Properties

Label 132.12.a.b.1.1
Level $132$
Weight $12$
Character 132.1
Self dual yes
Analytic conductor $101.421$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [132,12,Mod(1,132)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("132.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 132 = 2^{2} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 132.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.421299834\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 243453x^{2} + 8521201x + 11492037452 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-453.854\) of defining polynomial
Character \(\chi\) \(=\) 132.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+243.000 q^{3} -10438.7 q^{5} +22390.8 q^{7} +59049.0 q^{9} +161051. q^{11} +378099. q^{13} -2.53661e6 q^{15} -8.44623e6 q^{17} +1.03187e7 q^{19} +5.44097e6 q^{21} +6.71020e6 q^{23} +6.01392e7 q^{25} +1.43489e7 q^{27} +5.25055e7 q^{29} +5.56053e7 q^{31} +3.91354e7 q^{33} -2.33732e8 q^{35} +1.06153e8 q^{37} +9.18781e7 q^{39} +4.48381e8 q^{41} -4.06725e8 q^{43} -6.16397e8 q^{45} +5.05987e8 q^{47} -1.47598e9 q^{49} -2.05243e9 q^{51} -5.92170e9 q^{53} -1.68117e9 q^{55} +2.50744e9 q^{57} -7.40580e9 q^{59} -4.22853e8 q^{61} +1.32216e9 q^{63} -3.94688e9 q^{65} +1.42882e10 q^{67} +1.63058e9 q^{69} -9.01648e9 q^{71} +1.28539e10 q^{73} +1.46138e10 q^{75} +3.60606e9 q^{77} -1.54192e10 q^{79} +3.48678e9 q^{81} -5.96607e10 q^{83} +8.81680e10 q^{85} +1.27588e10 q^{87} +6.43244e10 q^{89} +8.46595e9 q^{91} +1.35121e10 q^{93} -1.07714e11 q^{95} -1.23779e11 q^{97} +9.50990e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 972 q^{3} - 7020 q^{5} - 10934 q^{7} + 236196 q^{9} + 644204 q^{11} - 2559568 q^{13} - 1705860 q^{15} - 1606814 q^{17} - 5621902 q^{19} - 2656962 q^{21} + 19030288 q^{23} + 14585700 q^{25} + 57395628 q^{27}+ \cdots + 38039601996 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 243.000 0.577350
\(4\) 0 0
\(5\) −10438.7 −1.49387 −0.746935 0.664897i \(-0.768476\pi\)
−0.746935 + 0.664897i \(0.768476\pi\)
\(6\) 0 0
\(7\) 22390.8 0.503536 0.251768 0.967788i \(-0.418988\pi\)
0.251768 + 0.967788i \(0.418988\pi\)
\(8\) 0 0
\(9\) 59049.0 0.333333
\(10\) 0 0
\(11\) 161051. 0.301511
\(12\) 0 0
\(13\) 378099. 0.282434 0.141217 0.989979i \(-0.454898\pi\)
0.141217 + 0.989979i \(0.454898\pi\)
\(14\) 0 0
\(15\) −2.53661e6 −0.862487
\(16\) 0 0
\(17\) −8.44623e6 −1.44276 −0.721380 0.692540i \(-0.756492\pi\)
−0.721380 + 0.692540i \(0.756492\pi\)
\(18\) 0 0
\(19\) 1.03187e7 0.956048 0.478024 0.878347i \(-0.341353\pi\)
0.478024 + 0.878347i \(0.341353\pi\)
\(20\) 0 0
\(21\) 5.44097e6 0.290717
\(22\) 0 0
\(23\) 6.71020e6 0.217386 0.108693 0.994075i \(-0.465333\pi\)
0.108693 + 0.994075i \(0.465333\pi\)
\(24\) 0 0
\(25\) 6.01392e7 1.23165
\(26\) 0 0
\(27\) 1.43489e7 0.192450
\(28\) 0 0
\(29\) 5.25055e7 0.475352 0.237676 0.971344i \(-0.423614\pi\)
0.237676 + 0.971344i \(0.423614\pi\)
\(30\) 0 0
\(31\) 5.56053e7 0.348840 0.174420 0.984671i \(-0.444195\pi\)
0.174420 + 0.984671i \(0.444195\pi\)
\(32\) 0 0
\(33\) 3.91354e7 0.174078
\(34\) 0 0
\(35\) −2.33732e8 −0.752218
\(36\) 0 0
\(37\) 1.06153e8 0.251666 0.125833 0.992051i \(-0.459840\pi\)
0.125833 + 0.992051i \(0.459840\pi\)
\(38\) 0 0
\(39\) 9.18781e7 0.163063
\(40\) 0 0
\(41\) 4.48381e8 0.604416 0.302208 0.953242i \(-0.402276\pi\)
0.302208 + 0.953242i \(0.402276\pi\)
\(42\) 0 0
\(43\) −4.06725e8 −0.421915 −0.210957 0.977495i \(-0.567658\pi\)
−0.210957 + 0.977495i \(0.567658\pi\)
\(44\) 0 0
\(45\) −6.16397e8 −0.497957
\(46\) 0 0
\(47\) 5.05987e8 0.321812 0.160906 0.986970i \(-0.448558\pi\)
0.160906 + 0.986970i \(0.448558\pi\)
\(48\) 0 0
\(49\) −1.47598e9 −0.746451
\(50\) 0 0
\(51\) −2.05243e9 −0.832978
\(52\) 0 0
\(53\) −5.92170e9 −1.94504 −0.972521 0.232817i \(-0.925206\pi\)
−0.972521 + 0.232817i \(0.925206\pi\)
\(54\) 0 0
\(55\) −1.68117e9 −0.450419
\(56\) 0 0
\(57\) 2.50744e9 0.551975
\(58\) 0 0
\(59\) −7.40580e9 −1.34861 −0.674304 0.738454i \(-0.735556\pi\)
−0.674304 + 0.738454i \(0.735556\pi\)
\(60\) 0 0
\(61\) −4.22853e8 −0.0641026 −0.0320513 0.999486i \(-0.510204\pi\)
−0.0320513 + 0.999486i \(0.510204\pi\)
\(62\) 0 0
\(63\) 1.32216e9 0.167845
\(64\) 0 0
\(65\) −3.94688e9 −0.421920
\(66\) 0 0
\(67\) 1.42882e10 1.29291 0.646453 0.762954i \(-0.276252\pi\)
0.646453 + 0.762954i \(0.276252\pi\)
\(68\) 0 0
\(69\) 1.63058e9 0.125508
\(70\) 0 0
\(71\) −9.01648e9 −0.593084 −0.296542 0.955020i \(-0.595833\pi\)
−0.296542 + 0.955020i \(0.595833\pi\)
\(72\) 0 0
\(73\) 1.28539e10 0.725703 0.362851 0.931847i \(-0.381803\pi\)
0.362851 + 0.931847i \(0.381803\pi\)
\(74\) 0 0
\(75\) 1.46138e10 0.711094
\(76\) 0 0
\(77\) 3.60606e9 0.151822
\(78\) 0 0
\(79\) −1.54192e10 −0.563785 −0.281892 0.959446i \(-0.590962\pi\)
−0.281892 + 0.959446i \(0.590962\pi\)
\(80\) 0 0
\(81\) 3.48678e9 0.111111
\(82\) 0 0
\(83\) −5.96607e10 −1.66249 −0.831244 0.555908i \(-0.812371\pi\)
−0.831244 + 0.555908i \(0.812371\pi\)
\(84\) 0 0
\(85\) 8.81680e10 2.15530
\(86\) 0 0
\(87\) 1.27588e10 0.274445
\(88\) 0 0
\(89\) 6.43244e10 1.22104 0.610521 0.792000i \(-0.290960\pi\)
0.610521 + 0.792000i \(0.290960\pi\)
\(90\) 0 0
\(91\) 8.46595e9 0.142216
\(92\) 0 0
\(93\) 1.35121e10 0.201403
\(94\) 0 0
\(95\) −1.07714e11 −1.42821
\(96\) 0 0
\(97\) −1.23779e11 −1.46353 −0.731767 0.681555i \(-0.761304\pi\)
−0.731767 + 0.681555i \(0.761304\pi\)
\(98\) 0 0
\(99\) 9.50990e9 0.100504
\(100\) 0 0
\(101\) 1.52226e9 0.0144119 0.00720594 0.999974i \(-0.497706\pi\)
0.00720594 + 0.999974i \(0.497706\pi\)
\(102\) 0 0
\(103\) −9.60602e10 −0.816467 −0.408234 0.912878i \(-0.633855\pi\)
−0.408234 + 0.912878i \(0.633855\pi\)
\(104\) 0 0
\(105\) −5.67968e10 −0.434293
\(106\) 0 0
\(107\) −2.10323e11 −1.44969 −0.724847 0.688910i \(-0.758089\pi\)
−0.724847 + 0.688910i \(0.758089\pi\)
\(108\) 0 0
\(109\) −4.12468e10 −0.256770 −0.128385 0.991724i \(-0.540979\pi\)
−0.128385 + 0.991724i \(0.540979\pi\)
\(110\) 0 0
\(111\) 2.57952e10 0.145299
\(112\) 0 0
\(113\) −1.50432e11 −0.768084 −0.384042 0.923316i \(-0.625468\pi\)
−0.384042 + 0.923316i \(0.625468\pi\)
\(114\) 0 0
\(115\) −7.00460e10 −0.324747
\(116\) 0 0
\(117\) 2.23264e10 0.0941447
\(118\) 0 0
\(119\) −1.89118e11 −0.726482
\(120\) 0 0
\(121\) 2.59374e10 0.0909091
\(122\) 0 0
\(123\) 1.08957e11 0.348960
\(124\) 0 0
\(125\) −1.18073e11 −0.346056
\(126\) 0 0
\(127\) −5.52674e11 −1.48439 −0.742196 0.670183i \(-0.766215\pi\)
−0.742196 + 0.670183i \(0.766215\pi\)
\(128\) 0 0
\(129\) −9.88342e10 −0.243593
\(130\) 0 0
\(131\) −2.36207e11 −0.534935 −0.267467 0.963567i \(-0.586187\pi\)
−0.267467 + 0.963567i \(0.586187\pi\)
\(132\) 0 0
\(133\) 2.31044e11 0.481405
\(134\) 0 0
\(135\) −1.49785e11 −0.287496
\(136\) 0 0
\(137\) 3.36516e10 0.0595720 0.0297860 0.999556i \(-0.490517\pi\)
0.0297860 + 0.999556i \(0.490517\pi\)
\(138\) 0 0
\(139\) −2.84016e11 −0.464261 −0.232130 0.972685i \(-0.574570\pi\)
−0.232130 + 0.972685i \(0.574570\pi\)
\(140\) 0 0
\(141\) 1.22955e11 0.185798
\(142\) 0 0
\(143\) 6.08932e10 0.0851571
\(144\) 0 0
\(145\) −5.48091e11 −0.710115
\(146\) 0 0
\(147\) −3.58663e11 −0.430964
\(148\) 0 0
\(149\) 1.23946e12 1.38264 0.691319 0.722550i \(-0.257030\pi\)
0.691319 + 0.722550i \(0.257030\pi\)
\(150\) 0 0
\(151\) −1.50322e12 −1.55830 −0.779148 0.626840i \(-0.784348\pi\)
−0.779148 + 0.626840i \(0.784348\pi\)
\(152\) 0 0
\(153\) −4.98742e11 −0.480920
\(154\) 0 0
\(155\) −5.80449e11 −0.521123
\(156\) 0 0
\(157\) −3.36324e11 −0.281391 −0.140695 0.990053i \(-0.544934\pi\)
−0.140695 + 0.990053i \(0.544934\pi\)
\(158\) 0 0
\(159\) −1.43897e12 −1.12297
\(160\) 0 0
\(161\) 1.50247e11 0.109462
\(162\) 0 0
\(163\) 3.12389e11 0.212649 0.106325 0.994331i \(-0.466092\pi\)
0.106325 + 0.994331i \(0.466092\pi\)
\(164\) 0 0
\(165\) −4.08524e11 −0.260050
\(166\) 0 0
\(167\) −2.22401e12 −1.32494 −0.662471 0.749087i \(-0.730492\pi\)
−0.662471 + 0.749087i \(0.730492\pi\)
\(168\) 0 0
\(169\) −1.64920e12 −0.920231
\(170\) 0 0
\(171\) 6.09308e11 0.318683
\(172\) 0 0
\(173\) −1.58618e12 −0.778212 −0.389106 0.921193i \(-0.627216\pi\)
−0.389106 + 0.921193i \(0.627216\pi\)
\(174\) 0 0
\(175\) 1.34657e12 0.620180
\(176\) 0 0
\(177\) −1.79961e12 −0.778619
\(178\) 0 0
\(179\) 1.75536e12 0.713963 0.356981 0.934112i \(-0.383806\pi\)
0.356981 + 0.934112i \(0.383806\pi\)
\(180\) 0 0
\(181\) 4.17813e11 0.159864 0.0799318 0.996800i \(-0.474530\pi\)
0.0799318 + 0.996800i \(0.474530\pi\)
\(182\) 0 0
\(183\) −1.02753e11 −0.0370097
\(184\) 0 0
\(185\) −1.10811e12 −0.375956
\(186\) 0 0
\(187\) −1.36027e12 −0.435008
\(188\) 0 0
\(189\) 3.21284e11 0.0969056
\(190\) 0 0
\(191\) 1.26664e12 0.360555 0.180277 0.983616i \(-0.442300\pi\)
0.180277 + 0.983616i \(0.442300\pi\)
\(192\) 0 0
\(193\) 8.96872e10 0.0241082 0.0120541 0.999927i \(-0.496163\pi\)
0.0120541 + 0.999927i \(0.496163\pi\)
\(194\) 0 0
\(195\) −9.59092e11 −0.243596
\(196\) 0 0
\(197\) −6.61977e11 −0.158957 −0.0794784 0.996837i \(-0.525325\pi\)
−0.0794784 + 0.996837i \(0.525325\pi\)
\(198\) 0 0
\(199\) 1.43435e12 0.325809 0.162904 0.986642i \(-0.447914\pi\)
0.162904 + 0.986642i \(0.447914\pi\)
\(200\) 0 0
\(201\) 3.47204e12 0.746459
\(202\) 0 0
\(203\) 1.17564e12 0.239357
\(204\) 0 0
\(205\) −4.68053e12 −0.902919
\(206\) 0 0
\(207\) 3.96230e11 0.0724621
\(208\) 0 0
\(209\) 1.66184e12 0.288259
\(210\) 0 0
\(211\) 2.40720e12 0.396241 0.198120 0.980178i \(-0.436516\pi\)
0.198120 + 0.980178i \(0.436516\pi\)
\(212\) 0 0
\(213\) −2.19100e12 −0.342417
\(214\) 0 0
\(215\) 4.24570e12 0.630286
\(216\) 0 0
\(217\) 1.24505e12 0.175654
\(218\) 0 0
\(219\) 3.12349e12 0.418985
\(220\) 0 0
\(221\) −3.19351e12 −0.407485
\(222\) 0 0
\(223\) 6.09097e12 0.739621 0.369811 0.929107i \(-0.379423\pi\)
0.369811 + 0.929107i \(0.379423\pi\)
\(224\) 0 0
\(225\) 3.55116e12 0.410550
\(226\) 0 0
\(227\) −1.11126e13 −1.22369 −0.611847 0.790976i \(-0.709573\pi\)
−0.611847 + 0.790976i \(0.709573\pi\)
\(228\) 0 0
\(229\) 1.15305e13 1.20991 0.604954 0.796260i \(-0.293191\pi\)
0.604954 + 0.796260i \(0.293191\pi\)
\(230\) 0 0
\(231\) 8.76273e11 0.0876544
\(232\) 0 0
\(233\) −3.26716e12 −0.311683 −0.155841 0.987782i \(-0.549809\pi\)
−0.155841 + 0.987782i \(0.549809\pi\)
\(234\) 0 0
\(235\) −5.28187e12 −0.480745
\(236\) 0 0
\(237\) −3.74687e12 −0.325501
\(238\) 0 0
\(239\) −5.36323e12 −0.444875 −0.222438 0.974947i \(-0.571401\pi\)
−0.222438 + 0.974947i \(0.571401\pi\)
\(240\) 0 0
\(241\) 9.10400e12 0.721337 0.360669 0.932694i \(-0.382549\pi\)
0.360669 + 0.932694i \(0.382549\pi\)
\(242\) 0 0
\(243\) 8.47289e11 0.0641500
\(244\) 0 0
\(245\) 1.54074e13 1.11510
\(246\) 0 0
\(247\) 3.90149e12 0.270021
\(248\) 0 0
\(249\) −1.44975e13 −0.959838
\(250\) 0 0
\(251\) −2.38054e13 −1.50824 −0.754120 0.656736i \(-0.771936\pi\)
−0.754120 + 0.656736i \(0.771936\pi\)
\(252\) 0 0
\(253\) 1.08068e12 0.0655444
\(254\) 0 0
\(255\) 2.14248e13 1.24436
\(256\) 0 0
\(257\) −2.51861e13 −1.40129 −0.700647 0.713508i \(-0.747105\pi\)
−0.700647 + 0.713508i \(0.747105\pi\)
\(258\) 0 0
\(259\) 2.37686e12 0.126723
\(260\) 0 0
\(261\) 3.10039e12 0.158451
\(262\) 0 0
\(263\) 1.62806e13 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(264\) 0 0
\(265\) 6.18150e13 2.90564
\(266\) 0 0
\(267\) 1.56308e13 0.704969
\(268\) 0 0
\(269\) 1.96610e13 0.851075 0.425537 0.904941i \(-0.360085\pi\)
0.425537 + 0.904941i \(0.360085\pi\)
\(270\) 0 0
\(271\) 3.65342e12 0.151834 0.0759169 0.997114i \(-0.475812\pi\)
0.0759169 + 0.997114i \(0.475812\pi\)
\(272\) 0 0
\(273\) 2.05723e12 0.0821083
\(274\) 0 0
\(275\) 9.68547e12 0.371357
\(276\) 0 0
\(277\) −4.51525e13 −1.66358 −0.831788 0.555093i \(-0.812683\pi\)
−0.831788 + 0.555093i \(0.812683\pi\)
\(278\) 0 0
\(279\) 3.28344e12 0.116280
\(280\) 0 0
\(281\) 2.36882e13 0.806579 0.403289 0.915073i \(-0.367867\pi\)
0.403289 + 0.915073i \(0.367867\pi\)
\(282\) 0 0
\(283\) −2.64951e12 −0.0867641 −0.0433820 0.999059i \(-0.513813\pi\)
−0.0433820 + 0.999059i \(0.513813\pi\)
\(284\) 0 0
\(285\) −2.61745e13 −0.824579
\(286\) 0 0
\(287\) 1.00396e13 0.304345
\(288\) 0 0
\(289\) 3.70669e13 1.08155
\(290\) 0 0
\(291\) −3.00783e13 −0.844971
\(292\) 0 0
\(293\) 2.05989e13 0.557280 0.278640 0.960396i \(-0.410116\pi\)
0.278640 + 0.960396i \(0.410116\pi\)
\(294\) 0 0
\(295\) 7.73072e13 2.01465
\(296\) 0 0
\(297\) 2.31091e12 0.0580259
\(298\) 0 0
\(299\) 2.53712e12 0.0613973
\(300\) 0 0
\(301\) −9.10691e12 −0.212449
\(302\) 0 0
\(303\) 3.69908e11 0.00832070
\(304\) 0 0
\(305\) 4.41406e12 0.0957610
\(306\) 0 0
\(307\) 8.90777e13 1.86427 0.932133 0.362117i \(-0.117946\pi\)
0.932133 + 0.362117i \(0.117946\pi\)
\(308\) 0 0
\(309\) −2.33426e13 −0.471387
\(310\) 0 0
\(311\) 9.51670e13 1.85483 0.927415 0.374034i \(-0.122026\pi\)
0.927415 + 0.374034i \(0.122026\pi\)
\(312\) 0 0
\(313\) 2.25209e13 0.423733 0.211867 0.977299i \(-0.432046\pi\)
0.211867 + 0.977299i \(0.432046\pi\)
\(314\) 0 0
\(315\) −1.38016e13 −0.250739
\(316\) 0 0
\(317\) 8.31665e13 1.45923 0.729613 0.683860i \(-0.239700\pi\)
0.729613 + 0.683860i \(0.239700\pi\)
\(318\) 0 0
\(319\) 8.45606e12 0.143324
\(320\) 0 0
\(321\) −5.11085e13 −0.836981
\(322\) 0 0
\(323\) −8.71540e13 −1.37935
\(324\) 0 0
\(325\) 2.27386e13 0.347860
\(326\) 0 0
\(327\) −1.00230e13 −0.148246
\(328\) 0 0
\(329\) 1.13295e13 0.162044
\(330\) 0 0
\(331\) −3.05096e13 −0.422068 −0.211034 0.977479i \(-0.567683\pi\)
−0.211034 + 0.977479i \(0.567683\pi\)
\(332\) 0 0
\(333\) 6.26825e12 0.0838885
\(334\) 0 0
\(335\) −1.49151e14 −1.93143
\(336\) 0 0
\(337\) −7.81104e13 −0.978914 −0.489457 0.872027i \(-0.662805\pi\)
−0.489457 + 0.872027i \(0.662805\pi\)
\(338\) 0 0
\(339\) −3.65550e13 −0.443453
\(340\) 0 0
\(341\) 8.95529e12 0.105179
\(342\) 0 0
\(343\) −7.73223e13 −0.879401
\(344\) 0 0
\(345\) −1.70212e13 −0.187493
\(346\) 0 0
\(347\) −3.82809e13 −0.408479 −0.204240 0.978921i \(-0.565472\pi\)
−0.204240 + 0.978921i \(0.565472\pi\)
\(348\) 0 0
\(349\) −1.49220e14 −1.54272 −0.771360 0.636399i \(-0.780423\pi\)
−0.771360 + 0.636399i \(0.780423\pi\)
\(350\) 0 0
\(351\) 5.42531e12 0.0543545
\(352\) 0 0
\(353\) −5.79312e13 −0.562537 −0.281269 0.959629i \(-0.590755\pi\)
−0.281269 + 0.959629i \(0.590755\pi\)
\(354\) 0 0
\(355\) 9.41206e13 0.885990
\(356\) 0 0
\(357\) −4.59557e13 −0.419434
\(358\) 0 0
\(359\) −8.27326e13 −0.732246 −0.366123 0.930566i \(-0.619315\pi\)
−0.366123 + 0.930566i \(0.619315\pi\)
\(360\) 0 0
\(361\) −1.00149e13 −0.0859719
\(362\) 0 0
\(363\) 6.30279e12 0.0524864
\(364\) 0 0
\(365\) −1.34178e14 −1.08411
\(366\) 0 0
\(367\) 1.12200e14 0.879688 0.439844 0.898074i \(-0.355034\pi\)
0.439844 + 0.898074i \(0.355034\pi\)
\(368\) 0 0
\(369\) 2.64764e13 0.201472
\(370\) 0 0
\(371\) −1.32592e14 −0.979399
\(372\) 0 0
\(373\) 8.99382e13 0.644979 0.322489 0.946573i \(-0.395480\pi\)
0.322489 + 0.946573i \(0.395480\pi\)
\(374\) 0 0
\(375\) −2.86918e13 −0.199795
\(376\) 0 0
\(377\) 1.98523e13 0.134256
\(378\) 0 0
\(379\) 1.16348e14 0.764264 0.382132 0.924108i \(-0.375190\pi\)
0.382132 + 0.924108i \(0.375190\pi\)
\(380\) 0 0
\(381\) −1.34300e14 −0.857014
\(382\) 0 0
\(383\) 7.22004e13 0.447658 0.223829 0.974628i \(-0.428144\pi\)
0.223829 + 0.974628i \(0.428144\pi\)
\(384\) 0 0
\(385\) −3.76428e13 −0.226802
\(386\) 0 0
\(387\) −2.40167e13 −0.140638
\(388\) 0 0
\(389\) −1.92782e14 −1.09735 −0.548673 0.836037i \(-0.684867\pi\)
−0.548673 + 0.836037i \(0.684867\pi\)
\(390\) 0 0
\(391\) −5.66759e13 −0.313636
\(392\) 0 0
\(393\) −5.73983e13 −0.308845
\(394\) 0 0
\(395\) 1.60957e14 0.842222
\(396\) 0 0
\(397\) 1.21840e14 0.620073 0.310036 0.950725i \(-0.399659\pi\)
0.310036 + 0.950725i \(0.399659\pi\)
\(398\) 0 0
\(399\) 5.61437e13 0.277939
\(400\) 0 0
\(401\) −7.13186e12 −0.0343486 −0.0171743 0.999853i \(-0.505467\pi\)
−0.0171743 + 0.999853i \(0.505467\pi\)
\(402\) 0 0
\(403\) 2.10243e13 0.0985245
\(404\) 0 0
\(405\) −3.63976e13 −0.165986
\(406\) 0 0
\(407\) 1.70961e13 0.0758800
\(408\) 0 0
\(409\) −1.10009e14 −0.475280 −0.237640 0.971353i \(-0.576374\pi\)
−0.237640 + 0.971353i \(0.576374\pi\)
\(410\) 0 0
\(411\) 8.17734e12 0.0343939
\(412\) 0 0
\(413\) −1.65822e14 −0.679073
\(414\) 0 0
\(415\) 6.22782e14 2.48354
\(416\) 0 0
\(417\) −6.90160e13 −0.268041
\(418\) 0 0
\(419\) −3.50326e14 −1.32524 −0.662622 0.748954i \(-0.730556\pi\)
−0.662622 + 0.748954i \(0.730556\pi\)
\(420\) 0 0
\(421\) 2.48364e14 0.915245 0.457623 0.889146i \(-0.348701\pi\)
0.457623 + 0.889146i \(0.348701\pi\)
\(422\) 0 0
\(423\) 2.98781e13 0.107271
\(424\) 0 0
\(425\) −5.07949e14 −1.77698
\(426\) 0 0
\(427\) −9.46803e12 −0.0322780
\(428\) 0 0
\(429\) 1.47971e13 0.0491655
\(430\) 0 0
\(431\) −3.46773e13 −0.112310 −0.0561552 0.998422i \(-0.517884\pi\)
−0.0561552 + 0.998422i \(0.517884\pi\)
\(432\) 0 0
\(433\) −2.19214e14 −0.692125 −0.346062 0.938211i \(-0.612481\pi\)
−0.346062 + 0.938211i \(0.612481\pi\)
\(434\) 0 0
\(435\) −1.33186e14 −0.409985
\(436\) 0 0
\(437\) 6.92404e13 0.207832
\(438\) 0 0
\(439\) 3.99626e14 1.16977 0.584883 0.811118i \(-0.301140\pi\)
0.584883 + 0.811118i \(0.301140\pi\)
\(440\) 0 0
\(441\) −8.71550e13 −0.248817
\(442\) 0 0
\(443\) −3.21705e14 −0.895853 −0.447926 0.894070i \(-0.647837\pi\)
−0.447926 + 0.894070i \(0.647837\pi\)
\(444\) 0 0
\(445\) −6.71465e14 −1.82408
\(446\) 0 0
\(447\) 3.01189e14 0.798266
\(448\) 0 0
\(449\) −4.53471e14 −1.17272 −0.586361 0.810050i \(-0.699440\pi\)
−0.586361 + 0.810050i \(0.699440\pi\)
\(450\) 0 0
\(451\) 7.22122e13 0.182238
\(452\) 0 0
\(453\) −3.65283e14 −0.899682
\(454\) 0 0
\(455\) −8.83738e13 −0.212452
\(456\) 0 0
\(457\) 7.64224e14 1.79342 0.896709 0.442620i \(-0.145951\pi\)
0.896709 + 0.442620i \(0.145951\pi\)
\(458\) 0 0
\(459\) −1.21194e14 −0.277659
\(460\) 0 0
\(461\) −3.22239e14 −0.720814 −0.360407 0.932795i \(-0.617362\pi\)
−0.360407 + 0.932795i \(0.617362\pi\)
\(462\) 0 0
\(463\) 1.60826e14 0.351285 0.175643 0.984454i \(-0.443800\pi\)
0.175643 + 0.984454i \(0.443800\pi\)
\(464\) 0 0
\(465\) −1.41049e14 −0.300870
\(466\) 0 0
\(467\) −8.56388e14 −1.78414 −0.892068 0.451902i \(-0.850746\pi\)
−0.892068 + 0.451902i \(0.850746\pi\)
\(468\) 0 0
\(469\) 3.19925e14 0.651025
\(470\) 0 0
\(471\) −8.17268e13 −0.162461
\(472\) 0 0
\(473\) −6.55035e13 −0.127212
\(474\) 0 0
\(475\) 6.20558e14 1.17752
\(476\) 0 0
\(477\) −3.49670e14 −0.648347
\(478\) 0 0
\(479\) 1.98704e14 0.360048 0.180024 0.983662i \(-0.442382\pi\)
0.180024 + 0.983662i \(0.442382\pi\)
\(480\) 0 0
\(481\) 4.01365e13 0.0710790
\(482\) 0 0
\(483\) 3.65100e13 0.0631978
\(484\) 0 0
\(485\) 1.29210e15 2.18633
\(486\) 0 0
\(487\) 6.13525e14 1.01490 0.507449 0.861682i \(-0.330588\pi\)
0.507449 + 0.861682i \(0.330588\pi\)
\(488\) 0 0
\(489\) 7.59105e13 0.122773
\(490\) 0 0
\(491\) 7.59527e14 1.20114 0.600572 0.799571i \(-0.294940\pi\)
0.600572 + 0.799571i \(0.294940\pi\)
\(492\) 0 0
\(493\) −4.43473e14 −0.685819
\(494\) 0 0
\(495\) −9.92714e13 −0.150140
\(496\) 0 0
\(497\) −2.01886e14 −0.298639
\(498\) 0 0
\(499\) 2.19010e14 0.316892 0.158446 0.987368i \(-0.449352\pi\)
0.158446 + 0.987368i \(0.449352\pi\)
\(500\) 0 0
\(501\) −5.40436e14 −0.764956
\(502\) 0 0
\(503\) 1.14520e15 1.58584 0.792920 0.609326i \(-0.208560\pi\)
0.792920 + 0.609326i \(0.208560\pi\)
\(504\) 0 0
\(505\) −1.58904e13 −0.0215295
\(506\) 0 0
\(507\) −4.00756e14 −0.531296
\(508\) 0 0
\(509\) −4.32106e14 −0.560586 −0.280293 0.959914i \(-0.590432\pi\)
−0.280293 + 0.959914i \(0.590432\pi\)
\(510\) 0 0
\(511\) 2.87809e14 0.365417
\(512\) 0 0
\(513\) 1.48062e14 0.183992
\(514\) 0 0
\(515\) 1.00275e15 1.21970
\(516\) 0 0
\(517\) 8.14898e13 0.0970298
\(518\) 0 0
\(519\) −3.85441e14 −0.449301
\(520\) 0 0
\(521\) 8.60763e14 0.982372 0.491186 0.871055i \(-0.336564\pi\)
0.491186 + 0.871055i \(0.336564\pi\)
\(522\) 0 0
\(523\) 4.03592e14 0.451007 0.225503 0.974242i \(-0.427597\pi\)
0.225503 + 0.974242i \(0.427597\pi\)
\(524\) 0 0
\(525\) 3.27215e14 0.358061
\(526\) 0 0
\(527\) −4.69655e14 −0.503293
\(528\) 0 0
\(529\) −9.07783e14 −0.952743
\(530\) 0 0
\(531\) −4.37305e14 −0.449536
\(532\) 0 0
\(533\) 1.69532e14 0.170708
\(534\) 0 0
\(535\) 2.19551e15 2.16565
\(536\) 0 0
\(537\) 4.26553e14 0.412207
\(538\) 0 0
\(539\) −2.37708e14 −0.225064
\(540\) 0 0
\(541\) 1.76236e15 1.63497 0.817487 0.575948i \(-0.195367\pi\)
0.817487 + 0.575948i \(0.195367\pi\)
\(542\) 0 0
\(543\) 1.01529e14 0.0922973
\(544\) 0 0
\(545\) 4.30564e14 0.383581
\(546\) 0 0
\(547\) −1.08828e15 −0.950192 −0.475096 0.879934i \(-0.657587\pi\)
−0.475096 + 0.879934i \(0.657587\pi\)
\(548\) 0 0
\(549\) −2.49691e13 −0.0213675
\(550\) 0 0
\(551\) 5.41788e14 0.454460
\(552\) 0 0
\(553\) −3.45249e14 −0.283886
\(554\) 0 0
\(555\) −2.69270e14 −0.217058
\(556\) 0 0
\(557\) 3.51566e14 0.277846 0.138923 0.990303i \(-0.455636\pi\)
0.138923 + 0.990303i \(0.455636\pi\)
\(558\) 0 0
\(559\) −1.53782e14 −0.119163
\(560\) 0 0
\(561\) −3.30547e14 −0.251152
\(562\) 0 0
\(563\) −8.68064e14 −0.646779 −0.323389 0.946266i \(-0.604822\pi\)
−0.323389 + 0.946266i \(0.604822\pi\)
\(564\) 0 0
\(565\) 1.57032e15 1.14742
\(566\) 0 0
\(567\) 7.80719e13 0.0559485
\(568\) 0 0
\(569\) 3.16339e14 0.222349 0.111174 0.993801i \(-0.464539\pi\)
0.111174 + 0.993801i \(0.464539\pi\)
\(570\) 0 0
\(571\) −8.87299e14 −0.611747 −0.305873 0.952072i \(-0.598948\pi\)
−0.305873 + 0.952072i \(0.598948\pi\)
\(572\) 0 0
\(573\) 3.07795e14 0.208166
\(574\) 0 0
\(575\) 4.03546e14 0.267744
\(576\) 0 0
\(577\) −1.51333e14 −0.0985072 −0.0492536 0.998786i \(-0.515684\pi\)
−0.0492536 + 0.998786i \(0.515684\pi\)
\(578\) 0 0
\(579\) 2.17940e13 0.0139189
\(580\) 0 0
\(581\) −1.33585e15 −0.837123
\(582\) 0 0
\(583\) −9.53695e14 −0.586452
\(584\) 0 0
\(585\) −2.33059e14 −0.140640
\(586\) 0 0
\(587\) 3.31226e13 0.0196162 0.00980809 0.999952i \(-0.496878\pi\)
0.00980809 + 0.999952i \(0.496878\pi\)
\(588\) 0 0
\(589\) 5.73774e14 0.333508
\(590\) 0 0
\(591\) −1.60861e14 −0.0917737
\(592\) 0 0
\(593\) −1.69874e15 −0.951319 −0.475660 0.879629i \(-0.657791\pi\)
−0.475660 + 0.879629i \(0.657791\pi\)
\(594\) 0 0
\(595\) 1.97415e15 1.08527
\(596\) 0 0
\(597\) 3.48546e14 0.188106
\(598\) 0 0
\(599\) 1.92371e15 1.01927 0.509637 0.860389i \(-0.329780\pi\)
0.509637 + 0.860389i \(0.329780\pi\)
\(600\) 0 0
\(601\) 1.23456e15 0.642246 0.321123 0.947037i \(-0.395940\pi\)
0.321123 + 0.947037i \(0.395940\pi\)
\(602\) 0 0
\(603\) 8.43705e14 0.430969
\(604\) 0 0
\(605\) −2.70754e14 −0.135806
\(606\) 0 0
\(607\) 8.68452e14 0.427768 0.213884 0.976859i \(-0.431389\pi\)
0.213884 + 0.976859i \(0.431389\pi\)
\(608\) 0 0
\(609\) 2.85681e14 0.138193
\(610\) 0 0
\(611\) 1.91313e14 0.0908906
\(612\) 0 0
\(613\) 3.38779e15 1.58083 0.790414 0.612574i \(-0.209866\pi\)
0.790414 + 0.612574i \(0.209866\pi\)
\(614\) 0 0
\(615\) −1.13737e15 −0.521301
\(616\) 0 0
\(617\) −3.21326e15 −1.44670 −0.723348 0.690483i \(-0.757398\pi\)
−0.723348 + 0.690483i \(0.757398\pi\)
\(618\) 0 0
\(619\) −2.96780e14 −0.131261 −0.0656306 0.997844i \(-0.520906\pi\)
−0.0656306 + 0.997844i \(0.520906\pi\)
\(620\) 0 0
\(621\) 9.62840e13 0.0418360
\(622\) 0 0
\(623\) 1.44027e15 0.614839
\(624\) 0 0
\(625\) −1.70395e15 −0.714688
\(626\) 0 0
\(627\) 4.03826e14 0.166427
\(628\) 0 0
\(629\) −8.96595e14 −0.363093
\(630\) 0 0
\(631\) 5.79336e14 0.230552 0.115276 0.993333i \(-0.463225\pi\)
0.115276 + 0.993333i \(0.463225\pi\)
\(632\) 0 0
\(633\) 5.84950e14 0.228770
\(634\) 0 0
\(635\) 5.76922e15 2.21749
\(636\) 0 0
\(637\) −5.58066e14 −0.210823
\(638\) 0 0
\(639\) −5.32414e14 −0.197695
\(640\) 0 0
\(641\) −4.02969e15 −1.47080 −0.735398 0.677636i \(-0.763005\pi\)
−0.735398 + 0.677636i \(0.763005\pi\)
\(642\) 0 0
\(643\) −1.48626e15 −0.533255 −0.266627 0.963800i \(-0.585909\pi\)
−0.266627 + 0.963800i \(0.585909\pi\)
\(644\) 0 0
\(645\) 1.03170e15 0.363896
\(646\) 0 0
\(647\) −1.19732e15 −0.415179 −0.207589 0.978216i \(-0.566562\pi\)
−0.207589 + 0.978216i \(0.566562\pi\)
\(648\) 0 0
\(649\) −1.19271e15 −0.406621
\(650\) 0 0
\(651\) 3.02547e14 0.101414
\(652\) 0 0
\(653\) −5.78485e15 −1.90664 −0.953322 0.301956i \(-0.902361\pi\)
−0.953322 + 0.301956i \(0.902361\pi\)
\(654\) 0 0
\(655\) 2.46570e15 0.799123
\(656\) 0 0
\(657\) 7.59009e14 0.241901
\(658\) 0 0
\(659\) −1.94159e15 −0.608538 −0.304269 0.952586i \(-0.598412\pi\)
−0.304269 + 0.952586i \(0.598412\pi\)
\(660\) 0 0
\(661\) −3.84086e15 −1.18392 −0.591958 0.805969i \(-0.701645\pi\)
−0.591958 + 0.805969i \(0.701645\pi\)
\(662\) 0 0
\(663\) −7.76024e14 −0.235261
\(664\) 0 0
\(665\) −2.41181e15 −0.719157
\(666\) 0 0
\(667\) 3.52322e14 0.103335
\(668\) 0 0
\(669\) 1.48011e15 0.427021
\(670\) 0 0
\(671\) −6.81010e13 −0.0193277
\(672\) 0 0
\(673\) −3.75645e15 −1.04881 −0.524403 0.851470i \(-0.675711\pi\)
−0.524403 + 0.851470i \(0.675711\pi\)
\(674\) 0 0
\(675\) 8.62931e14 0.237031
\(676\) 0 0
\(677\) −5.28022e15 −1.42697 −0.713485 0.700671i \(-0.752884\pi\)
−0.713485 + 0.700671i \(0.752884\pi\)
\(678\) 0 0
\(679\) −2.77151e15 −0.736942
\(680\) 0 0
\(681\) −2.70036e15 −0.706500
\(682\) 0 0
\(683\) 2.81860e15 0.725637 0.362818 0.931860i \(-0.381815\pi\)
0.362818 + 0.931860i \(0.381815\pi\)
\(684\) 0 0
\(685\) −3.51280e14 −0.0889929
\(686\) 0 0
\(687\) 2.80191e15 0.698541
\(688\) 0 0
\(689\) −2.23899e15 −0.549346
\(690\) 0 0
\(691\) −6.58716e15 −1.59063 −0.795315 0.606196i \(-0.792695\pi\)
−0.795315 + 0.606196i \(0.792695\pi\)
\(692\) 0 0
\(693\) 2.12934e14 0.0506073
\(694\) 0 0
\(695\) 2.96477e15 0.693545
\(696\) 0 0
\(697\) −3.78713e15 −0.872026
\(698\) 0 0
\(699\) −7.93920e14 −0.179950
\(700\) 0 0
\(701\) 1.77328e15 0.395666 0.197833 0.980236i \(-0.436610\pi\)
0.197833 + 0.980236i \(0.436610\pi\)
\(702\) 0 0
\(703\) 1.09536e15 0.240604
\(704\) 0 0
\(705\) −1.28349e15 −0.277558
\(706\) 0 0
\(707\) 3.40846e13 0.00725690
\(708\) 0 0
\(709\) −7.55761e15 −1.58427 −0.792137 0.610344i \(-0.791031\pi\)
−0.792137 + 0.610344i \(0.791031\pi\)
\(710\) 0 0
\(711\) −9.10489e14 −0.187928
\(712\) 0 0
\(713\) 3.73122e14 0.0758331
\(714\) 0 0
\(715\) −6.35649e14 −0.127214
\(716\) 0 0
\(717\) −1.30327e15 −0.256849
\(718\) 0 0
\(719\) −4.35299e15 −0.844849 −0.422424 0.906398i \(-0.638821\pi\)
−0.422424 + 0.906398i \(0.638821\pi\)
\(720\) 0 0
\(721\) −2.15087e15 −0.411121
\(722\) 0 0
\(723\) 2.21227e15 0.416464
\(724\) 0 0
\(725\) 3.15764e15 0.585468
\(726\) 0 0
\(727\) 1.01683e16 1.85698 0.928492 0.371354i \(-0.121106\pi\)
0.928492 + 0.371354i \(0.121106\pi\)
\(728\) 0 0
\(729\) 2.05891e14 0.0370370
\(730\) 0 0
\(731\) 3.43530e15 0.608721
\(732\) 0 0
\(733\) −8.02622e15 −1.40100 −0.700502 0.713651i \(-0.747040\pi\)
−0.700502 + 0.713651i \(0.747040\pi\)
\(734\) 0 0
\(735\) 3.74399e15 0.643804
\(736\) 0 0
\(737\) 2.30113e15 0.389826
\(738\) 0 0
\(739\) 3.26270e14 0.0544544 0.0272272 0.999629i \(-0.491332\pi\)
0.0272272 + 0.999629i \(0.491332\pi\)
\(740\) 0 0
\(741\) 9.48062e14 0.155897
\(742\) 0 0
\(743\) 3.72057e15 0.602797 0.301398 0.953498i \(-0.402547\pi\)
0.301398 + 0.953498i \(0.402547\pi\)
\(744\) 0 0
\(745\) −1.29384e16 −2.06548
\(746\) 0 0
\(747\) −3.52290e15 −0.554163
\(748\) 0 0
\(749\) −4.70930e15 −0.729973
\(750\) 0 0
\(751\) −9.93996e15 −1.51833 −0.759163 0.650900i \(-0.774392\pi\)
−0.759163 + 0.650900i \(0.774392\pi\)
\(752\) 0 0
\(753\) −5.78472e15 −0.870783
\(754\) 0 0
\(755\) 1.56917e16 2.32789
\(756\) 0 0
\(757\) 6.83176e15 0.998861 0.499431 0.866354i \(-0.333543\pi\)
0.499431 + 0.866354i \(0.333543\pi\)
\(758\) 0 0
\(759\) 2.62606e14 0.0378421
\(760\) 0 0
\(761\) 9.13669e15 1.29770 0.648848 0.760918i \(-0.275251\pi\)
0.648848 + 0.760918i \(0.275251\pi\)
\(762\) 0 0
\(763\) −9.23548e14 −0.129293
\(764\) 0 0
\(765\) 5.20623e15 0.718432
\(766\) 0 0
\(767\) −2.80013e15 −0.380893
\(768\) 0 0
\(769\) 5.66650e15 0.759836 0.379918 0.925020i \(-0.375952\pi\)
0.379918 + 0.925020i \(0.375952\pi\)
\(770\) 0 0
\(771\) −6.12023e15 −0.809038
\(772\) 0 0
\(773\) 1.23541e16 1.61000 0.804998 0.593278i \(-0.202166\pi\)
0.804998 + 0.593278i \(0.202166\pi\)
\(774\) 0 0
\(775\) 3.34406e15 0.429649
\(776\) 0 0
\(777\) 5.77577e14 0.0731634
\(778\) 0 0
\(779\) 4.62670e15 0.577850
\(780\) 0 0
\(781\) −1.45211e15 −0.178821
\(782\) 0 0
\(783\) 7.53396e14 0.0914816
\(784\) 0 0
\(785\) 3.51080e15 0.420362
\(786\) 0 0
\(787\) −4.26312e15 −0.503346 −0.251673 0.967812i \(-0.580981\pi\)
−0.251673 + 0.967812i \(0.580981\pi\)
\(788\) 0 0
\(789\) 3.95618e15 0.460631
\(790\) 0 0
\(791\) −3.36829e15 −0.386758
\(792\) 0 0
\(793\) −1.59880e14 −0.0181048
\(794\) 0 0
\(795\) 1.50211e16 1.67757
\(796\) 0 0
\(797\) 6.37811e15 0.702541 0.351270 0.936274i \(-0.385750\pi\)
0.351270 + 0.936274i \(0.385750\pi\)
\(798\) 0 0
\(799\) −4.27369e15 −0.464297
\(800\) 0 0
\(801\) 3.79829e15 0.407014
\(802\) 0 0
\(803\) 2.07013e15 0.218808
\(804\) 0 0
\(805\) −1.56839e15 −0.163522
\(806\) 0 0
\(807\) 4.77762e15 0.491368
\(808\) 0 0
\(809\) −9.67817e15 −0.981921 −0.490960 0.871182i \(-0.663354\pi\)
−0.490960 + 0.871182i \(0.663354\pi\)
\(810\) 0 0
\(811\) −1.32716e16 −1.32833 −0.664167 0.747584i \(-0.731214\pi\)
−0.664167 + 0.747584i \(0.731214\pi\)
\(812\) 0 0
\(813\) 8.87781e14 0.0876613
\(814\) 0 0
\(815\) −3.26095e15 −0.317671
\(816\) 0 0
\(817\) −4.19687e15 −0.403371
\(818\) 0 0
\(819\) 4.99906e14 0.0474053
\(820\) 0 0
\(821\) −1.83531e16 −1.71720 −0.858602 0.512642i \(-0.828667\pi\)
−0.858602 + 0.512642i \(0.828667\pi\)
\(822\) 0 0
\(823\) −1.53641e16 −1.41843 −0.709214 0.704993i \(-0.750950\pi\)
−0.709214 + 0.704993i \(0.750950\pi\)
\(824\) 0 0
\(825\) 2.35357e15 0.214403
\(826\) 0 0
\(827\) −1.33219e16 −1.19752 −0.598762 0.800927i \(-0.704341\pi\)
−0.598762 + 0.800927i \(0.704341\pi\)
\(828\) 0 0
\(829\) 3.99889e15 0.354723 0.177362 0.984146i \(-0.443244\pi\)
0.177362 + 0.984146i \(0.443244\pi\)
\(830\) 0 0
\(831\) −1.09721e16 −0.960466
\(832\) 0 0
\(833\) 1.24665e16 1.07695
\(834\) 0 0
\(835\) 2.32159e16 1.97929
\(836\) 0 0
\(837\) 7.97875e14 0.0671344
\(838\) 0 0
\(839\) 1.50683e16 1.25134 0.625669 0.780089i \(-0.284826\pi\)
0.625669 + 0.780089i \(0.284826\pi\)
\(840\) 0 0
\(841\) −9.44369e15 −0.774040
\(842\) 0 0
\(843\) 5.75623e15 0.465678
\(844\) 0 0
\(845\) 1.72156e16 1.37471
\(846\) 0 0
\(847\) 5.80760e14 0.0457760
\(848\) 0 0
\(849\) −6.43830e14 −0.0500933
\(850\) 0 0
\(851\) 7.12309e14 0.0547087
\(852\) 0 0
\(853\) 4.90526e15 0.371914 0.185957 0.982558i \(-0.440461\pi\)
0.185957 + 0.982558i \(0.440461\pi\)
\(854\) 0 0
\(855\) −6.36041e15 −0.476071
\(856\) 0 0
\(857\) 1.51583e16 1.12010 0.560048 0.828460i \(-0.310783\pi\)
0.560048 + 0.828460i \(0.310783\pi\)
\(858\) 0 0
\(859\) −1.34328e15 −0.0979948 −0.0489974 0.998799i \(-0.515603\pi\)
−0.0489974 + 0.998799i \(0.515603\pi\)
\(860\) 0 0
\(861\) 2.43962e15 0.175714
\(862\) 0 0
\(863\) −1.82817e16 −1.30004 −0.650022 0.759915i \(-0.725240\pi\)
−0.650022 + 0.759915i \(0.725240\pi\)
\(864\) 0 0
\(865\) 1.65577e16 1.16255
\(866\) 0 0
\(867\) 9.00726e15 0.624436
\(868\) 0 0
\(869\) −2.48328e15 −0.169988
\(870\) 0 0
\(871\) 5.40237e15 0.365161
\(872\) 0 0
\(873\) −7.30903e15 −0.487844
\(874\) 0 0
\(875\) −2.64375e15 −0.174252
\(876\) 0 0
\(877\) −2.65127e16 −1.72566 −0.862831 0.505492i \(-0.831311\pi\)
−0.862831 + 0.505492i \(0.831311\pi\)
\(878\) 0 0
\(879\) 5.00554e15 0.321746
\(880\) 0 0
\(881\) 1.16283e16 0.738154 0.369077 0.929399i \(-0.379674\pi\)
0.369077 + 0.929399i \(0.379674\pi\)
\(882\) 0 0
\(883\) 2.27267e16 1.42480 0.712399 0.701775i \(-0.247609\pi\)
0.712399 + 0.701775i \(0.247609\pi\)
\(884\) 0 0
\(885\) 1.87857e16 1.16316
\(886\) 0 0
\(887\) −2.30074e16 −1.40698 −0.703491 0.710704i \(-0.748376\pi\)
−0.703491 + 0.710704i \(0.748376\pi\)
\(888\) 0 0
\(889\) −1.23748e16 −0.747445
\(890\) 0 0
\(891\) 5.61550e14 0.0335013
\(892\) 0 0
\(893\) 5.22113e15 0.307667
\(894\) 0 0
\(895\) −1.83238e16 −1.06657
\(896\) 0 0
\(897\) 6.16520e14 0.0354478
\(898\) 0 0
\(899\) 2.91958e15 0.165822
\(900\) 0 0
\(901\) 5.00160e16 2.80623
\(902\) 0 0
\(903\) −2.21298e15 −0.122658
\(904\) 0 0
\(905\) −4.36144e15 −0.238816
\(906\) 0 0
\(907\) −4.05537e15 −0.219377 −0.109688 0.993966i \(-0.534985\pi\)
−0.109688 + 0.993966i \(0.534985\pi\)
\(908\) 0 0
\(909\) 8.98877e13 0.00480396
\(910\) 0 0
\(911\) 1.65687e16 0.874860 0.437430 0.899253i \(-0.355889\pi\)
0.437430 + 0.899253i \(0.355889\pi\)
\(912\) 0 0
\(913\) −9.60841e15 −0.501259
\(914\) 0 0
\(915\) 1.07262e15 0.0552877
\(916\) 0 0
\(917\) −5.28887e15 −0.269359
\(918\) 0 0
\(919\) −1.06338e15 −0.0535120 −0.0267560 0.999642i \(-0.508518\pi\)
−0.0267560 + 0.999642i \(0.508518\pi\)
\(920\) 0 0
\(921\) 2.16459e16 1.07633
\(922\) 0 0
\(923\) −3.40912e15 −0.167507
\(924\) 0 0
\(925\) 6.38397e15 0.309964
\(926\) 0 0
\(927\) −5.67226e15 −0.272156
\(928\) 0 0
\(929\) 4.05410e16 1.92224 0.961120 0.276130i \(-0.0890520\pi\)
0.961120 + 0.276130i \(0.0890520\pi\)
\(930\) 0 0
\(931\) −1.52302e16 −0.713643
\(932\) 0 0
\(933\) 2.31256e16 1.07089
\(934\) 0 0
\(935\) 1.41995e16 0.649846
\(936\) 0 0
\(937\) 2.21854e16 1.00346 0.501729 0.865025i \(-0.332697\pi\)
0.501729 + 0.865025i \(0.332697\pi\)
\(938\) 0 0
\(939\) 5.47259e15 0.244643
\(940\) 0 0
\(941\) 1.38588e16 0.612325 0.306163 0.951979i \(-0.400955\pi\)
0.306163 + 0.951979i \(0.400955\pi\)
\(942\) 0 0
\(943\) 3.00872e15 0.131392
\(944\) 0 0
\(945\) −3.35380e15 −0.144764
\(946\) 0 0
\(947\) −6.17388e15 −0.263410 −0.131705 0.991289i \(-0.542045\pi\)
−0.131705 + 0.991289i \(0.542045\pi\)
\(948\) 0 0
\(949\) 4.86004e15 0.204963
\(950\) 0 0
\(951\) 2.02095e16 0.842484
\(952\) 0 0
\(953\) −1.43645e16 −0.591941 −0.295970 0.955197i \(-0.595643\pi\)
−0.295970 + 0.955197i \(0.595643\pi\)
\(954\) 0 0
\(955\) −1.32222e16 −0.538622
\(956\) 0 0
\(957\) 2.05482e15 0.0827482
\(958\) 0 0
\(959\) 7.53486e14 0.0299967
\(960\) 0 0
\(961\) −2.23165e16 −0.878310
\(962\) 0 0
\(963\) −1.24194e16 −0.483231
\(964\) 0 0
\(965\) −9.36221e14 −0.0360146
\(966\) 0 0
\(967\) −4.28323e15 −0.162902 −0.0814509 0.996677i \(-0.525955\pi\)
−0.0814509 + 0.996677i \(0.525955\pi\)
\(968\) 0 0
\(969\) −2.11784e16 −0.796367
\(970\) 0 0
\(971\) −2.86642e16 −1.06570 −0.532850 0.846210i \(-0.678879\pi\)
−0.532850 + 0.846210i \(0.678879\pi\)
\(972\) 0 0
\(973\) −6.35936e15 −0.233772
\(974\) 0 0
\(975\) 5.52547e15 0.200837
\(976\) 0 0
\(977\) 2.87970e16 1.03497 0.517484 0.855693i \(-0.326869\pi\)
0.517484 + 0.855693i \(0.326869\pi\)
\(978\) 0 0
\(979\) 1.03595e16 0.368158
\(980\) 0 0
\(981\) −2.43558e15 −0.0855900
\(982\) 0 0
\(983\) −2.16613e16 −0.752732 −0.376366 0.926471i \(-0.622827\pi\)
−0.376366 + 0.926471i \(0.622827\pi\)
\(984\) 0 0
\(985\) 6.91021e15 0.237461
\(986\) 0 0
\(987\) 2.75306e15 0.0935560
\(988\) 0 0
\(989\) −2.72921e15 −0.0917184
\(990\) 0 0
\(991\) 6.94182e15 0.230711 0.115356 0.993324i \(-0.463199\pi\)
0.115356 + 0.993324i \(0.463199\pi\)
\(992\) 0 0
\(993\) −7.41383e15 −0.243681
\(994\) 0 0
\(995\) −1.49728e16 −0.486716
\(996\) 0 0
\(997\) −5.11186e16 −1.64345 −0.821723 0.569887i \(-0.806987\pi\)
−0.821723 + 0.569887i \(0.806987\pi\)
\(998\) 0 0
\(999\) 1.52318e15 0.0484331
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 132.12.a.b.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.12.a.b.1.1 4 1.1 even 1 trivial