610
\(509\) −3745.37 −0.326151 −0.163075 0.986614i \(-0.552141\pi\)
−0.163075 + 0.986614i \(0.552141\pi\)
\(510\) 0 0
\(511\) −26832.0 −2.32285
\(512\) −6949.02 −0.599817
\(513\) 0 0
\(514\) −3149.91 −0.270305
\(515\) −6928.68 −0.592843
\(516\) 0 0
\(517\) 4369.49 0.371702
\(518\) −12583.5 −1.06735
\(519\) 0 0
\(520\) 7488.51 0.631525
\(521\) −19900.9 −1.67346 −0.836730 0.547616i \(-0.815536\pi\)
−0.836730 + 0.547616i \(0.815536\pi\)
\(522\) 0 0
\(523\) −4230.73 −0.353722 −0.176861 0.984236i \(-0.556594\pi\)
−0.176861 + 0.984236i \(0.556594\pi\)
\(524\) 3247.94 0.270777
\(525\) 0 0
\(526\) −9006.84 −0.746610
\(527\) −1170.85 −0.0967800
\(528\) 0 0
\(529\) 18781.0 1.54360
\(530\) −4082.69 −0.334606
\(531\) 0 0
\(532\) −3027.12 −0.246696
\(533\) −10323.8 −0.838972
\(534\) 0 0
\(535\) 1677.48 0.135558
\(536\) 14795.0 1.19225
\(537\) 0 0
\(538\) −12118.8 −0.971148
\(539\) 8324.51 0.665236
\(540\) 0 0
\(541\) −20053.9 −1.59368 −0.796842 0.604188i \(-0.793498\pi\)
−0.796842 + 0.604188i \(0.793498\pi\)
\(542\) 21862.0 1.73257
\(543\) 0 0
\(544\) 5483.64 0.432186
\(545\) −3847.49 −0.302401
\(546\) 0 0
\(547\) 753.829 0.0589240 0.0294620 0.999566i \(-0.490621\pi\)
0.0294620 + 0.999566i \(0.490621\pi\)
\(548\) −877.472 −0.0684010
\(549\) 0 0
\(550\) 3319.12 0.257323
\(551\) −2559.25 −0.197873
\(552\) 0 0
\(553\) 16532.3 1.27129
\(554\) 15705.4 1.20444
\(555\) 0 0
\(556\) 2933.67 0.223769
\(557\) −14038.4 −1.06791 −0.533953 0.845514i \(-0.679294\pi\)
−0.533953 + 0.845514i \(0.679294\pi\)
\(558\) 0 0
\(559\) −4833.59 −0.365723
\(560\) −8526.99 −0.643449
\(561\) 0 0
\(562\) −24126.2 −1.81085
\(563\) 11290.9 0.845211 0.422606 0.906314i \(-0.361116\pi\)
0.422606 + 0.906314i \(0.361116\pi\)
\(564\) 0 0
\(565\) −5334.92 −0.397242
\(566\) 22011.9 1.63468
\(567\) 0 0
\(568\) −20363.3 −1.50427
\(569\) 24522.4 1.80674 0.903369 0.428864i \(-0.141086\pi\)
0.903369 + 0.428864i \(0.141086\pi\)
\(570\) 0 0
\(571\) 9525.67 0.698138 0.349069 0.937097i \(-0.386498\pi\)
0.349069 + 0.937097i \(0.386498\pi\)
\(572\) −4766.37 −0.348413
\(573\) 0 0
\(574\) 9863.89 0.717266
\(575\) −4398.01 −0.318973
\(576\) 0 0
\(577\) 2493.72 0.179922 0.0899610 0.995945i \(-0.471326\pi\)
0.0899610 + 0.995945i \(0.471326\pi\)
\(578\) 5979.93 0.430332
\(579\) 0 0
\(580\) 214.819 0.0153791
\(581\) −17307.5 −1.23586
\(582\) 0 0
\(583\) −11433.6 −0.812231
\(584\) 23261.0 1.64819
\(585\) 0 0
\(586\) 18640.5 1.31405
\(587\) −17081.6 −1.20108 −0.600539 0.799595i \(-0.705047\pi\)
−0.600539 + 0.799595i \(0.705047\pi\)
\(588\) 0 0
\(589\) −1247.99 −0.0873050
\(590\) 9937.13 0.693398
\(591\) 0 0
\(592\) 13000.7 0.902578
\(593\) 9633.41 0.667111 0.333556 0.942730i \(-0.391752\pi\)
0.333556 + 0.942730i \(0.391752\pi\)
\(594\) 0 0
\(595\) −9584.86 −0.660405
\(596\) −2024.47 −0.139137
\(597\) 0 0
\(598\) 40419.8 2.76403
\(599\) −11572.5 −0.789379 −0.394690 0.918814i \(-0.629148\pi\)
−0.394690 + 0.918814i \(0.629148\pi\)
\(600\) 0 0
\(601\) −27804.0 −1.88710 −0.943552 0.331225i \(-0.892538\pi\)
−0.943552 + 0.331225i \(0.892538\pi\)
\(602\) 4618.27 0.312669
\(603\) 0 0
\(604\) −3266.35 −0.220043
\(605\) 2640.18 0.177419
\(606\) 0 0
\(607\) 2573.81 0.172105 0.0860526 0.996291i \(-0.472575\pi\)
0.0860526 + 0.996291i \(0.472575\pi\)
\(608\) 5844.93 0.389874
\(609\) 0 0
\(610\) −5953.59 −0.395170
\(611\) −7561.82 −0.500685
\(612\) 0 0
\(613\) 11274.0 0.742824 0.371412 0.928468i \(-0.378874\pi\)
0.371412 + 0.928468i \(0.378874\pi\)
\(614\) 17542.5 1.15303
\(615\) 0 0
\(616\) −20037.4 −1.31060
\(617\) 1684.94 0.109940 0.0549701 0.998488i \(-0.482494\pi\)
0.0549701 + 0.998488i \(0.482494\pi\)
\(618\) 0 0
\(619\) 14779.1 0.959647 0.479824 0.877365i \(-0.340701\pi\)
0.479824 + 0.877365i \(0.340701\pi\)
\(620\) 104.754 0.00678553
\(621\) 0 0
\(622\) 31538.0 2.03305
\(623\) 12001.8 0.771814
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 9294.22 0.593406
\(627\) 0 0
\(628\) −2664.21 −0.169289
\(629\) 14613.6 0.926362
\(630\) 0 0
\(631\) 6631.39 0.418370 0.209185 0.977876i \(-0.432919\pi\)
0.209185 + 0.977876i \(0.432919\pi\)
\(632\) −14332.0 −0.902053
\(633\) 0 0
\(634\) −11568.9 −0.724699
\(635\) −5356.20 −0.334731
\(636\) 0 0
\(637\) −14406.4 −0.896077
\(638\) 3850.18 0.238918
\(639\) 0 0
\(640\) 8581.61 0.530028
\(641\) 22946.8 1.41395 0.706977 0.707237i \(-0.250059\pi\)
0.706977 + 0.707237i \(0.250059\pi\)
\(642\) 0 0
\(643\) −366.544 −0.0224807 −0.0112404 0.999937i \(-0.503578\pi\)
−0.0112404 + 0.999937i \(0.503578\pi\)
\(644\) −6034.36 −0.369235
\(645\) 0 0
\(646\) 22498.8 1.37028
\(647\) −16832.6 −1.02281 −0.511404 0.859340i \(-0.670874\pi\)
−0.511404 + 0.859340i \(0.670874\pi\)
\(648\) 0 0
\(649\) 27828.9 1.68317
\(650\) −5744.05 −0.346616
\(651\) 0 0
\(652\) 531.240 0.0319095
\(653\) 5342.33 0.320156 0.160078 0.987104i \(-0.448825\pi\)
0.160078 + 0.987104i \(0.448825\pi\)
\(654\) 0 0
\(655\) 10961.6 0.653901
\(656\) −10190.9 −0.606538
\(657\) 0 0
\(658\) 7224.97 0.428052
\(659\) −27709.9 −1.63798 −0.818988 0.573811i \(-0.805464\pi\)
−0.818988 + 0.573811i \(0.805464\pi\)
\(660\) 0 0
\(661\) −32828.4 −1.93174 −0.965868 0.259036i \(-0.916595\pi\)
−0.965868 + 0.259036i \(0.916595\pi\)
\(662\) 8880.03 0.521348
\(663\) 0 0
\(664\) 15004.1 0.876914
\(665\) −10216.4 −0.595749
\(666\) 0 0
\(667\) −5101.69 −0.296159
\(668\) 5916.82 0.342707
\(669\) 0 0
\(670\) −11348.5 −0.654372
\(671\) −16673.0 −0.959246
\(672\) 0 0
\(673\) 32414.7 1.85660 0.928302 0.371827i \(-0.121269\pi\)
0.928302 + 0.371827i \(0.121269\pi\)
\(674\) −5210.66 −0.297785
\(675\) 0 0
\(676\) 4993.79 0.284125
\(677\) 24783.8 1.40697 0.703485 0.710710i \(-0.251626\pi\)
0.703485 + 0.710710i \(0.251626\pi\)
\(678\) 0 0
\(679\) −21910.5 −1.23836
\(680\) 8309.23 0.468595
\(681\) 0 0
\(682\) 1877.50 0.105415
\(683\) −14097.9 −0.789811 −0.394906 0.918722i \(-0.629223\pi\)
−0.394906 + 0.918722i \(0.629223\pi\)
\(684\) 0 0
\(685\) −2961.41 −0.165182
\(686\) −10689.0 −0.594911
\(687\) 0 0
\(688\) −4771.40 −0.264401
\(689\) 19786.9 1.09408
\(690\) 0 0
\(691\) 12672.4 0.697657 0.348829 0.937186i \(-0.386579\pi\)
0.348829 + 0.937186i \(0.386579\pi\)
\(692\) −1337.40 −0.0734686
\(693\) 0 0
\(694\) −14608.0 −0.799008
\(695\) 9900.95 0.540381
\(696\) 0 0
\(697\) −11455.2 −0.622522
\(698\) −20600.0 −1.11708
\(699\) 0 0
\(700\) 857.541 0.0463029
\(701\) −28508.3 −1.53601 −0.768005 0.640444i \(-0.778750\pi\)
−0.768005 + 0.640444i \(0.778750\pi\)
\(702\) 0 0
\(703\) 15576.4 0.835669
\(704\) 16613.5 0.889413
\(705\) 0 0
\(706\) −6832.03 −0.364202
\(707\) −20010.2 −1.06444
\(708\) 0 0
\(709\) 14243.6 0.754484 0.377242 0.926115i \(-0.376873\pi\)
0.377242 + 0.926115i \(0.376873\pi\)
\(710\) 15619.7 0.825628
\(711\) 0 0
\(712\) −10404.5 −0.547646
\(713\) −2487.79 −0.130671
\(714\) 0 0
\(715\) −16086.2 −0.841385
\(716\) −648.911 −0.0338700
\(717\) 0 0
\(718\) 8465.87 0.440033
\(719\) 24710.0 1.28168 0.640839 0.767675i \(-0.278587\pi\)
0.640839 + 0.767675i \(0.278587\pi\)
\(720\) 0 0
\(721\) −32084.2 −1.65725
\(722\) 2860.82 0.147464
\(723\) 0 0
\(724\) 6497.08 0.333511
\(725\) 725.000 0.0371391
\(726\) 0 0
\(727\) 27341.9 1.39485 0.697425 0.716658i \(-0.254329\pi\)
0.697425 + 0.716658i \(0.254329\pi\)
\(728\) 34676.6 1.76538
\(729\) 0 0
\(730\) −17842.3 −0.904620
\(731\) −5363.34 −0.271368
\(732\) 0 0
\(733\) 18543.0 0.934379 0.467190 0.884157i \(-0.345267\pi\)
0.467190 + 0.884157i \(0.345267\pi\)
\(734\) 25290.0 1.27176
\(735\) 0 0
\(736\) 11651.5 0.583531
\(737\) −31781.3 −1.58844
\(738\) 0 0
\(739\) 12155.7 0.605082 0.302541 0.953136i \(-0.402165\pi\)
0.302541 + 0.953136i \(0.402165\pi\)
\(740\) −1307.45 −0.0649499
\(741\) 0 0
\(742\) −18905.5 −0.935366
\(743\) −16802.2 −0.829627 −0.414814 0.909906i \(-0.636153\pi\)
−0.414814 + 0.909906i \(0.636153\pi\)
\(744\) 0 0
\(745\) −6832.47 −0.336003
\(746\) −24825.5 −1.21840
\(747\) 0 0
\(748\) −5288.75 −0.258524
\(749\) 7767.80 0.378944
\(750\) 0 0
\(751\) −19768.5 −0.960538 −0.480269 0.877121i \(-0.659461\pi\)
−0.480269 + 0.877121i \(0.659461\pi\)
\(752\) −7464.52 −0.361972
\(753\) 0 0
\(754\) −6663.10 −0.321825
\(755\) −11023.7 −0.531384
\(756\) 0 0
\(757\) −21503.5 −1.03244 −0.516221 0.856456i \(-0.672662\pi\)
−0.516221 + 0.856456i \(0.672662\pi\)
\(758\) −17007.6 −0.814966
\(759\) 0 0
\(760\) 8856.68 0.422718
\(761\) −26870.1 −1.27995 −0.639974 0.768397i \(-0.721055\pi\)
−0.639974 + 0.768397i \(0.721055\pi\)
\(762\) 0 0
\(763\) −17816.3 −0.845341
\(764\) −1761.04 −0.0833927
\(765\) 0 0
\(766\) −32131.8 −1.51563
\(767\) −48160.6 −2.26725
\(768\) 0 0
\(769\) −12864.4 −0.603254 −0.301627 0.953426i \(-0.597530\pi\)
−0.301627 + 0.953426i \(0.597530\pi\)
\(770\) 15369.6 0.719329
\(771\) 0 0
\(772\) 3342.93 0.155848
\(773\) 18534.1 0.862388 0.431194 0.902259i \(-0.358092\pi\)
0.431194 + 0.902259i \(0.358092\pi\)
\(774\) 0 0
\(775\) 353.539 0.0163864
\(776\) 18994.5 0.878689
\(777\) 0 0
\(778\) 12420.6 0.572364
\(779\) −12210.0 −0.561575
\(780\) 0 0
\(781\) 43742.9 2.00415
\(782\) 44849.7 2.05092
\(783\) 0 0
\(784\) −14221.0 −0.647822
\(785\) −8991.54 −0.408818
\(786\) 0 0
\(787\) −26438.7 −1.19751 −0.598754 0.800933i \(-0.704337\pi\)
−0.598754 + 0.800933i \(0.704337\pi\)
\(788\) 1399.36 0.0632616
\(789\) 0 0
\(790\) 10993.4 0.495097
\(791\) −24704.1 −1.11046
\(792\) 0 0
\(793\) 28854.2 1.29211
\(794\) −44569.1 −1.99206
\(795\) 0 0
\(796\) −256.204 −0.0114082
\(797\) 33935.7 1.50823 0.754117 0.656740i \(-0.228065\pi\)
0.754117 + 0.656740i \(0.228065\pi\)
\(798\) 0 0
\(799\) −8390.57 −0.371510
\(800\) −1655.79 −0.0731761
\(801\) 0 0
\(802\) 11378.7 0.500993
\(803\) −49967.3 −2.19590
\(804\) 0 0
\(805\) −20365.6 −0.891668
\(806\) −3249.19 −0.141995
\(807\) 0 0
\(808\) 17347.1 0.755281
\(809\) −2918.27 −0.126824 −0.0634121 0.997987i \(-0.520198\pi\)
−0.0634121 + 0.997987i \(0.520198\pi\)
\(810\) 0 0
\(811\) 9351.59 0.404906 0.202453 0.979292i \(-0.435109\pi\)
0.202453 + 0.979292i \(0.435109\pi\)
\(812\) 994.748 0.0429911
\(813\) 0 0
\(814\) −23433.4 −1.00902
\(815\) 1792.90 0.0770585
\(816\) 0 0
\(817\) −5716.70 −0.244800
\(818\) 18106.2 0.773922
\(819\) 0 0
\(820\) 1024.88 0.0436468
\(821\) 36272.1 1.54191 0.770954 0.636891i \(-0.219780\pi\)
0.770954 + 0.636891i \(0.219780\pi\)
\(822\) 0 0
\(823\) 37236.3 1.57713 0.788563 0.614954i \(-0.210825\pi\)
0.788563 + 0.614954i \(0.210825\pi\)
\(824\) 27814.2 1.17591
\(825\) 0 0
\(826\) 46015.2 1.93835
\(827\) −1886.24 −0.0793118 −0.0396559 0.999213i \(-0.512626\pi\)
−0.0396559 + 0.999213i \(0.512626\pi\)
\(828\) 0 0
\(829\) 7608.68 0.318770 0.159385 0.987216i \(-0.449049\pi\)
0.159385 + 0.987216i \(0.449049\pi\)
\(830\) −11508.9 −0.481299
\(831\) 0 0
\(832\) −28751.3 −1.19805
\(833\) −15985.3 −0.664893
\(834\) 0 0
\(835\) 19968.9 0.827607
\(836\) −5637.20 −0.233214
\(837\) 0 0
\(838\) 33254.9 1.37085
\(839\) −6779.04 −0.278949 −0.139475 0.990226i \(-0.544541\pi\)
−0.139475 + 0.990226i \(0.544541\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 16998.8 0.695746
\(843\) 0 0
\(844\) −5897.74 −0.240531
\(845\) 16853.7 0.686137
\(846\) 0 0
\(847\) 12225.7 0.495963
\(848\) 19532.3 0.790969
\(849\) 0 0
\(850\) −6373.58 −0.257191
\(851\) 31050.5 1.25076
\(852\) 0 0
\(853\) 8817.97 0.353953 0.176976 0.984215i \(-0.443368\pi\)
0.176976 + 0.984215i \(0.443368\pi\)
\(854\) −27568.9 −1.10467
\(855\) 0 0
\(856\) −6734.00 −0.268882
\(857\) −5429.28 −0.216407 −0.108203 0.994129i \(-0.534510\pi\)
−0.108203 + 0.994129i \(0.534510\pi\)
\(858\) 0 0
\(859\) −43734.8 −1.73715 −0.868574 0.495559i \(-0.834963\pi\)
−0.868574 + 0.495559i \(0.834963\pi\)
\(860\) 479.849 0.0190264
\(861\) 0 0
\(862\) 10346.3 0.408811
\(863\) 20597.8 0.812464 0.406232 0.913770i \(-0.366842\pi\)
0.406232 + 0.913770i \(0.366842\pi\)
\(864\) 0 0
\(865\) −4513.64 −0.177420
\(866\) −16400.9 −0.643563
\(867\) 0 0
\(868\) 485.078 0.0189685
\(869\) 30786.9 1.20181
\(870\) 0 0
\(871\) 55000.7 2.13964
\(872\) 15445.2 0.599817
\(873\) 0 0
\(874\) 47804.6 1.85013
\(875\) 2894.15 0.111817
\(876\) 0 0
\(877\) 22182.9 0.854121 0.427061 0.904223i \(-0.359549\pi\)
0.427061 + 0.904223i \(0.359549\pi\)
\(878\) −8738.08 −0.335872
\(879\) 0 0
\(880\) −15879.2 −0.608282
\(881\) 41017.8 1.56859 0.784293 0.620391i \(-0.213026\pi\)
0.784293 + 0.620391i \(0.213026\pi\)
\(882\) 0 0
\(883\) 18142.8 0.691452 0.345726 0.938335i \(-0.387633\pi\)
0.345726 + 0.938335i \(0.387633\pi\)
\(884\) 9152.69 0.348233
\(885\) 0 0
\(886\) −32954.0 −1.24956
\(887\) 14723.4 0.557341 0.278671 0.960387i \(-0.410106\pi\)
0.278671 + 0.960387i \(0.410106\pi\)
\(888\) 0 0
\(889\) −24802.6 −0.935718
\(890\) 7980.73 0.300578
\(891\) 0 0
\(892\) 2873.27 0.107852
\(893\) −8943.38 −0.335139
\(894\) 0 0
\(895\) −2190.03 −0.0817930
\(896\) 39738.3 1.48166
\(897\) 0 0
\(898\) −24499.5 −0.910422
\(899\) 410.105 0.0152144
\(900\) 0 0
\(901\) 21955.5 0.811813
\(902\) 18368.8 0.678066
\(903\) 0 0
\(904\) 21416.3 0.787937
\(905\) 21927.3 0.805400
\(906\) 0 0
\(907\) −19250.3 −0.704738 −0.352369 0.935861i \(-0.614624\pi\)
−0.352369 + 0.935861i \(0.614624\pi\)
\(908\) 9567.34 0.349673
\(909\) 0 0
\(910\) −26598.6 −0.968940
\(911\) −46931.6 −1.70682 −0.853410 0.521241i \(-0.825469\pi\)
−0.853410 + 0.521241i \(0.825469\pi\)
\(912\) 0 0
\(913\) −32230.5 −1.16832
\(914\) 22678.7 0.820726
\(915\) 0 0
\(916\) −1884.46 −0.0679742
\(917\) 50759.2 1.82793
\(918\) 0 0
\(919\) −35021.9 −1.25709 −0.628546 0.777773i \(-0.716349\pi\)
−0.628546 + 0.777773i \(0.716349\pi\)
\(920\) 17655.2 0.632689
\(921\) 0 0
\(922\) −48933.1 −1.74786
\(923\) −75701.3 −2.69961
\(924\) 0 0
\(925\) −4412.57 −0.156848
\(926\) 44515.4 1.57977
\(927\) 0 0
\(928\) −1920.71 −0.0679423
\(929\) 6090.61 0.215098 0.107549 0.994200i \(-0.465700\pi\)
0.107549 + 0.994200i \(0.465700\pi\)
\(930\) 0 0
\(931\) −17038.4 −0.599798
\(932\) −1524.68 −0.0535864
\(933\) 0 0
\(934\) 45905.4 1.60821
\(935\) −17849.2 −0.624312
\(936\) 0 0
\(937\) 29684.0 1.03494 0.517468 0.855703i \(-0.326875\pi\)
0.517468 + 0.855703i \(0.326875\pi\)
\(938\) −52550.6 −1.82925
\(939\) 0 0
\(940\) 750.690 0.0260477
\(941\) −2691.42 −0.0932390 −0.0466195 0.998913i \(-0.514845\pi\)
−0.0466195 + 0.998913i \(0.514845\pi\)
\(942\) 0 0
\(943\) −24339.7 −0.840519
\(944\) −47540.9 −1.63911
\(945\) 0 0
\(946\) 8600.29 0.295581
\(947\) 25412.5 0.872012 0.436006 0.899944i \(-0.356393\pi\)
0.436006 + 0.899944i \(0.356393\pi\)
\(948\) 0 0
\(949\) 86473.2 2.95789
\(950\) −6793.51 −0.232011
\(951\) 0 0
\(952\) 38477.0 1.30992
\(953\) 46599.6 1.58395 0.791977 0.610551i \(-0.209052\pi\)
0.791977 + 0.610551i \(0.209052\pi\)
\(954\) 0 0
\(955\) −5943.39 −0.201386
\(956\) −3840.74 −0.129935
\(957\) 0 0
\(958\) −36205.4 −1.22103
\(959\) −13713.2 −0.461755
\(960\) 0 0
\(961\) −29591.0 −0.993287
\(962\) 40553.7 1.35915
\(963\) 0 0
\(964\) −7603.56 −0.254040
\(965\) 11282.2 0.376359
\(966\) 0 0
\(967\) −12852.9 −0.427426 −0.213713 0.976896i \(-0.568556\pi\)
−0.213713 + 0.976896i \(0.568556\pi\)
\(968\) −10598.6 −0.351914
\(969\) 0 0
\(970\) −14569.7 −0.482273
\(971\) 43098.2 1.42439 0.712196 0.701980i \(-0.247701\pi\)
0.712196 + 0.701980i \(0.247701\pi\)
\(972\) 0 0
\(973\) 45847.7 1.51060
\(974\) −27084.1 −0.890998
\(975\) 0 0
\(976\) 28483.0 0.934137
\(977\) 32446.8 1.06250 0.531251 0.847215i \(-0.321722\pi\)
0.531251 + 0.847215i \(0.321722\pi\)
\(978\) 0 0
\(979\) 22350.0 0.729632
\(980\) 1430.17 0.0466176
\(981\) 0 0
\(982\) 45507.1 1.47881
\(983\) 16990.2 0.551276 0.275638 0.961262i \(-0.411111\pi\)
0.275638 + 0.961262i \(0.411111\pi\)
\(984\) 0 0
\(985\) 4722.75 0.152771
\(986\) −7393.36 −0.238796
\(987\) 0 0
\(988\) 9755.71 0.314140
\(989\) −11395.8 −0.366397
\(990\) 0 0
\(991\) −28350.3 −0.908757 −0.454379 0.890809i \(-0.650139\pi\)
−0.454379 + 0.890809i \(0.650139\pi\)
\(992\) −936.615 −0.0299774
\(993\) 0 0
\(994\) 72329.1 2.30799
\(995\) −864.671 −0.0275497
\(996\) 0 0
\(997\) −41329.0 −1.31284 −0.656420 0.754396i \(-0.727930\pi\)
−0.656420 + 0.754396i \(0.727930\pi\)
\(998\) 33689.6 1.06856
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.4.a.m.1.6 7
3.2 odd 2 435.4.a.j.1.2 7
15.14 odd 2 2175.4.a.m.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.j.1.2 7 3.2 odd 2
1305.4.a.m.1.6 7 1.1 even 1 trivial
2175.4.a.m.1.6 7 15.14 odd 2