Properties

Label 1305.4.a.n.1.6
Level $1305$
Weight $4$
Character 1305.1
Self dual yes
Analytic conductor $76.997$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,4,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9974925575\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 37x^{5} + 55x^{4} + 336x^{3} - 227x^{2} - 824x - 166 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(3.57720\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.57720 q^{2} +4.79637 q^{4} -5.00000 q^{5} +15.0281 q^{7} -11.4600 q^{8} -17.8860 q^{10} -70.8260 q^{11} +62.2117 q^{13} +53.7587 q^{14} -79.3658 q^{16} +67.1848 q^{17} +118.988 q^{19} -23.9818 q^{20} -253.359 q^{22} -72.5383 q^{23} +25.0000 q^{25} +222.544 q^{26} +72.0804 q^{28} -29.0000 q^{29} -180.227 q^{31} -192.227 q^{32} +240.334 q^{34} -75.1407 q^{35} -47.8439 q^{37} +425.646 q^{38} +57.3002 q^{40} -371.956 q^{41} -409.069 q^{43} -339.707 q^{44} -259.484 q^{46} -125.891 q^{47} -117.155 q^{49} +89.4300 q^{50} +298.390 q^{52} +215.764 q^{53} +354.130 q^{55} -172.223 q^{56} -103.739 q^{58} -356.919 q^{59} -466.115 q^{61} -644.707 q^{62} -52.7086 q^{64} -311.059 q^{65} -578.359 q^{67} +322.243 q^{68} -268.793 q^{70} -870.924 q^{71} +411.904 q^{73} -171.147 q^{74} +570.712 q^{76} -1064.38 q^{77} +1120.23 q^{79} +396.829 q^{80} -1330.56 q^{82} -1079.28 q^{83} -335.924 q^{85} -1463.32 q^{86} +811.668 q^{88} -388.993 q^{89} +934.926 q^{91} -347.920 q^{92} -450.339 q^{94} -594.942 q^{95} -1528.82 q^{97} -419.088 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} + 22 q^{4} - 35 q^{5} - 50 q^{7} + 33 q^{8} - 10 q^{10} - 76 q^{11} + 30 q^{13} - 89 q^{14} + 138 q^{16} + 140 q^{17} + 90 q^{19} - 110 q^{20} + 61 q^{22} - 34 q^{23} + 175 q^{25} + 241 q^{26}+ \cdots + 761 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.57720 1.26473 0.632366 0.774670i \(-0.282084\pi\)
0.632366 + 0.774670i \(0.282084\pi\)
\(3\) 0 0
\(4\) 4.79637 0.599546
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 15.0281 0.811443 0.405721 0.913997i \(-0.367020\pi\)
0.405721 + 0.913997i \(0.367020\pi\)
\(8\) −11.4600 −0.506467
\(9\) 0 0
\(10\) −17.8860 −0.565605
\(11\) −70.8260 −1.94135 −0.970674 0.240399i \(-0.922722\pi\)
−0.970674 + 0.240399i \(0.922722\pi\)
\(12\) 0 0
\(13\) 62.2117 1.32726 0.663632 0.748059i \(-0.269014\pi\)
0.663632 + 0.748059i \(0.269014\pi\)
\(14\) 53.7587 1.02626
\(15\) 0 0
\(16\) −79.3658 −1.24009
\(17\) 67.1848 0.958513 0.479256 0.877675i \(-0.340906\pi\)
0.479256 + 0.877675i \(0.340906\pi\)
\(18\) 0 0
\(19\) 118.988 1.43673 0.718364 0.695667i \(-0.244891\pi\)
0.718364 + 0.695667i \(0.244891\pi\)
\(20\) −23.9818 −0.268125
\(21\) 0 0
\(22\) −253.359 −2.45528
\(23\) −72.5383 −0.657621 −0.328810 0.944396i \(-0.606648\pi\)
−0.328810 + 0.944396i \(0.606648\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 222.544 1.67863
\(27\) 0 0
\(28\) 72.0804 0.486497
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) −180.227 −1.04418 −0.522092 0.852889i \(-0.674848\pi\)
−0.522092 + 0.852889i \(0.674848\pi\)
\(32\) −192.227 −1.06191
\(33\) 0 0
\(34\) 240.334 1.21226
\(35\) −75.1407 −0.362888
\(36\) 0 0
\(37\) −47.8439 −0.212581 −0.106290 0.994335i \(-0.533897\pi\)
−0.106290 + 0.994335i \(0.533897\pi\)
\(38\) 425.646 1.81708
\(39\) 0 0
\(40\) 57.3002 0.226499
\(41\) −371.956 −1.41682 −0.708411 0.705800i \(-0.750588\pi\)
−0.708411 + 0.705800i \(0.750588\pi\)
\(42\) 0 0
\(43\) −409.069 −1.45075 −0.725377 0.688352i \(-0.758334\pi\)
−0.725377 + 0.688352i \(0.758334\pi\)
\(44\) −339.707 −1.16393
\(45\) 0 0
\(46\) −259.484 −0.831714
\(47\) −125.891 −0.390705 −0.195353 0.980733i \(-0.562585\pi\)
−0.195353 + 0.980733i \(0.562585\pi\)
\(48\) 0 0
\(49\) −117.155 −0.341560
\(50\) 89.4300 0.252946
\(51\) 0 0
\(52\) 298.390 0.795755
\(53\) 215.764 0.559198 0.279599 0.960117i \(-0.409798\pi\)
0.279599 + 0.960117i \(0.409798\pi\)
\(54\) 0 0
\(55\) 354.130 0.868197
\(56\) −172.223 −0.410969
\(57\) 0 0
\(58\) −103.739 −0.234855
\(59\) −356.919 −0.787575 −0.393788 0.919201i \(-0.628835\pi\)
−0.393788 + 0.919201i \(0.628835\pi\)
\(60\) 0 0
\(61\) −466.115 −0.978358 −0.489179 0.872183i \(-0.662704\pi\)
−0.489179 + 0.872183i \(0.662704\pi\)
\(62\) −644.707 −1.32061
\(63\) 0 0
\(64\) −52.7086 −0.102946
\(65\) −311.059 −0.593570
\(66\) 0 0
\(67\) −578.359 −1.05459 −0.527297 0.849681i \(-0.676794\pi\)
−0.527297 + 0.849681i \(0.676794\pi\)
\(68\) 322.243 0.574672
\(69\) 0 0
\(70\) −268.793 −0.458956
\(71\) −870.924 −1.45577 −0.727885 0.685699i \(-0.759497\pi\)
−0.727885 + 0.685699i \(0.759497\pi\)
\(72\) 0 0
\(73\) 411.904 0.660407 0.330204 0.943910i \(-0.392883\pi\)
0.330204 + 0.943910i \(0.392883\pi\)
\(74\) −171.147 −0.268857
\(75\) 0 0
\(76\) 570.712 0.861384
\(77\) −1064.38 −1.57529
\(78\) 0 0
\(79\) 1120.23 1.59538 0.797692 0.603065i \(-0.206054\pi\)
0.797692 + 0.603065i \(0.206054\pi\)
\(80\) 396.829 0.554585
\(81\) 0 0
\(82\) −1330.56 −1.79190
\(83\) −1079.28 −1.42730 −0.713652 0.700501i \(-0.752960\pi\)
−0.713652 + 0.700501i \(0.752960\pi\)
\(84\) 0 0
\(85\) −335.924 −0.428660
\(86\) −1463.32 −1.83481
\(87\) 0 0
\(88\) 811.668 0.983229
\(89\) −388.993 −0.463294 −0.231647 0.972800i \(-0.574411\pi\)
−0.231647 + 0.972800i \(0.574411\pi\)
\(90\) 0 0
\(91\) 934.926 1.07700
\(92\) −347.920 −0.394274
\(93\) 0 0
\(94\) −450.339 −0.494137
\(95\) −594.942 −0.642524
\(96\) 0 0
\(97\) −1528.82 −1.60029 −0.800147 0.599803i \(-0.795245\pi\)
−0.800147 + 0.599803i \(0.795245\pi\)
\(98\) −419.088 −0.431982
\(99\) 0 0
\(100\) 119.909 0.119909
\(101\) 1425.50 1.40439 0.702193 0.711987i \(-0.252204\pi\)
0.702193 + 0.711987i \(0.252204\pi\)
\(102\) 0 0
\(103\) −1595.68 −1.52648 −0.763240 0.646116i \(-0.776392\pi\)
−0.763240 + 0.646116i \(0.776392\pi\)
\(104\) −712.949 −0.672215
\(105\) 0 0
\(106\) 771.832 0.707236
\(107\) 155.104 0.140135 0.0700675 0.997542i \(-0.477679\pi\)
0.0700675 + 0.997542i \(0.477679\pi\)
\(108\) 0 0
\(109\) 1212.23 1.06524 0.532618 0.846356i \(-0.321208\pi\)
0.532618 + 0.846356i \(0.321208\pi\)
\(110\) 1266.79 1.09804
\(111\) 0 0
\(112\) −1192.72 −1.00626
\(113\) 1152.01 0.959043 0.479521 0.877530i \(-0.340810\pi\)
0.479521 + 0.877530i \(0.340810\pi\)
\(114\) 0 0
\(115\) 362.691 0.294097
\(116\) −139.095 −0.111333
\(117\) 0 0
\(118\) −1276.77 −0.996072
\(119\) 1009.66 0.777778
\(120\) 0 0
\(121\) 3685.32 2.76883
\(122\) −1667.39 −1.23736
\(123\) 0 0
\(124\) −864.434 −0.626036
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 398.743 0.278604 0.139302 0.990250i \(-0.455514\pi\)
0.139302 + 0.990250i \(0.455514\pi\)
\(128\) 1349.27 0.931715
\(129\) 0 0
\(130\) −1112.72 −0.750707
\(131\) 385.241 0.256937 0.128468 0.991714i \(-0.458994\pi\)
0.128468 + 0.991714i \(0.458994\pi\)
\(132\) 0 0
\(133\) 1788.17 1.16582
\(134\) −2068.90 −1.33378
\(135\) 0 0
\(136\) −769.941 −0.485455
\(137\) 351.877 0.219437 0.109719 0.993963i \(-0.465005\pi\)
0.109719 + 0.993963i \(0.465005\pi\)
\(138\) 0 0
\(139\) 1138.48 0.694711 0.347355 0.937734i \(-0.387080\pi\)
0.347355 + 0.937734i \(0.387080\pi\)
\(140\) −360.402 −0.217568
\(141\) 0 0
\(142\) −3115.47 −1.84116
\(143\) −4406.21 −2.57668
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 1473.46 0.835238
\(147\) 0 0
\(148\) −229.477 −0.127452
\(149\) −1200.59 −0.660107 −0.330053 0.943962i \(-0.607067\pi\)
−0.330053 + 0.943962i \(0.607067\pi\)
\(150\) 0 0
\(151\) −1539.35 −0.829605 −0.414802 0.909911i \(-0.636149\pi\)
−0.414802 + 0.909911i \(0.636149\pi\)
\(152\) −1363.61 −0.727655
\(153\) 0 0
\(154\) −3807.51 −1.99232
\(155\) 901.134 0.466973
\(156\) 0 0
\(157\) 223.134 0.113427 0.0567136 0.998390i \(-0.481938\pi\)
0.0567136 + 0.998390i \(0.481938\pi\)
\(158\) 4007.28 2.01773
\(159\) 0 0
\(160\) 961.136 0.474903
\(161\) −1090.11 −0.533622
\(162\) 0 0
\(163\) −3114.71 −1.49671 −0.748353 0.663301i \(-0.769155\pi\)
−0.748353 + 0.663301i \(0.769155\pi\)
\(164\) −1784.04 −0.849450
\(165\) 0 0
\(166\) −3860.79 −1.80516
\(167\) 1720.78 0.797351 0.398676 0.917092i \(-0.369470\pi\)
0.398676 + 0.917092i \(0.369470\pi\)
\(168\) 0 0
\(169\) 1673.30 0.761629
\(170\) −1201.67 −0.542140
\(171\) 0 0
\(172\) −1962.04 −0.869793
\(173\) −2438.70 −1.07174 −0.535870 0.844301i \(-0.680016\pi\)
−0.535870 + 0.844301i \(0.680016\pi\)
\(174\) 0 0
\(175\) 375.703 0.162289
\(176\) 5621.16 2.40745
\(177\) 0 0
\(178\) −1391.50 −0.585942
\(179\) 2248.00 0.938676 0.469338 0.883018i \(-0.344493\pi\)
0.469338 + 0.883018i \(0.344493\pi\)
\(180\) 0 0
\(181\) −2357.13 −0.967977 −0.483989 0.875074i \(-0.660812\pi\)
−0.483989 + 0.875074i \(0.660812\pi\)
\(182\) 3344.42 1.36211
\(183\) 0 0
\(184\) 831.292 0.333063
\(185\) 239.219 0.0950689
\(186\) 0 0
\(187\) −4758.43 −1.86081
\(188\) −603.821 −0.234246
\(189\) 0 0
\(190\) −2128.23 −0.812621
\(191\) −1922.56 −0.728331 −0.364166 0.931334i \(-0.618646\pi\)
−0.364166 + 0.931334i \(0.618646\pi\)
\(192\) 0 0
\(193\) 1840.68 0.686504 0.343252 0.939243i \(-0.388472\pi\)
0.343252 + 0.939243i \(0.388472\pi\)
\(194\) −5468.91 −2.02394
\(195\) 0 0
\(196\) −561.919 −0.204781
\(197\) 2712.79 0.981109 0.490555 0.871410i \(-0.336794\pi\)
0.490555 + 0.871410i \(0.336794\pi\)
\(198\) 0 0
\(199\) 224.631 0.0800185 0.0400093 0.999199i \(-0.487261\pi\)
0.0400093 + 0.999199i \(0.487261\pi\)
\(200\) −286.501 −0.101293
\(201\) 0 0
\(202\) 5099.31 1.77617
\(203\) −435.816 −0.150681
\(204\) 0 0
\(205\) 1859.78 0.633622
\(206\) −5708.08 −1.93059
\(207\) 0 0
\(208\) −4937.48 −1.64593
\(209\) −8427.48 −2.78919
\(210\) 0 0
\(211\) −4160.10 −1.35731 −0.678656 0.734456i \(-0.737437\pi\)
−0.678656 + 0.734456i \(0.737437\pi\)
\(212\) 1034.88 0.335265
\(213\) 0 0
\(214\) 554.837 0.177233
\(215\) 2045.34 0.648797
\(216\) 0 0
\(217\) −2708.47 −0.847295
\(218\) 4336.40 1.34724
\(219\) 0 0
\(220\) 1698.54 0.520524
\(221\) 4179.68 1.27220
\(222\) 0 0
\(223\) −1746.41 −0.524432 −0.262216 0.965009i \(-0.584453\pi\)
−0.262216 + 0.965009i \(0.584453\pi\)
\(224\) −2888.81 −0.861683
\(225\) 0 0
\(226\) 4120.97 1.21293
\(227\) −129.508 −0.0378666 −0.0189333 0.999821i \(-0.506027\pi\)
−0.0189333 + 0.999821i \(0.506027\pi\)
\(228\) 0 0
\(229\) −682.166 −0.196851 −0.0984253 0.995144i \(-0.531381\pi\)
−0.0984253 + 0.995144i \(0.531381\pi\)
\(230\) 1297.42 0.371954
\(231\) 0 0
\(232\) 332.341 0.0940486
\(233\) −1731.11 −0.486732 −0.243366 0.969935i \(-0.578252\pi\)
−0.243366 + 0.969935i \(0.578252\pi\)
\(234\) 0 0
\(235\) 629.457 0.174729
\(236\) −1711.92 −0.472188
\(237\) 0 0
\(238\) 3611.77 0.983681
\(239\) −3308.38 −0.895402 −0.447701 0.894183i \(-0.647757\pi\)
−0.447701 + 0.894183i \(0.647757\pi\)
\(240\) 0 0
\(241\) 3586.39 0.958588 0.479294 0.877654i \(-0.340893\pi\)
0.479294 + 0.877654i \(0.340893\pi\)
\(242\) 13183.1 3.50183
\(243\) 0 0
\(244\) −2235.66 −0.586571
\(245\) 585.776 0.152750
\(246\) 0 0
\(247\) 7402.48 1.90692
\(248\) 2065.41 0.528844
\(249\) 0 0
\(250\) −447.150 −0.113121
\(251\) 2956.22 0.743406 0.371703 0.928352i \(-0.378774\pi\)
0.371703 + 0.928352i \(0.378774\pi\)
\(252\) 0 0
\(253\) 5137.59 1.27667
\(254\) 1426.39 0.352360
\(255\) 0 0
\(256\) 5248.27 1.28132
\(257\) −2258.12 −0.548084 −0.274042 0.961718i \(-0.588361\pi\)
−0.274042 + 0.961718i \(0.588361\pi\)
\(258\) 0 0
\(259\) −719.004 −0.172497
\(260\) −1491.95 −0.355873
\(261\) 0 0
\(262\) 1378.09 0.324956
\(263\) −2908.67 −0.681963 −0.340981 0.940070i \(-0.610759\pi\)
−0.340981 + 0.940070i \(0.610759\pi\)
\(264\) 0 0
\(265\) −1078.82 −0.250081
\(266\) 6396.66 1.47445
\(267\) 0 0
\(268\) −2774.02 −0.632277
\(269\) 297.910 0.0675238 0.0337619 0.999430i \(-0.489251\pi\)
0.0337619 + 0.999430i \(0.489251\pi\)
\(270\) 0 0
\(271\) 6993.04 1.56752 0.783758 0.621067i \(-0.213300\pi\)
0.783758 + 0.621067i \(0.213300\pi\)
\(272\) −5332.18 −1.18864
\(273\) 0 0
\(274\) 1258.73 0.277529
\(275\) −1770.65 −0.388270
\(276\) 0 0
\(277\) 5701.84 1.23679 0.618394 0.785868i \(-0.287784\pi\)
0.618394 + 0.785868i \(0.287784\pi\)
\(278\) 4072.58 0.878622
\(279\) 0 0
\(280\) 861.115 0.183791
\(281\) 1216.34 0.258223 0.129112 0.991630i \(-0.458787\pi\)
0.129112 + 0.991630i \(0.458787\pi\)
\(282\) 0 0
\(283\) 4096.17 0.860396 0.430198 0.902735i \(-0.358444\pi\)
0.430198 + 0.902735i \(0.358444\pi\)
\(284\) −4177.27 −0.872801
\(285\) 0 0
\(286\) −15761.9 −3.25881
\(287\) −5589.80 −1.14967
\(288\) 0 0
\(289\) −399.197 −0.0812532
\(290\) 518.694 0.105030
\(291\) 0 0
\(292\) 1975.64 0.395944
\(293\) −5854.29 −1.16727 −0.583637 0.812015i \(-0.698371\pi\)
−0.583637 + 0.812015i \(0.698371\pi\)
\(294\) 0 0
\(295\) 1784.60 0.352214
\(296\) 548.292 0.107665
\(297\) 0 0
\(298\) −4294.74 −0.834858
\(299\) −4512.73 −0.872836
\(300\) 0 0
\(301\) −6147.54 −1.17720
\(302\) −5506.56 −1.04923
\(303\) 0 0
\(304\) −9443.62 −1.78167
\(305\) 2330.57 0.437535
\(306\) 0 0
\(307\) −2748.38 −0.510940 −0.255470 0.966817i \(-0.582230\pi\)
−0.255470 + 0.966817i \(0.582230\pi\)
\(308\) −5105.17 −0.944461
\(309\) 0 0
\(310\) 3223.54 0.590595
\(311\) 10289.0 1.87600 0.938000 0.346634i \(-0.112675\pi\)
0.938000 + 0.346634i \(0.112675\pi\)
\(312\) 0 0
\(313\) 8540.93 1.54237 0.771185 0.636611i \(-0.219664\pi\)
0.771185 + 0.636611i \(0.219664\pi\)
\(314\) 798.196 0.143455
\(315\) 0 0
\(316\) 5373.02 0.956506
\(317\) 131.153 0.0232375 0.0116187 0.999933i \(-0.496302\pi\)
0.0116187 + 0.999933i \(0.496302\pi\)
\(318\) 0 0
\(319\) 2053.95 0.360499
\(320\) 263.543 0.0460391
\(321\) 0 0
\(322\) −3899.56 −0.674888
\(323\) 7994.22 1.37712
\(324\) 0 0
\(325\) 1555.29 0.265453
\(326\) −11142.0 −1.89293
\(327\) 0 0
\(328\) 4262.63 0.717574
\(329\) −1891.91 −0.317035
\(330\) 0 0
\(331\) −7274.79 −1.20803 −0.604016 0.796972i \(-0.706434\pi\)
−0.604016 + 0.796972i \(0.706434\pi\)
\(332\) −5176.61 −0.855734
\(333\) 0 0
\(334\) 6155.56 1.00844
\(335\) 2891.79 0.471628
\(336\) 0 0
\(337\) 4663.56 0.753830 0.376915 0.926248i \(-0.376985\pi\)
0.376915 + 0.926248i \(0.376985\pi\)
\(338\) 5985.72 0.963256
\(339\) 0 0
\(340\) −1611.22 −0.257001
\(341\) 12764.7 2.02712
\(342\) 0 0
\(343\) −6915.27 −1.08860
\(344\) 4687.94 0.734759
\(345\) 0 0
\(346\) −8723.72 −1.35546
\(347\) −6050.81 −0.936093 −0.468046 0.883704i \(-0.655042\pi\)
−0.468046 + 0.883704i \(0.655042\pi\)
\(348\) 0 0
\(349\) 12824.0 1.96691 0.983455 0.181152i \(-0.0579825\pi\)
0.983455 + 0.181152i \(0.0579825\pi\)
\(350\) 1343.97 0.205251
\(351\) 0 0
\(352\) 13614.7 2.06155
\(353\) −12514.5 −1.88691 −0.943457 0.331494i \(-0.892447\pi\)
−0.943457 + 0.331494i \(0.892447\pi\)
\(354\) 0 0
\(355\) 4354.62 0.651040
\(356\) −1865.75 −0.277766
\(357\) 0 0
\(358\) 8041.53 1.18717
\(359\) −3394.70 −0.499068 −0.249534 0.968366i \(-0.580277\pi\)
−0.249534 + 0.968366i \(0.580277\pi\)
\(360\) 0 0
\(361\) 7299.26 1.06419
\(362\) −8431.92 −1.22423
\(363\) 0 0
\(364\) 4484.25 0.645710
\(365\) −2059.52 −0.295343
\(366\) 0 0
\(367\) −9991.93 −1.42118 −0.710592 0.703604i \(-0.751573\pi\)
−0.710592 + 0.703604i \(0.751573\pi\)
\(368\) 5757.06 0.815509
\(369\) 0 0
\(370\) 855.735 0.120237
\(371\) 3242.54 0.453758
\(372\) 0 0
\(373\) 7219.40 1.00216 0.501081 0.865400i \(-0.332936\pi\)
0.501081 + 0.865400i \(0.332936\pi\)
\(374\) −17021.9 −2.35342
\(375\) 0 0
\(376\) 1442.72 0.197879
\(377\) −1804.14 −0.246467
\(378\) 0 0
\(379\) 10797.8 1.46345 0.731724 0.681601i \(-0.238716\pi\)
0.731724 + 0.681601i \(0.238716\pi\)
\(380\) −2853.56 −0.385223
\(381\) 0 0
\(382\) −6877.37 −0.921144
\(383\) 3396.75 0.453174 0.226587 0.973991i \(-0.427243\pi\)
0.226587 + 0.973991i \(0.427243\pi\)
\(384\) 0 0
\(385\) 5321.91 0.704493
\(386\) 6584.49 0.868243
\(387\) 0 0
\(388\) −7332.80 −0.959450
\(389\) 4927.07 0.642192 0.321096 0.947047i \(-0.395949\pi\)
0.321096 + 0.947047i \(0.395949\pi\)
\(390\) 0 0
\(391\) −4873.47 −0.630338
\(392\) 1342.60 0.172989
\(393\) 0 0
\(394\) 9704.21 1.24084
\(395\) −5601.13 −0.713477
\(396\) 0 0
\(397\) −7777.55 −0.983234 −0.491617 0.870812i \(-0.663594\pi\)
−0.491617 + 0.870812i \(0.663594\pi\)
\(398\) 803.551 0.101202
\(399\) 0 0
\(400\) −1984.14 −0.248018
\(401\) −6058.22 −0.754446 −0.377223 0.926122i \(-0.623121\pi\)
−0.377223 + 0.926122i \(0.623121\pi\)
\(402\) 0 0
\(403\) −11212.2 −1.38591
\(404\) 6837.24 0.841994
\(405\) 0 0
\(406\) −1559.00 −0.190571
\(407\) 3388.59 0.412693
\(408\) 0 0
\(409\) −15078.2 −1.82291 −0.911454 0.411403i \(-0.865039\pi\)
−0.911454 + 0.411403i \(0.865039\pi\)
\(410\) 6652.80 0.801362
\(411\) 0 0
\(412\) −7653.48 −0.915194
\(413\) −5363.83 −0.639073
\(414\) 0 0
\(415\) 5396.39 0.638309
\(416\) −11958.8 −1.40944
\(417\) 0 0
\(418\) −30146.8 −3.52758
\(419\) −5698.22 −0.664383 −0.332192 0.943212i \(-0.607788\pi\)
−0.332192 + 0.943212i \(0.607788\pi\)
\(420\) 0 0
\(421\) 846.838 0.0980341 0.0490171 0.998798i \(-0.484391\pi\)
0.0490171 + 0.998798i \(0.484391\pi\)
\(422\) −14881.5 −1.71664
\(423\) 0 0
\(424\) −2472.67 −0.283215
\(425\) 1679.62 0.191703
\(426\) 0 0
\(427\) −7004.83 −0.793882
\(428\) 743.934 0.0840173
\(429\) 0 0
\(430\) 7316.61 0.820554
\(431\) 7518.27 0.840237 0.420119 0.907469i \(-0.361988\pi\)
0.420119 + 0.907469i \(0.361988\pi\)
\(432\) 0 0
\(433\) 12686.0 1.40797 0.703987 0.710213i \(-0.251401\pi\)
0.703987 + 0.710213i \(0.251401\pi\)
\(434\) −9688.75 −1.07160
\(435\) 0 0
\(436\) 5814.31 0.638658
\(437\) −8631.22 −0.944822
\(438\) 0 0
\(439\) 10530.4 1.14485 0.572424 0.819958i \(-0.306003\pi\)
0.572424 + 0.819958i \(0.306003\pi\)
\(440\) −4058.34 −0.439713
\(441\) 0 0
\(442\) 14951.6 1.60899
\(443\) 5199.17 0.557608 0.278804 0.960348i \(-0.410062\pi\)
0.278804 + 0.960348i \(0.410062\pi\)
\(444\) 0 0
\(445\) 1944.96 0.207191
\(446\) −6247.27 −0.663266
\(447\) 0 0
\(448\) −792.112 −0.0835352
\(449\) 11836.7 1.24412 0.622058 0.782971i \(-0.286297\pi\)
0.622058 + 0.782971i \(0.286297\pi\)
\(450\) 0 0
\(451\) 26344.1 2.75055
\(452\) 5525.46 0.574990
\(453\) 0 0
\(454\) −463.274 −0.0478911
\(455\) −4674.63 −0.481648
\(456\) 0 0
\(457\) 404.451 0.0413992 0.0206996 0.999786i \(-0.493411\pi\)
0.0206996 + 0.999786i \(0.493411\pi\)
\(458\) −2440.24 −0.248963
\(459\) 0 0
\(460\) 1739.60 0.176325
\(461\) −7072.59 −0.714541 −0.357270 0.934001i \(-0.616293\pi\)
−0.357270 + 0.934001i \(0.616293\pi\)
\(462\) 0 0
\(463\) −6500.22 −0.652464 −0.326232 0.945290i \(-0.605779\pi\)
−0.326232 + 0.945290i \(0.605779\pi\)
\(464\) 2301.61 0.230279
\(465\) 0 0
\(466\) −6192.51 −0.615585
\(467\) 8850.61 0.876997 0.438498 0.898732i \(-0.355511\pi\)
0.438498 + 0.898732i \(0.355511\pi\)
\(468\) 0 0
\(469\) −8691.65 −0.855742
\(470\) 2251.69 0.220985
\(471\) 0 0
\(472\) 4090.31 0.398881
\(473\) 28972.7 2.81642
\(474\) 0 0
\(475\) 2974.71 0.287346
\(476\) 4842.71 0.466314
\(477\) 0 0
\(478\) −11834.7 −1.13244
\(479\) 8582.91 0.818712 0.409356 0.912375i \(-0.365753\pi\)
0.409356 + 0.912375i \(0.365753\pi\)
\(480\) 0 0
\(481\) −2976.45 −0.282150
\(482\) 12829.2 1.21236
\(483\) 0 0
\(484\) 17676.1 1.66004
\(485\) 7644.12 0.715674
\(486\) 0 0
\(487\) −2823.62 −0.262732 −0.131366 0.991334i \(-0.541936\pi\)
−0.131366 + 0.991334i \(0.541936\pi\)
\(488\) 5341.69 0.495506
\(489\) 0 0
\(490\) 2095.44 0.193188
\(491\) 13116.2 1.20555 0.602776 0.797911i \(-0.294061\pi\)
0.602776 + 0.797911i \(0.294061\pi\)
\(492\) 0 0
\(493\) −1948.36 −0.177991
\(494\) 26480.2 2.41174
\(495\) 0 0
\(496\) 14303.8 1.29488
\(497\) −13088.4 −1.18127
\(498\) 0 0
\(499\) −16495.4 −1.47983 −0.739916 0.672699i \(-0.765135\pi\)
−0.739916 + 0.672699i \(0.765135\pi\)
\(500\) −599.546 −0.0536250
\(501\) 0 0
\(502\) 10575.0 0.940209
\(503\) 16677.3 1.47834 0.739169 0.673520i \(-0.235219\pi\)
0.739169 + 0.673520i \(0.235219\pi\)
\(504\) 0 0
\(505\) −7127.52 −0.628060
\(506\) 18378.2 1.61465
\(507\) 0 0
\(508\) 1912.52 0.167036
\(509\) −9386.35 −0.817373 −0.408686 0.912675i \(-0.634013\pi\)
−0.408686 + 0.912675i \(0.634013\pi\)
\(510\) 0 0
\(511\) 6190.15 0.535883
\(512\) 7979.98 0.688806
\(513\) 0 0
\(514\) −8077.75 −0.693180
\(515\) 7978.42 0.682662
\(516\) 0 0
\(517\) 8916.37 0.758495
\(518\) −2572.02 −0.218162
\(519\) 0 0
\(520\) 3564.74 0.300624
\(521\) 16530.2 1.39002 0.695009 0.719001i \(-0.255400\pi\)
0.695009 + 0.719001i \(0.255400\pi\)
\(522\) 0 0
\(523\) −18295.9 −1.52968 −0.764842 0.644217i \(-0.777183\pi\)
−0.764842 + 0.644217i \(0.777183\pi\)
\(524\) 1847.76 0.154045
\(525\) 0 0
\(526\) −10404.9 −0.862500
\(527\) −12108.5 −1.00086
\(528\) 0 0
\(529\) −6905.20 −0.567535
\(530\) −3859.16 −0.316285
\(531\) 0 0
\(532\) 8576.74 0.698964
\(533\) −23140.0 −1.88050
\(534\) 0 0
\(535\) −775.518 −0.0626703
\(536\) 6628.01 0.534117
\(537\) 0 0
\(538\) 1065.68 0.0853994
\(539\) 8297.63 0.663088
\(540\) 0 0
\(541\) −949.695 −0.0754724 −0.0377362 0.999288i \(-0.512015\pi\)
−0.0377362 + 0.999288i \(0.512015\pi\)
\(542\) 25015.5 1.98249
\(543\) 0 0
\(544\) −12914.7 −1.01786
\(545\) −6061.16 −0.476388
\(546\) 0 0
\(547\) 18017.4 1.40835 0.704177 0.710024i \(-0.251316\pi\)
0.704177 + 0.710024i \(0.251316\pi\)
\(548\) 1687.73 0.131563
\(549\) 0 0
\(550\) −6333.97 −0.491057
\(551\) −3450.67 −0.266794
\(552\) 0 0
\(553\) 16834.9 1.29456
\(554\) 20396.6 1.56420
\(555\) 0 0
\(556\) 5460.58 0.416511
\(557\) 11387.6 0.866263 0.433131 0.901331i \(-0.357409\pi\)
0.433131 + 0.901331i \(0.357409\pi\)
\(558\) 0 0
\(559\) −25448.9 −1.92553
\(560\) 5963.60 0.450014
\(561\) 0 0
\(562\) 4351.09 0.326583
\(563\) 277.822 0.0207971 0.0103986 0.999946i \(-0.496690\pi\)
0.0103986 + 0.999946i \(0.496690\pi\)
\(564\) 0 0
\(565\) −5760.04 −0.428897
\(566\) 14652.8 1.08817
\(567\) 0 0
\(568\) 9980.82 0.737299
\(569\) −15475.5 −1.14019 −0.570093 0.821580i \(-0.693093\pi\)
−0.570093 + 0.821580i \(0.693093\pi\)
\(570\) 0 0
\(571\) −3245.82 −0.237887 −0.118944 0.992901i \(-0.537951\pi\)
−0.118944 + 0.992901i \(0.537951\pi\)
\(572\) −21133.8 −1.54484
\(573\) 0 0
\(574\) −19995.8 −1.45402
\(575\) −1813.46 −0.131524
\(576\) 0 0
\(577\) −23087.9 −1.66579 −0.832895 0.553430i \(-0.813318\pi\)
−0.832895 + 0.553430i \(0.813318\pi\)
\(578\) −1428.01 −0.102764
\(579\) 0 0
\(580\) 695.473 0.0497896
\(581\) −16219.5 −1.15818
\(582\) 0 0
\(583\) −15281.7 −1.08560
\(584\) −4720.44 −0.334474
\(585\) 0 0
\(586\) −20942.0 −1.47629
\(587\) −13526.1 −0.951075 −0.475537 0.879696i \(-0.657746\pi\)
−0.475537 + 0.879696i \(0.657746\pi\)
\(588\) 0 0
\(589\) −21444.9 −1.50021
\(590\) 6383.86 0.445457
\(591\) 0 0
\(592\) 3797.17 0.263619
\(593\) −15964.6 −1.10554 −0.552770 0.833334i \(-0.686429\pi\)
−0.552770 + 0.833334i \(0.686429\pi\)
\(594\) 0 0
\(595\) −5048.31 −0.347833
\(596\) −5758.46 −0.395764
\(597\) 0 0
\(598\) −16142.9 −1.10390
\(599\) −22.9584 −0.00156603 −0.000783017 1.00000i \(-0.500249\pi\)
−0.000783017 1.00000i \(0.500249\pi\)
\(600\) 0 0
\(601\) −7471.32 −0.507090 −0.253545 0.967324i \(-0.581597\pi\)
−0.253545 + 0.967324i \(0.581597\pi\)
\(602\) −21991.0 −1.48885
\(603\) 0 0
\(604\) −7383.28 −0.497386
\(605\) −18426.6 −1.23826
\(606\) 0 0
\(607\) 23036.9 1.54042 0.770212 0.637788i \(-0.220151\pi\)
0.770212 + 0.637788i \(0.220151\pi\)
\(608\) −22872.8 −1.52568
\(609\) 0 0
\(610\) 8336.93 0.553365
\(611\) −7831.91 −0.518569
\(612\) 0 0
\(613\) −20040.0 −1.32040 −0.660202 0.751088i \(-0.729530\pi\)
−0.660202 + 0.751088i \(0.729530\pi\)
\(614\) −9831.52 −0.646202
\(615\) 0 0
\(616\) 12197.9 0.797834
\(617\) 27464.4 1.79202 0.896010 0.444035i \(-0.146453\pi\)
0.896010 + 0.444035i \(0.146453\pi\)
\(618\) 0 0
\(619\) 3585.29 0.232803 0.116402 0.993202i \(-0.462864\pi\)
0.116402 + 0.993202i \(0.462864\pi\)
\(620\) 4322.17 0.279972
\(621\) 0 0
\(622\) 36805.9 2.37264
\(623\) −5845.83 −0.375936
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 30552.6 1.95069
\(627\) 0 0
\(628\) 1070.23 0.0680048
\(629\) −3214.38 −0.203761
\(630\) 0 0
\(631\) −27135.3 −1.71195 −0.855973 0.517020i \(-0.827041\pi\)
−0.855973 + 0.517020i \(0.827041\pi\)
\(632\) −12837.8 −0.808009
\(633\) 0 0
\(634\) 469.160 0.0293892
\(635\) −1993.72 −0.124596
\(636\) 0 0
\(637\) −7288.43 −0.453341
\(638\) 7347.40 0.455935
\(639\) 0 0
\(640\) −6746.34 −0.416676
\(641\) −23443.5 −1.44456 −0.722278 0.691603i \(-0.756905\pi\)
−0.722278 + 0.691603i \(0.756905\pi\)
\(642\) 0 0
\(643\) −9339.29 −0.572792 −0.286396 0.958111i \(-0.592457\pi\)
−0.286396 + 0.958111i \(0.592457\pi\)
\(644\) −5228.59 −0.319931
\(645\) 0 0
\(646\) 28596.9 1.74169
\(647\) −1103.56 −0.0670562 −0.0335281 0.999438i \(-0.510674\pi\)
−0.0335281 + 0.999438i \(0.510674\pi\)
\(648\) 0 0
\(649\) 25279.2 1.52896
\(650\) 5563.60 0.335726
\(651\) 0 0
\(652\) −14939.3 −0.897344
\(653\) 3127.51 0.187425 0.0937127 0.995599i \(-0.470126\pi\)
0.0937127 + 0.995599i \(0.470126\pi\)
\(654\) 0 0
\(655\) −1926.21 −0.114906
\(656\) 29520.6 1.75699
\(657\) 0 0
\(658\) −6767.75 −0.400964
\(659\) −16004.5 −0.946050 −0.473025 0.881049i \(-0.656838\pi\)
−0.473025 + 0.881049i \(0.656838\pi\)
\(660\) 0 0
\(661\) 10807.3 0.635939 0.317970 0.948101i \(-0.396999\pi\)
0.317970 + 0.948101i \(0.396999\pi\)
\(662\) −26023.4 −1.52784
\(663\) 0 0
\(664\) 12368.6 0.722882
\(665\) −8940.87 −0.521372
\(666\) 0 0
\(667\) 2103.61 0.122117
\(668\) 8253.47 0.478049
\(669\) 0 0
\(670\) 10344.5 0.596483
\(671\) 33013.0 1.89933
\(672\) 0 0
\(673\) 23835.6 1.36522 0.682612 0.730781i \(-0.260844\pi\)
0.682612 + 0.730781i \(0.260844\pi\)
\(674\) 16682.5 0.953392
\(675\) 0 0
\(676\) 8025.75 0.456631
\(677\) −5081.10 −0.288453 −0.144227 0.989545i \(-0.546069\pi\)
−0.144227 + 0.989545i \(0.546069\pi\)
\(678\) 0 0
\(679\) −22975.4 −1.29855
\(680\) 3849.70 0.217102
\(681\) 0 0
\(682\) 45662.0 2.56377
\(683\) −7815.19 −0.437833 −0.218917 0.975744i \(-0.570252\pi\)
−0.218917 + 0.975744i \(0.570252\pi\)
\(684\) 0 0
\(685\) −1759.38 −0.0981352
\(686\) −24737.3 −1.37679
\(687\) 0 0
\(688\) 32466.1 1.79907
\(689\) 13423.1 0.742204
\(690\) 0 0
\(691\) 8815.96 0.485347 0.242674 0.970108i \(-0.421976\pi\)
0.242674 + 0.970108i \(0.421976\pi\)
\(692\) −11696.9 −0.642557
\(693\) 0 0
\(694\) −21644.9 −1.18391
\(695\) −5692.41 −0.310684
\(696\) 0 0
\(697\) −24989.8 −1.35804
\(698\) 45873.9 2.48761
\(699\) 0 0
\(700\) 1802.01 0.0972994
\(701\) 4100.40 0.220927 0.110464 0.993880i \(-0.464766\pi\)
0.110464 + 0.993880i \(0.464766\pi\)
\(702\) 0 0
\(703\) −5692.87 −0.305420
\(704\) 3733.14 0.199855
\(705\) 0 0
\(706\) −44767.0 −2.38644
\(707\) 21422.7 1.13958
\(708\) 0 0
\(709\) −17803.3 −0.943042 −0.471521 0.881855i \(-0.656295\pi\)
−0.471521 + 0.881855i \(0.656295\pi\)
\(710\) 15577.4 0.823391
\(711\) 0 0
\(712\) 4457.87 0.234643
\(713\) 13073.3 0.686677
\(714\) 0 0
\(715\) 22031.0 1.15233
\(716\) 10782.2 0.562780
\(717\) 0 0
\(718\) −12143.5 −0.631187
\(719\) 4213.37 0.218543 0.109271 0.994012i \(-0.465148\pi\)
0.109271 + 0.994012i \(0.465148\pi\)
\(720\) 0 0
\(721\) −23980.1 −1.23865
\(722\) 26110.9 1.34591
\(723\) 0 0
\(724\) −11305.6 −0.580347
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) 29559.3 1.50797 0.753984 0.656893i \(-0.228130\pi\)
0.753984 + 0.656893i \(0.228130\pi\)
\(728\) −10714.3 −0.545464
\(729\) 0 0
\(730\) −7367.32 −0.373530
\(731\) −27483.2 −1.39057
\(732\) 0 0
\(733\) 23312.9 1.17474 0.587369 0.809319i \(-0.300164\pi\)
0.587369 + 0.809319i \(0.300164\pi\)
\(734\) −35743.1 −1.79742
\(735\) 0 0
\(736\) 13943.8 0.698337
\(737\) 40962.8 2.04733
\(738\) 0 0
\(739\) 27985.2 1.39303 0.696517 0.717540i \(-0.254732\pi\)
0.696517 + 0.717540i \(0.254732\pi\)
\(740\) 1147.38 0.0569982
\(741\) 0 0
\(742\) 11599.2 0.573881
\(743\) 2542.48 0.125538 0.0627690 0.998028i \(-0.480007\pi\)
0.0627690 + 0.998028i \(0.480007\pi\)
\(744\) 0 0
\(745\) 6002.94 0.295209
\(746\) 25825.3 1.26747
\(747\) 0 0
\(748\) −22823.2 −1.11564
\(749\) 2330.92 0.113712
\(750\) 0 0
\(751\) 33600.2 1.63261 0.816305 0.577622i \(-0.196019\pi\)
0.816305 + 0.577622i \(0.196019\pi\)
\(752\) 9991.46 0.484510
\(753\) 0 0
\(754\) −6453.77 −0.311714
\(755\) 7696.74 0.371011
\(756\) 0 0
\(757\) −34022.4 −1.63351 −0.816754 0.576986i \(-0.804229\pi\)
−0.816754 + 0.576986i \(0.804229\pi\)
\(758\) 38626.0 1.85087
\(759\) 0 0
\(760\) 6818.06 0.325417
\(761\) −15032.8 −0.716084 −0.358042 0.933705i \(-0.616556\pi\)
−0.358042 + 0.933705i \(0.616556\pi\)
\(762\) 0 0
\(763\) 18217.6 0.864378
\(764\) −9221.28 −0.436668
\(765\) 0 0
\(766\) 12150.8 0.573144
\(767\) −22204.6 −1.04532
\(768\) 0 0
\(769\) −24042.9 −1.12745 −0.563725 0.825963i \(-0.690632\pi\)
−0.563725 + 0.825963i \(0.690632\pi\)
\(770\) 19037.5 0.890994
\(771\) 0 0
\(772\) 8828.59 0.411590
\(773\) −17441.1 −0.811530 −0.405765 0.913977i \(-0.632995\pi\)
−0.405765 + 0.913977i \(0.632995\pi\)
\(774\) 0 0
\(775\) −4505.67 −0.208837
\(776\) 17520.4 0.810496
\(777\) 0 0
\(778\) 17625.1 0.812200
\(779\) −44258.5 −2.03559
\(780\) 0 0
\(781\) 61684.0 2.82616
\(782\) −17433.4 −0.797208
\(783\) 0 0
\(784\) 9298.12 0.423566
\(785\) −1115.67 −0.0507262
\(786\) 0 0
\(787\) −38211.9 −1.73076 −0.865379 0.501119i \(-0.832922\pi\)
−0.865379 + 0.501119i \(0.832922\pi\)
\(788\) 13011.6 0.588220
\(789\) 0 0
\(790\) −20036.4 −0.902357
\(791\) 17312.5 0.778208
\(792\) 0 0
\(793\) −28997.8 −1.29854
\(794\) −27821.8 −1.24353
\(795\) 0 0
\(796\) 1077.41 0.0479748
\(797\) −18149.9 −0.806655 −0.403327 0.915056i \(-0.632146\pi\)
−0.403327 + 0.915056i \(0.632146\pi\)
\(798\) 0 0
\(799\) −8457.99 −0.374496
\(800\) −4805.68 −0.212383
\(801\) 0 0
\(802\) −21671.5 −0.954172
\(803\) −29173.5 −1.28208
\(804\) 0 0
\(805\) 5450.57 0.238643
\(806\) −40108.3 −1.75280
\(807\) 0 0
\(808\) −16336.3 −0.711275
\(809\) 339.522 0.0147552 0.00737759 0.999973i \(-0.497652\pi\)
0.00737759 + 0.999973i \(0.497652\pi\)
\(810\) 0 0
\(811\) 26295.4 1.13854 0.569270 0.822151i \(-0.307226\pi\)
0.569270 + 0.822151i \(0.307226\pi\)
\(812\) −2090.33 −0.0903403
\(813\) 0 0
\(814\) 12121.7 0.521946
\(815\) 15573.6 0.669347
\(816\) 0 0
\(817\) −48674.5 −2.08434
\(818\) −53937.8 −2.30549
\(819\) 0 0
\(820\) 8920.18 0.379886
\(821\) 46289.6 1.96775 0.983873 0.178867i \(-0.0572433\pi\)
0.983873 + 0.178867i \(0.0572433\pi\)
\(822\) 0 0
\(823\) −28099.3 −1.19013 −0.595067 0.803676i \(-0.702874\pi\)
−0.595067 + 0.803676i \(0.702874\pi\)
\(824\) 18286.6 0.773111
\(825\) 0 0
\(826\) −19187.5 −0.808255
\(827\) 38732.3 1.62860 0.814301 0.580443i \(-0.197121\pi\)
0.814301 + 0.580443i \(0.197121\pi\)
\(828\) 0 0
\(829\) −9334.33 −0.391067 −0.195534 0.980697i \(-0.562644\pi\)
−0.195534 + 0.980697i \(0.562644\pi\)
\(830\) 19304.0 0.807290
\(831\) 0 0
\(832\) −3279.09 −0.136637
\(833\) −7871.06 −0.327390
\(834\) 0 0
\(835\) −8603.88 −0.356586
\(836\) −40421.3 −1.67225
\(837\) 0 0
\(838\) −20383.7 −0.840266
\(839\) 40742.1 1.67649 0.838245 0.545294i \(-0.183582\pi\)
0.838245 + 0.545294i \(0.183582\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 3029.31 0.123987
\(843\) 0 0
\(844\) −19953.4 −0.813771
\(845\) −8366.49 −0.340611
\(846\) 0 0
\(847\) 55383.5 2.24675
\(848\) −17124.3 −0.693457
\(849\) 0 0
\(850\) 6008.34 0.242452
\(851\) 3470.51 0.139797
\(852\) 0 0
\(853\) −29088.9 −1.16762 −0.583812 0.811889i \(-0.698440\pi\)
−0.583812 + 0.811889i \(0.698440\pi\)
\(854\) −25057.7 −1.00405
\(855\) 0 0
\(856\) −1777.49 −0.0709737
\(857\) −31564.0 −1.25812 −0.629059 0.777357i \(-0.716560\pi\)
−0.629059 + 0.777357i \(0.716560\pi\)
\(858\) 0 0
\(859\) 21654.5 0.860120 0.430060 0.902800i \(-0.358492\pi\)
0.430060 + 0.902800i \(0.358492\pi\)
\(860\) 9810.22 0.388983
\(861\) 0 0
\(862\) 26894.4 1.06267
\(863\) −2304.51 −0.0908996 −0.0454498 0.998967i \(-0.514472\pi\)
−0.0454498 + 0.998967i \(0.514472\pi\)
\(864\) 0 0
\(865\) 12193.5 0.479297
\(866\) 45380.5 1.78071
\(867\) 0 0
\(868\) −12990.8 −0.507992
\(869\) −79341.1 −3.09720
\(870\) 0 0
\(871\) −35980.7 −1.39972
\(872\) −13892.2 −0.539507
\(873\) 0 0
\(874\) −30875.6 −1.19495
\(875\) −1878.52 −0.0725777
\(876\) 0 0
\(877\) 42141.0 1.62258 0.811289 0.584645i \(-0.198766\pi\)
0.811289 + 0.584645i \(0.198766\pi\)
\(878\) 37669.4 1.44793
\(879\) 0 0
\(880\) −28105.8 −1.07664
\(881\) −3482.39 −0.133172 −0.0665861 0.997781i \(-0.521211\pi\)
−0.0665861 + 0.997781i \(0.521211\pi\)
\(882\) 0 0
\(883\) 28559.6 1.08846 0.544229 0.838937i \(-0.316822\pi\)
0.544229 + 0.838937i \(0.316822\pi\)
\(884\) 20047.3 0.762742
\(885\) 0 0
\(886\) 18598.5 0.705224
\(887\) 42485.5 1.60826 0.804128 0.594456i \(-0.202633\pi\)
0.804128 + 0.594456i \(0.202633\pi\)
\(888\) 0 0
\(889\) 5992.37 0.226072
\(890\) 6957.52 0.262041
\(891\) 0 0
\(892\) −8376.43 −0.314421
\(893\) −14979.6 −0.561337
\(894\) 0 0
\(895\) −11240.0 −0.419789
\(896\) 20277.0 0.756034
\(897\) 0 0
\(898\) 42342.3 1.57347
\(899\) 5226.58 0.193900
\(900\) 0 0
\(901\) 14496.1 0.535999
\(902\) 94238.2 3.47870
\(903\) 0 0
\(904\) −13202.1 −0.485724
\(905\) 11785.6 0.432893
\(906\) 0 0
\(907\) −22359.4 −0.818559 −0.409280 0.912409i \(-0.634220\pi\)
−0.409280 + 0.912409i \(0.634220\pi\)
\(908\) −621.166 −0.0227028
\(909\) 0 0
\(910\) −16722.1 −0.609156
\(911\) 14833.6 0.539471 0.269735 0.962934i \(-0.413064\pi\)
0.269735 + 0.962934i \(0.413064\pi\)
\(912\) 0 0
\(913\) 76440.9 2.77089
\(914\) 1446.80 0.0523588
\(915\) 0 0
\(916\) −3271.92 −0.118021
\(917\) 5789.46 0.208489
\(918\) 0 0
\(919\) −41161.8 −1.47748 −0.738740 0.673991i \(-0.764579\pi\)
−0.738740 + 0.673991i \(0.764579\pi\)
\(920\) −4156.46 −0.148950
\(921\) 0 0
\(922\) −25300.1 −0.903702
\(923\) −54181.7 −1.93219
\(924\) 0 0
\(925\) −1196.10 −0.0425161
\(926\) −23252.6 −0.825192
\(927\) 0 0
\(928\) 5574.59 0.197193
\(929\) −29321.8 −1.03554 −0.517771 0.855519i \(-0.673238\pi\)
−0.517771 + 0.855519i \(0.673238\pi\)
\(930\) 0 0
\(931\) −13940.1 −0.490729
\(932\) −8303.02 −0.291818
\(933\) 0 0
\(934\) 31660.4 1.10917
\(935\) 23792.2 0.832178
\(936\) 0 0
\(937\) −42922.5 −1.49650 −0.748249 0.663418i \(-0.769105\pi\)
−0.748249 + 0.663418i \(0.769105\pi\)
\(938\) −31091.8 −1.08228
\(939\) 0 0
\(940\) 3019.10 0.104758
\(941\) 13239.3 0.458650 0.229325 0.973350i \(-0.426348\pi\)
0.229325 + 0.973350i \(0.426348\pi\)
\(942\) 0 0
\(943\) 26981.0 0.931732
\(944\) 28327.2 0.976665
\(945\) 0 0
\(946\) 103641. 3.56201
\(947\) 19266.8 0.661126 0.330563 0.943784i \(-0.392761\pi\)
0.330563 + 0.943784i \(0.392761\pi\)
\(948\) 0 0
\(949\) 25625.3 0.876534
\(950\) 10641.1 0.363415
\(951\) 0 0
\(952\) −11570.8 −0.393919
\(953\) 14816.2 0.503615 0.251807 0.967777i \(-0.418975\pi\)
0.251807 + 0.967777i \(0.418975\pi\)
\(954\) 0 0
\(955\) 9612.78 0.325720
\(956\) −15868.2 −0.536835
\(957\) 0 0
\(958\) 30702.8 1.03545
\(959\) 5288.05 0.178061
\(960\) 0 0
\(961\) 2690.68 0.0903185
\(962\) −10647.4 −0.356845
\(963\) 0 0
\(964\) 17201.6 0.574717
\(965\) −9203.41 −0.307014
\(966\) 0 0
\(967\) 1342.65 0.0446502 0.0223251 0.999751i \(-0.492893\pi\)
0.0223251 + 0.999751i \(0.492893\pi\)
\(968\) −42233.9 −1.40232
\(969\) 0 0
\(970\) 27344.6 0.905135
\(971\) 11211.1 0.370526 0.185263 0.982689i \(-0.440686\pi\)
0.185263 + 0.982689i \(0.440686\pi\)
\(972\) 0 0
\(973\) 17109.3 0.563718
\(974\) −10100.7 −0.332285
\(975\) 0 0
\(976\) 36993.6 1.21325
\(977\) −30870.2 −1.01088 −0.505438 0.862863i \(-0.668669\pi\)
−0.505438 + 0.862863i \(0.668669\pi\)
\(978\) 0 0
\(979\) 27550.8 0.899414
\(980\) 2809.60 0.0915809
\(981\) 0 0
\(982\) 46919.3 1.52470
\(983\) −28549.4 −0.926332 −0.463166 0.886272i \(-0.653287\pi\)
−0.463166 + 0.886272i \(0.653287\pi\)
\(984\) 0 0
\(985\) −13564.0 −0.438765
\(986\) −6969.68 −0.225111
\(987\) 0 0
\(988\) 35505.0 1.14328
\(989\) 29673.1 0.954046
\(990\) 0 0
\(991\) −20806.0 −0.666927 −0.333464 0.942763i \(-0.608217\pi\)
−0.333464 + 0.942763i \(0.608217\pi\)
\(992\) 34644.5 1.10883
\(993\) 0 0
\(994\) −46819.7 −1.49399
\(995\) −1123.16 −0.0357854
\(996\) 0 0
\(997\) 57999.9 1.84240 0.921201 0.389088i \(-0.127210\pi\)
0.921201 + 0.389088i \(0.127210\pi\)
\(998\) −59007.4 −1.87159
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.4.a.n.1.6 7
3.2 odd 2 435.4.a.i.1.2 7
15.14 odd 2 2175.4.a.n.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.i.1.2 7 3.2 odd 2
1305.4.a.n.1.6 7 1.1 even 1 trivial
2175.4.a.n.1.6 7 15.14 odd 2