Properties

Label 132.4.i.a.37.1
Level $132$
Weight $4$
Character 132.37
Analytic conductor $7.788$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [132,4,Mod(25,132)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 8]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("132.25");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 132 = 2^{2} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 132.i (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78825212076\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 37.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 132.37
Dual form 132.4.i.a.25.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.927051 + 2.85317i) q^{3} +(9.54508 - 6.93491i) q^{5} +(-4.78115 - 14.7149i) q^{7} +(-7.28115 - 5.29007i) q^{9} +(-8.89919 - 35.3808i) q^{11} +(48.2599 + 35.0628i) q^{13} +(10.9377 + 33.6628i) q^{15} +(23.4443 - 17.0333i) q^{17} +(44.0279 - 135.504i) q^{19} +46.4164 q^{21} +185.000 q^{23} +(4.38854 - 13.5065i) q^{25} +(21.8435 - 15.8702i) q^{27} +(47.9230 + 147.492i) q^{29} +(-229.089 - 166.443i) q^{31} +(109.198 + 7.40896i) q^{33} +(-147.683 - 107.298i) q^{35} +(-62.4762 - 192.282i) q^{37} +(-144.780 + 105.189i) q^{39} +(-90.9534 + 279.926i) q^{41} +179.174 q^{43} -106.185 q^{45} +(-126.201 + 388.407i) q^{47} +(83.8247 - 60.9022i) q^{49} +(26.8647 + 82.6812i) q^{51} +(-290.913 - 211.361i) q^{53} +(-330.307 - 275.998i) q^{55} +(345.799 + 251.238i) q^{57} +(89.0592 + 274.096i) q^{59} +(-122.678 + 89.1307i) q^{61} +(-43.0304 + 132.434i) q^{63} +703.802 q^{65} -826.540 q^{67} +(-171.504 + 527.836i) q^{69} +(-113.112 + 82.1810i) q^{71} +(75.5956 + 232.659i) q^{73} +(34.4681 + 25.0425i) q^{75} +(-478.076 + 300.112i) q^{77} +(-455.201 - 330.723i) q^{79} +(25.0304 + 77.0356i) q^{81} +(-44.1747 + 32.0948i) q^{83} +(105.653 - 325.168i) q^{85} -465.246 q^{87} +554.967 q^{89} +(285.208 - 877.779i) q^{91} +(687.266 - 499.328i) q^{93} +(-519.457 - 1598.72i) q^{95} +(-116.662 - 84.7596i) q^{97} +(-122.371 + 304.691i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} + 27 q^{5} + q^{7} - 9 q^{9} - 11 q^{11} + 79 q^{13} + 84 q^{15} + 58 q^{17} + 194 q^{19} + 132 q^{21} + 740 q^{23} - 54 q^{25} + 27 q^{27} + 62 q^{29} - 572 q^{31} + 363 q^{33} - 347 q^{35}+ \cdots + 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/132\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(67\) \(89\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.927051 + 2.85317i −0.178411 + 0.549093i
\(4\) 0 0
\(5\) 9.54508 6.93491i 0.853738 0.620277i −0.0724359 0.997373i \(-0.523077\pi\)
0.926174 + 0.377096i \(0.123077\pi\)
\(6\) 0 0
\(7\) −4.78115 14.7149i −0.258158 0.794529i −0.993191 0.116497i \(-0.962833\pi\)
0.735033 0.678031i \(-0.237167\pi\)
\(8\) 0 0
\(9\) −7.28115 5.29007i −0.269672 0.195928i
\(10\) 0 0
\(11\) −8.89919 35.3808i −0.243928 0.969793i
\(12\) 0 0
\(13\) 48.2599 + 35.0628i 1.02961 + 0.748053i 0.968230 0.250062i \(-0.0804510\pi\)
0.0613763 + 0.998115i \(0.480451\pi\)
\(14\) 0 0
\(15\) 10.9377 + 33.6628i 0.188273 + 0.579446i
\(16\) 0 0
\(17\) 23.4443 17.0333i 0.334475 0.243010i −0.407852 0.913048i \(-0.633722\pi\)
0.742327 + 0.670038i \(0.233722\pi\)
\(18\) 0 0
\(19\) 44.0279 135.504i 0.531615 1.63614i −0.219237 0.975672i \(-0.570357\pi\)
0.750852 0.660471i \(-0.229643\pi\)
\(20\) 0 0
\(21\) 46.4164 0.482328
\(22\) 0 0
\(23\) 185.000 1.67718 0.838591 0.544762i \(-0.183380\pi\)
0.838591 + 0.544762i \(0.183380\pi\)
\(24\) 0 0
\(25\) 4.38854 13.5065i 0.0351084 0.108052i
\(26\) 0 0
\(27\) 21.8435 15.8702i 0.155695 0.113119i
\(28\) 0 0
\(29\) 47.9230 + 147.492i 0.306865 + 0.944432i 0.978975 + 0.203981i \(0.0653881\pi\)
−0.672110 + 0.740451i \(0.734612\pi\)
\(30\) 0 0
\(31\) −229.089 166.443i −1.32728 0.964322i −0.999811 0.0194584i \(-0.993806\pi\)
−0.327465 0.944863i \(-0.606194\pi\)
\(32\) 0 0
\(33\) 109.198 + 7.40896i 0.576026 + 0.0390829i
\(34\) 0 0
\(35\) −147.683 107.298i −0.713227 0.518190i
\(36\) 0 0
\(37\) −62.4762 192.282i −0.277595 0.854350i −0.988521 0.151083i \(-0.951724\pi\)
0.710926 0.703267i \(-0.248276\pi\)
\(38\) 0 0
\(39\) −144.780 + 105.189i −0.594443 + 0.431888i
\(40\) 0 0
\(41\) −90.9534 + 279.926i −0.346452 + 1.06627i 0.614350 + 0.789034i \(0.289418\pi\)
−0.960802 + 0.277236i \(0.910582\pi\)
\(42\) 0 0
\(43\) 179.174 0.635437 0.317719 0.948185i \(-0.397083\pi\)
0.317719 + 0.948185i \(0.397083\pi\)
\(44\) 0 0
\(45\) −106.185 −0.351760
\(46\) 0 0
\(47\) −126.201 + 388.407i −0.391666 + 1.20542i 0.539861 + 0.841754i \(0.318477\pi\)
−0.931528 + 0.363671i \(0.881523\pi\)
\(48\) 0 0
\(49\) 83.8247 60.9022i 0.244387 0.177557i
\(50\) 0 0
\(51\) 26.8647 + 82.6812i 0.0737611 + 0.227013i
\(52\) 0 0
\(53\) −290.913 211.361i −0.753963 0.547786i 0.143090 0.989710i \(-0.454296\pi\)
−0.897053 + 0.441924i \(0.854296\pi\)
\(54\) 0 0
\(55\) −330.307 275.998i −0.809791 0.676647i
\(56\) 0 0
\(57\) 345.799 + 251.238i 0.803548 + 0.583812i
\(58\) 0 0
\(59\) 89.0592 + 274.096i 0.196517 + 0.604818i 0.999956 + 0.00942994i \(0.00300169\pi\)
−0.803438 + 0.595388i \(0.796998\pi\)
\(60\) 0 0
\(61\) −122.678 + 89.1307i −0.257496 + 0.187082i −0.709043 0.705166i \(-0.750873\pi\)
0.451546 + 0.892248i \(0.350873\pi\)
\(62\) 0 0
\(63\) −43.0304 + 132.434i −0.0860527 + 0.264843i
\(64\) 0 0
\(65\) 703.802 1.34301
\(66\) 0 0
\(67\) −826.540 −1.50713 −0.753567 0.657372i \(-0.771668\pi\)
−0.753567 + 0.657372i \(0.771668\pi\)
\(68\) 0 0
\(69\) −171.504 + 527.836i −0.299228 + 0.920928i
\(70\) 0 0
\(71\) −113.112 + 82.1810i −0.189070 + 0.137367i −0.678294 0.734791i \(-0.737280\pi\)
0.489224 + 0.872158i \(0.337280\pi\)
\(72\) 0 0
\(73\) 75.5956 + 232.659i 0.121203 + 0.373023i 0.993190 0.116505i \(-0.0371690\pi\)
−0.871988 + 0.489528i \(0.837169\pi\)
\(74\) 0 0
\(75\) 34.4681 + 25.0425i 0.0530671 + 0.0385555i
\(76\) 0 0
\(77\) −478.076 + 300.112i −0.707557 + 0.444168i
\(78\) 0 0
\(79\) −455.201 330.723i −0.648280 0.471003i 0.214405 0.976745i \(-0.431219\pi\)
−0.862685 + 0.505742i \(0.831219\pi\)
\(80\) 0 0
\(81\) 25.0304 + 77.0356i 0.0343352 + 0.105673i
\(82\) 0 0
\(83\) −44.1747 + 32.0948i −0.0584193 + 0.0424441i −0.616612 0.787267i \(-0.711495\pi\)
0.558192 + 0.829712i \(0.311495\pi\)
\(84\) 0 0
\(85\) 105.653 325.168i 0.134820 0.414934i
\(86\) 0 0
\(87\) −465.246 −0.573329
\(88\) 0 0
\(89\) 554.967 0.660971 0.330486 0.943811i \(-0.392787\pi\)
0.330486 + 0.943811i \(0.392787\pi\)
\(90\) 0 0
\(91\) 285.208 877.779i 0.328548 1.01117i
\(92\) 0 0
\(93\) 687.266 499.328i 0.766303 0.556751i
\(94\) 0 0
\(95\) −519.457 1598.72i −0.561002 1.72659i
\(96\) 0 0
\(97\) −116.662 84.7596i −0.122115 0.0887220i 0.525051 0.851071i \(-0.324046\pi\)
−0.647167 + 0.762349i \(0.724046\pi\)
\(98\) 0 0
\(99\) −122.371 + 304.691i −0.124230 + 0.309319i
\(100\) 0 0
\(101\) 1101.55 + 800.320i 1.08523 + 0.788463i 0.978587 0.205835i \(-0.0659909\pi\)
0.106640 + 0.994298i \(0.465991\pi\)
\(102\) 0 0
\(103\) 160.270 + 493.260i 0.153319 + 0.471867i 0.997987 0.0634238i \(-0.0202020\pi\)
−0.844668 + 0.535291i \(0.820202\pi\)
\(104\) 0 0
\(105\) 443.049 321.894i 0.411782 0.299177i
\(106\) 0 0
\(107\) −398.117 + 1225.28i −0.359696 + 1.10703i 0.593540 + 0.804804i \(0.297730\pi\)
−0.953236 + 0.302226i \(0.902270\pi\)
\(108\) 0 0
\(109\) 1098.27 0.965093 0.482546 0.875870i \(-0.339712\pi\)
0.482546 + 0.875870i \(0.339712\pi\)
\(110\) 0 0
\(111\) 606.532 0.518644
\(112\) 0 0
\(113\) 302.233 930.178i 0.251608 0.774370i −0.742871 0.669435i \(-0.766536\pi\)
0.994479 0.104935i \(-0.0334636\pi\)
\(114\) 0 0
\(115\) 1765.84 1282.96i 1.43187 1.04032i
\(116\) 0 0
\(117\) −165.903 510.596i −0.131092 0.403458i
\(118\) 0 0
\(119\) −362.733 263.541i −0.279426 0.203015i
\(120\) 0 0
\(121\) −1172.61 + 629.722i −0.880998 + 0.473119i
\(122\) 0 0
\(123\) −714.357 519.011i −0.523670 0.380468i
\(124\) 0 0
\(125\) 403.960 + 1243.26i 0.289050 + 0.889604i
\(126\) 0 0
\(127\) 2237.84 1625.89i 1.56359 1.13602i 0.630605 0.776104i \(-0.282807\pi\)
0.932986 0.359912i \(-0.117193\pi\)
\(128\) 0 0
\(129\) −166.104 + 511.214i −0.113369 + 0.348914i
\(130\) 0 0
\(131\) −275.702 −0.183880 −0.0919398 0.995765i \(-0.529307\pi\)
−0.0919398 + 0.995765i \(0.529307\pi\)
\(132\) 0 0
\(133\) −2204.43 −1.43720
\(134\) 0 0
\(135\) 98.4392 302.965i 0.0627578 0.193149i
\(136\) 0 0
\(137\) 491.568 357.145i 0.306551 0.222722i −0.423864 0.905726i \(-0.639327\pi\)
0.730415 + 0.683003i \(0.239327\pi\)
\(138\) 0 0
\(139\) 626.549 + 1928.32i 0.382325 + 1.17668i 0.938402 + 0.345545i \(0.112306\pi\)
−0.556077 + 0.831131i \(0.687694\pi\)
\(140\) 0 0
\(141\) −991.196 720.146i −0.592012 0.430122i
\(142\) 0 0
\(143\) 811.080 2019.51i 0.474307 1.18098i
\(144\) 0 0
\(145\) 1480.27 + 1075.48i 0.847792 + 0.615957i
\(146\) 0 0
\(147\) 96.0545 + 295.625i 0.0538942 + 0.165869i
\(148\) 0 0
\(149\) 2020.47 1467.95i 1.11089 0.807111i 0.128089 0.991763i \(-0.459116\pi\)
0.982804 + 0.184652i \(0.0591157\pi\)
\(150\) 0 0
\(151\) −1020.05 + 3139.38i −0.549736 + 1.69191i 0.159718 + 0.987163i \(0.448941\pi\)
−0.709454 + 0.704751i \(0.751059\pi\)
\(152\) 0 0
\(153\) −260.808 −0.137811
\(154\) 0 0
\(155\) −3340.93 −1.73129
\(156\) 0 0
\(157\) −153.158 + 471.371i −0.0778556 + 0.239615i −0.982408 0.186748i \(-0.940205\pi\)
0.904552 + 0.426363i \(0.140205\pi\)
\(158\) 0 0
\(159\) 872.740 634.083i 0.435300 0.316264i
\(160\) 0 0
\(161\) −884.513 2722.25i −0.432978 1.33257i
\(162\) 0 0
\(163\) −105.518 76.6634i −0.0507044 0.0368389i 0.562144 0.827039i \(-0.309977\pi\)
−0.612849 + 0.790200i \(0.709977\pi\)
\(164\) 0 0
\(165\) 1093.68 686.556i 0.516018 0.323929i
\(166\) 0 0
\(167\) 891.977 + 648.059i 0.413313 + 0.300289i 0.774942 0.632033i \(-0.217779\pi\)
−0.361629 + 0.932322i \(0.617779\pi\)
\(168\) 0 0
\(169\) 420.701 + 1294.79i 0.191489 + 0.589342i
\(170\) 0 0
\(171\) −1037.40 + 753.714i −0.463929 + 0.337064i
\(172\) 0 0
\(173\) −287.912 + 886.102i −0.126529 + 0.389416i −0.994177 0.107763i \(-0.965631\pi\)
0.867647 + 0.497180i \(0.165631\pi\)
\(174\) 0 0
\(175\) −219.729 −0.0949142
\(176\) 0 0
\(177\) −864.605 −0.367162
\(178\) 0 0
\(179\) −1158.07 + 3564.17i −0.483566 + 1.48826i 0.350482 + 0.936570i \(0.386018\pi\)
−0.834048 + 0.551693i \(0.813982\pi\)
\(180\) 0 0
\(181\) −3712.34 + 2697.17i −1.52451 + 1.10762i −0.565315 + 0.824875i \(0.691245\pi\)
−0.959195 + 0.282746i \(0.908755\pi\)
\(182\) 0 0
\(183\) −140.576 432.649i −0.0567852 0.174767i
\(184\) 0 0
\(185\) −1929.80 1402.08i −0.766928 0.557206i
\(186\) 0 0
\(187\) −811.286 677.896i −0.317257 0.265094i
\(188\) 0 0
\(189\) −337.965 245.546i −0.130071 0.0945018i
\(190\) 0 0
\(191\) −245.209 754.676i −0.0928938 0.285898i 0.893805 0.448455i \(-0.148026\pi\)
−0.986699 + 0.162558i \(0.948026\pi\)
\(192\) 0 0
\(193\) −356.713 + 259.167i −0.133040 + 0.0966593i −0.652315 0.757948i \(-0.726202\pi\)
0.519275 + 0.854607i \(0.326202\pi\)
\(194\) 0 0
\(195\) −652.461 + 2008.07i −0.239609 + 0.737439i
\(196\) 0 0
\(197\) −1945.32 −0.703545 −0.351773 0.936085i \(-0.614421\pi\)
−0.351773 + 0.936085i \(0.614421\pi\)
\(198\) 0 0
\(199\) 1206.56 0.429804 0.214902 0.976636i \(-0.431057\pi\)
0.214902 + 0.976636i \(0.431057\pi\)
\(200\) 0 0
\(201\) 766.245 2358.26i 0.268889 0.827556i
\(202\) 0 0
\(203\) 1941.20 1410.36i 0.671159 0.487625i
\(204\) 0 0
\(205\) 1073.10 + 3302.67i 0.365603 + 1.12521i
\(206\) 0 0
\(207\) −1347.01 978.662i −0.452289 0.328607i
\(208\) 0 0
\(209\) −5186.05 351.869i −1.71640 0.116456i
\(210\) 0 0
\(211\) 3357.69 + 2439.51i 1.09551 + 0.795937i 0.980322 0.197407i \(-0.0632520\pi\)
0.115191 + 0.993343i \(0.463252\pi\)
\(212\) 0 0
\(213\) −129.615 398.915i −0.0416953 0.128325i
\(214\) 0 0
\(215\) 1710.23 1242.56i 0.542497 0.394147i
\(216\) 0 0
\(217\) −1353.87 + 4166.80i −0.423535 + 1.30351i
\(218\) 0 0
\(219\) −733.897 −0.226448
\(220\) 0 0
\(221\) 1728.65 0.526162
\(222\) 0 0
\(223\) 1574.04 4844.39i 0.472669 1.45473i −0.376406 0.926455i \(-0.622840\pi\)
0.849075 0.528272i \(-0.177160\pi\)
\(224\) 0 0
\(225\) −103.404 + 75.1276i −0.0306383 + 0.0222600i
\(226\) 0 0
\(227\) 1546.39 + 4759.29i 0.452147 + 1.39156i 0.874453 + 0.485111i \(0.161221\pi\)
−0.422306 + 0.906453i \(0.638779\pi\)
\(228\) 0 0
\(229\) −2785.99 2024.14i −0.803946 0.584101i 0.108123 0.994138i \(-0.465516\pi\)
−0.912069 + 0.410036i \(0.865516\pi\)
\(230\) 0 0
\(231\) −413.068 1642.25i −0.117653 0.467759i
\(232\) 0 0
\(233\) 3939.73 + 2862.38i 1.10773 + 0.804810i 0.982304 0.187293i \(-0.0599714\pi\)
0.125422 + 0.992103i \(0.459971\pi\)
\(234\) 0 0
\(235\) 1488.97 + 4582.57i 0.413317 + 1.27206i
\(236\) 0 0
\(237\) 1365.60 992.169i 0.374285 0.271934i
\(238\) 0 0
\(239\) −1102.38 + 3392.77i −0.298355 + 0.918243i 0.683718 + 0.729746i \(0.260362\pi\)
−0.982074 + 0.188497i \(0.939638\pi\)
\(240\) 0 0
\(241\) 3406.65 0.910546 0.455273 0.890352i \(-0.349542\pi\)
0.455273 + 0.890352i \(0.349542\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 377.762 1162.63i 0.0985076 0.303175i
\(246\) 0 0
\(247\) 6875.93 4995.65i 1.77127 1.28691i
\(248\) 0 0
\(249\) −50.6197 155.791i −0.0128831 0.0396501i
\(250\) 0 0
\(251\) −3059.72 2223.02i −0.769433 0.559026i 0.132356 0.991202i \(-0.457746\pi\)
−0.901789 + 0.432176i \(0.857746\pi\)
\(252\) 0 0
\(253\) −1646.35 6545.46i −0.409111 1.62652i
\(254\) 0 0
\(255\) 829.813 + 602.894i 0.203784 + 0.148058i
\(256\) 0 0
\(257\) −2195.65 6757.52i −0.532922 1.64017i −0.748096 0.663590i \(-0.769032\pi\)
0.215174 0.976576i \(-0.430968\pi\)
\(258\) 0 0
\(259\) −2530.70 + 1838.66i −0.607142 + 0.441115i
\(260\) 0 0
\(261\) 431.307 1327.43i 0.102288 0.314811i
\(262\) 0 0
\(263\) −100.638 −0.0235955 −0.0117978 0.999930i \(-0.503755\pi\)
−0.0117978 + 0.999930i \(0.503755\pi\)
\(264\) 0 0
\(265\) −4242.56 −0.983466
\(266\) 0 0
\(267\) −514.483 + 1583.42i −0.117925 + 0.362934i
\(268\) 0 0
\(269\) 2041.15 1482.98i 0.462643 0.336130i −0.331924 0.943306i \(-0.607698\pi\)
0.794567 + 0.607176i \(0.207698\pi\)
\(270\) 0 0
\(271\) −1679.07 5167.65i −0.376370 1.15835i −0.942550 0.334066i \(-0.891579\pi\)
0.566180 0.824282i \(-0.308421\pi\)
\(272\) 0 0
\(273\) 2240.05 + 1627.49i 0.496608 + 0.360807i
\(274\) 0 0
\(275\) −516.928 35.0731i −0.113352 0.00769086i
\(276\) 0 0
\(277\) −3102.48 2254.08i −0.672960 0.488934i 0.198055 0.980191i \(-0.436538\pi\)
−0.871015 + 0.491257i \(0.836538\pi\)
\(278\) 0 0
\(279\) 787.537 + 2423.79i 0.168991 + 0.520102i
\(280\) 0 0
\(281\) 1818.21 1321.01i 0.385998 0.280444i −0.377816 0.925881i \(-0.623325\pi\)
0.763813 + 0.645437i \(0.223325\pi\)
\(282\) 0 0
\(283\) −280.261 + 862.556i −0.0588686 + 0.181179i −0.976167 0.217023i \(-0.930365\pi\)
0.917298 + 0.398201i \(0.130365\pi\)
\(284\) 0 0
\(285\) 5043.00 1.04815
\(286\) 0 0
\(287\) 4553.93 0.936621
\(288\) 0 0
\(289\) −1258.70 + 3873.88i −0.256198 + 0.788495i
\(290\) 0 0
\(291\) 349.985 254.279i 0.0705033 0.0512237i
\(292\) 0 0
\(293\) −881.437 2712.78i −0.175748 0.540896i 0.823919 0.566708i \(-0.191783\pi\)
−0.999667 + 0.0258115i \(0.991783\pi\)
\(294\) 0 0
\(295\) 2750.91 + 1998.65i 0.542929 + 0.394461i
\(296\) 0 0
\(297\) −755.890 631.608i −0.147681 0.123399i
\(298\) 0 0
\(299\) 8928.08 + 6486.63i 1.72684 + 1.25462i
\(300\) 0 0
\(301\) −856.659 2636.53i −0.164043 0.504873i
\(302\) 0 0
\(303\) −3304.64 + 2400.96i −0.626556 + 0.455219i
\(304\) 0 0
\(305\) −552.857 + 1701.52i −0.103792 + 0.319438i
\(306\) 0 0
\(307\) −1089.52 −0.202549 −0.101274 0.994859i \(-0.532292\pi\)
−0.101274 + 0.994859i \(0.532292\pi\)
\(308\) 0 0
\(309\) −1555.93 −0.286453
\(310\) 0 0
\(311\) 1861.87 5730.23i 0.339475 1.04480i −0.625001 0.780624i \(-0.714901\pi\)
0.964476 0.264172i \(-0.0850987\pi\)
\(312\) 0 0
\(313\) 7457.07 5417.88i 1.34664 0.978392i 0.347470 0.937691i \(-0.387041\pi\)
0.999171 0.0407008i \(-0.0129591\pi\)
\(314\) 0 0
\(315\) 507.688 + 1562.50i 0.0908095 + 0.279483i
\(316\) 0 0
\(317\) 579.415 + 420.970i 0.102660 + 0.0745868i 0.637931 0.770094i \(-0.279791\pi\)
−0.535271 + 0.844680i \(0.679791\pi\)
\(318\) 0 0
\(319\) 4791.91 3008.11i 0.841051 0.527969i
\(320\) 0 0
\(321\) −3126.85 2271.79i −0.543689 0.395013i
\(322\) 0 0
\(323\) −1275.87 3926.73i −0.219787 0.676436i
\(324\) 0 0
\(325\) 685.369 497.949i 0.116977 0.0849885i
\(326\) 0 0
\(327\) −1018.15 + 3133.55i −0.172183 + 0.529925i
\(328\) 0 0
\(329\) 6318.74 1.05886
\(330\) 0 0
\(331\) 592.915 0.0984579 0.0492290 0.998788i \(-0.484324\pi\)
0.0492290 + 0.998788i \(0.484324\pi\)
\(332\) 0 0
\(333\) −562.286 + 1730.54i −0.0925317 + 0.284783i
\(334\) 0 0
\(335\) −7889.39 + 5731.98i −1.28670 + 0.934840i
\(336\) 0 0
\(337\) −638.993 1966.62i −0.103288 0.317889i 0.886037 0.463615i \(-0.153448\pi\)
−0.989325 + 0.145726i \(0.953448\pi\)
\(338\) 0 0
\(339\) 2373.77 + 1724.65i 0.380311 + 0.276312i
\(340\) 0 0
\(341\) −3850.18 + 9586.55i −0.611434 + 1.52241i
\(342\) 0 0
\(343\) −5590.35 4061.63i −0.880031 0.639380i
\(344\) 0 0
\(345\) 2023.47 + 6227.61i 0.315769 + 0.971836i
\(346\) 0 0
\(347\) 3070.30 2230.71i 0.474993 0.345103i −0.324391 0.945923i \(-0.605159\pi\)
0.799384 + 0.600820i \(0.205159\pi\)
\(348\) 0 0
\(349\) −1236.46 + 3805.43i −0.189645 + 0.583668i −0.999997 0.00227539i \(-0.999276\pi\)
0.810352 + 0.585943i \(0.199276\pi\)
\(350\) 0 0
\(351\) 1610.62 0.244924
\(352\) 0 0
\(353\) −9702.80 −1.46297 −0.731485 0.681858i \(-0.761172\pi\)
−0.731485 + 0.681858i \(0.761172\pi\)
\(354\) 0 0
\(355\) −509.750 + 1568.85i −0.0762105 + 0.234552i
\(356\) 0 0
\(357\) 1088.20 790.623i 0.161327 0.117211i
\(358\) 0 0
\(359\) 121.313 + 373.364i 0.0178347 + 0.0548897i 0.959578 0.281443i \(-0.0908132\pi\)
−0.941743 + 0.336333i \(0.890813\pi\)
\(360\) 0 0
\(361\) −10873.8 7900.27i −1.58533 1.15181i
\(362\) 0 0
\(363\) −709.634 3929.44i −0.102606 0.568160i
\(364\) 0 0
\(365\) 2335.04 + 1696.50i 0.334853 + 0.243285i
\(366\) 0 0
\(367\) −1209.68 3723.02i −0.172057 0.529537i 0.827430 0.561569i \(-0.189802\pi\)
−0.999487 + 0.0320319i \(0.989802\pi\)
\(368\) 0 0
\(369\) 2143.07 1557.03i 0.302341 0.219664i
\(370\) 0 0
\(371\) −1719.25 + 5291.30i −0.240590 + 0.740460i
\(372\) 0 0
\(373\) −4707.31 −0.653446 −0.326723 0.945120i \(-0.605944\pi\)
−0.326723 + 0.945120i \(0.605944\pi\)
\(374\) 0 0
\(375\) −3921.72 −0.540045
\(376\) 0 0
\(377\) −2858.72 + 8798.25i −0.390535 + 1.20194i
\(378\) 0 0
\(379\) −6222.36 + 4520.81i −0.843327 + 0.612713i −0.923298 0.384084i \(-0.874517\pi\)
0.0799708 + 0.996797i \(0.474517\pi\)
\(380\) 0 0
\(381\) 2564.34 + 7892.21i 0.344816 + 1.06123i
\(382\) 0 0
\(383\) −5945.23 4319.46i −0.793178 0.576277i 0.115727 0.993281i \(-0.463080\pi\)
−0.908905 + 0.417004i \(0.863080\pi\)
\(384\) 0 0
\(385\) −2482.03 + 6180.01i −0.328561 + 0.818084i
\(386\) 0 0
\(387\) −1304.59 947.843i −0.171360 0.124500i
\(388\) 0 0
\(389\) 4326.39 + 13315.3i 0.563899 + 1.73550i 0.671201 + 0.741275i \(0.265779\pi\)
−0.107302 + 0.994226i \(0.534221\pi\)
\(390\) 0 0
\(391\) 4337.19 3151.15i 0.560975 0.407572i
\(392\) 0 0
\(393\) 255.590 786.626i 0.0328062 0.100967i
\(394\) 0 0
\(395\) −6638.47 −0.845614
\(396\) 0 0
\(397\) 4865.69 0.615118 0.307559 0.951529i \(-0.400488\pi\)
0.307559 + 0.951529i \(0.400488\pi\)
\(398\) 0 0
\(399\) 2043.62 6289.60i 0.256413 0.789158i
\(400\) 0 0
\(401\) 1367.28 993.389i 0.170271 0.123709i −0.499386 0.866380i \(-0.666441\pi\)
0.669657 + 0.742670i \(0.266441\pi\)
\(402\) 0 0
\(403\) −5219.83 16065.0i −0.645207 1.98574i
\(404\) 0 0
\(405\) 773.152 + 561.728i 0.0948598 + 0.0689197i
\(406\) 0 0
\(407\) −6247.11 + 3921.61i −0.760830 + 0.477610i
\(408\) 0 0
\(409\) −1310.30 951.992i −0.158412 0.115093i 0.505756 0.862677i \(-0.331214\pi\)
−0.664167 + 0.747584i \(0.731214\pi\)
\(410\) 0 0
\(411\) 563.287 + 1733.62i 0.0676031 + 0.208061i
\(412\) 0 0
\(413\) 3607.48 2620.99i 0.429813 0.312277i
\(414\) 0 0
\(415\) −199.077 + 612.695i −0.0235477 + 0.0724724i
\(416\) 0 0
\(417\) −6082.67 −0.714315
\(418\) 0 0
\(419\) 4907.60 0.572201 0.286100 0.958200i \(-0.407641\pi\)
0.286100 + 0.958200i \(0.407641\pi\)
\(420\) 0 0
\(421\) 31.5459 97.0881i 0.00365190 0.0112394i −0.949214 0.314631i \(-0.898119\pi\)
0.952866 + 0.303392i \(0.0981191\pi\)
\(422\) 0 0
\(423\) 2973.59 2160.44i 0.341798 0.248331i
\(424\) 0 0
\(425\) −127.174 391.402i −0.0145150 0.0446725i
\(426\) 0 0
\(427\) 1898.09 + 1379.04i 0.215117 + 0.156292i
\(428\) 0 0
\(429\) 5010.08 + 4186.33i 0.563844 + 0.471138i
\(430\) 0 0
\(431\) 1343.76 + 976.301i 0.150178 + 0.109111i 0.660337 0.750969i \(-0.270413\pi\)
−0.510159 + 0.860080i \(0.670413\pi\)
\(432\) 0 0
\(433\) 5020.97 + 15452.9i 0.557257 + 1.71506i 0.689907 + 0.723898i \(0.257651\pi\)
−0.132650 + 0.991163i \(0.542349\pi\)
\(434\) 0 0
\(435\) −4440.81 + 3226.44i −0.489473 + 0.355623i
\(436\) 0 0
\(437\) 8145.15 25068.2i 0.891615 2.74411i
\(438\) 0 0
\(439\) −7820.26 −0.850206 −0.425103 0.905145i \(-0.639762\pi\)
−0.425103 + 0.905145i \(0.639762\pi\)
\(440\) 0 0
\(441\) −932.517 −0.100693
\(442\) 0 0
\(443\) −3787.18 + 11655.7i −0.406173 + 1.25007i 0.513739 + 0.857946i \(0.328260\pi\)
−0.919912 + 0.392125i \(0.871740\pi\)
\(444\) 0 0
\(445\) 5297.21 3848.65i 0.564296 0.409985i
\(446\) 0 0
\(447\) 2315.25 + 7125.60i 0.244983 + 0.753981i
\(448\) 0 0
\(449\) 11003.1 + 7994.20i 1.15650 + 0.840244i 0.989331 0.145684i \(-0.0465384\pi\)
0.167166 + 0.985929i \(0.446538\pi\)
\(450\) 0 0
\(451\) 10713.4 + 726.896i 1.11857 + 0.0758940i
\(452\) 0 0
\(453\) −8011.54 5820.73i −0.830939 0.603712i
\(454\) 0 0
\(455\) −3364.99 10356.4i −0.346710 1.06706i
\(456\) 0 0
\(457\) −7518.22 + 5462.31i −0.769557 + 0.559116i −0.901827 0.432098i \(-0.857773\pi\)
0.132270 + 0.991214i \(0.457773\pi\)
\(458\) 0 0
\(459\) 241.783 744.131i 0.0245870 0.0756711i
\(460\) 0 0
\(461\) 9964.29 1.00669 0.503344 0.864086i \(-0.332103\pi\)
0.503344 + 0.864086i \(0.332103\pi\)
\(462\) 0 0
\(463\) −8874.78 −0.890812 −0.445406 0.895329i \(-0.646941\pi\)
−0.445406 + 0.895329i \(0.646941\pi\)
\(464\) 0 0
\(465\) 3097.22 9532.25i 0.308882 0.950640i
\(466\) 0 0
\(467\) −12825.7 + 9318.43i −1.27089 + 0.923352i −0.999237 0.0390443i \(-0.987569\pi\)
−0.271648 + 0.962397i \(0.587569\pi\)
\(468\) 0 0
\(469\) 3951.81 + 12162.4i 0.389078 + 1.19746i
\(470\) 0 0
\(471\) −1202.92 873.971i −0.117680 0.0854999i
\(472\) 0 0
\(473\) −1594.50 6339.33i −0.155001 0.616243i
\(474\) 0 0
\(475\) −1636.97 1189.33i −0.158125 0.114885i
\(476\) 0 0
\(477\) 1000.07 + 3077.90i 0.0959960 + 0.295445i
\(478\) 0 0
\(479\) 9335.13 6782.37i 0.890465 0.646961i −0.0455340 0.998963i \(-0.514499\pi\)
0.935999 + 0.352002i \(0.114499\pi\)
\(480\) 0 0
\(481\) 3726.86 11470.1i 0.353285 1.08730i
\(482\) 0 0
\(483\) 8587.04 0.808952
\(484\) 0 0
\(485\) −1701.34 −0.159287
\(486\) 0 0
\(487\) 2211.55 6806.45i 0.205780 0.633326i −0.793900 0.608048i \(-0.791953\pi\)
0.999680 0.0252780i \(-0.00804709\pi\)
\(488\) 0 0
\(489\) 316.555 229.990i 0.0292742 0.0212690i
\(490\) 0 0
\(491\) −4550.71 14005.6i −0.418270 1.28730i −0.909293 0.416156i \(-0.863377\pi\)
0.491024 0.871146i \(-0.336623\pi\)
\(492\) 0 0
\(493\) 3635.79 + 2641.55i 0.332145 + 0.241318i
\(494\) 0 0
\(495\) 944.963 + 3756.93i 0.0858039 + 0.341134i
\(496\) 0 0
\(497\) 1750.09 + 1271.52i 0.157952 + 0.114759i
\(498\) 0 0
\(499\) 1895.34 + 5833.25i 0.170034 + 0.523311i 0.999372 0.0354362i \(-0.0112821\pi\)
−0.829338 + 0.558748i \(0.811282\pi\)
\(500\) 0 0
\(501\) −2675.93 + 1944.18i −0.238626 + 0.173372i
\(502\) 0 0
\(503\) 5819.67 17911.1i 0.515877 1.58771i −0.265803 0.964027i \(-0.585637\pi\)
0.781680 0.623679i \(-0.214363\pi\)
\(504\) 0 0
\(505\) 16064.5 1.41557
\(506\) 0 0
\(507\) −4084.25 −0.357767
\(508\) 0 0
\(509\) −1122.52 + 3454.77i −0.0977504 + 0.300845i −0.987961 0.154705i \(-0.950557\pi\)
0.890210 + 0.455550i \(0.150557\pi\)
\(510\) 0 0
\(511\) 3062.12 2224.76i 0.265088 0.192598i
\(512\) 0 0
\(513\) −1188.75 3658.60i −0.102309 0.314876i
\(514\) 0 0
\(515\) 4950.50 + 3596.75i 0.423583 + 0.307751i
\(516\) 0 0
\(517\) 14865.3 + 1008.59i 1.26455 + 0.0857987i
\(518\) 0 0
\(519\) −2261.29 1642.92i −0.191252 0.138952i
\(520\) 0 0
\(521\) −5475.12 16850.7i −0.460402 1.41697i −0.864675 0.502332i \(-0.832475\pi\)
0.404273 0.914638i \(-0.367525\pi\)
\(522\) 0 0
\(523\) −2602.40 + 1890.76i −0.217581 + 0.158082i −0.691237 0.722628i \(-0.742934\pi\)
0.473656 + 0.880710i \(0.342934\pi\)
\(524\) 0 0
\(525\) 203.700 626.925i 0.0169337 0.0521167i
\(526\) 0 0
\(527\) −8205.88 −0.678280
\(528\) 0 0
\(529\) 22058.0 1.81294
\(530\) 0 0
\(531\) 801.533 2466.86i 0.0655058 0.201606i
\(532\) 0 0
\(533\) −14204.4 + 10320.1i −1.15433 + 0.838673i
\(534\) 0 0
\(535\) 4697.14 + 14456.3i 0.379579 + 1.16823i
\(536\) 0 0
\(537\) −9095.60 6608.34i −0.730920 0.531045i
\(538\) 0 0
\(539\) −2900.74 2423.81i −0.231807 0.193694i
\(540\) 0 0
\(541\) −18280.6 13281.6i −1.45276 1.05549i −0.985177 0.171542i \(-0.945125\pi\)
−0.467583 0.883949i \(-0.654875\pi\)
\(542\) 0 0
\(543\) −4253.97 13092.4i −0.336197 1.03471i
\(544\) 0 0
\(545\) 10483.1 7616.40i 0.823937 0.598625i
\(546\) 0 0
\(547\) −4696.14 + 14453.2i −0.367079 + 1.12975i 0.581590 + 0.813482i \(0.302431\pi\)
−0.948669 + 0.316271i \(0.897569\pi\)
\(548\) 0 0
\(549\) 1364.74 0.106094
\(550\) 0 0
\(551\) 22095.6 1.70836
\(552\) 0 0
\(553\) −2690.16 + 8279.46i −0.206867 + 0.636670i
\(554\) 0 0
\(555\) 5789.40 4206.24i 0.442786 0.321703i
\(556\) 0 0
\(557\) −3795.74 11682.1i −0.288744 0.888664i −0.985251 0.171114i \(-0.945263\pi\)
0.696507 0.717550i \(-0.254737\pi\)
\(558\) 0 0
\(559\) 8646.92 + 6282.35i 0.654250 + 0.475340i
\(560\) 0 0
\(561\) 2686.26 1686.29i 0.202164 0.126908i
\(562\) 0 0
\(563\) 12636.9 + 9181.27i 0.945974 + 0.687290i 0.949851 0.312702i \(-0.101234\pi\)
−0.00387707 + 0.999992i \(0.501234\pi\)
\(564\) 0 0
\(565\) −3565.86 10974.6i −0.265517 0.817176i
\(566\) 0 0
\(567\) 1013.89 736.638i 0.0750963 0.0545606i
\(568\) 0 0
\(569\) −7725.80 + 23777.6i −0.569213 + 1.75186i 0.0858757 + 0.996306i \(0.472631\pi\)
−0.655089 + 0.755552i \(0.727369\pi\)
\(570\) 0 0
\(571\) −11991.5 −0.878860 −0.439430 0.898277i \(-0.644820\pi\)
−0.439430 + 0.898277i \(0.644820\pi\)
\(572\) 0 0
\(573\) 2380.54 0.173558
\(574\) 0 0
\(575\) 811.881 2498.71i 0.0588831 0.181223i
\(576\) 0 0
\(577\) 11446.7 8316.51i 0.825879 0.600036i −0.0925116 0.995712i \(-0.529490\pi\)
0.918390 + 0.395676i \(0.129490\pi\)
\(578\) 0 0
\(579\) −408.757 1258.02i −0.0293391 0.0902965i
\(580\) 0 0
\(581\) 683.477 + 496.575i 0.0488045 + 0.0354585i
\(582\) 0 0
\(583\) −4889.24 + 12173.7i −0.347327 + 0.864808i
\(584\) 0 0
\(585\) −5124.49 3723.16i −0.362174 0.263135i
\(586\) 0 0
\(587\) −6273.07 19306.5i −0.441086 1.35752i −0.886720 0.462307i \(-0.847022\pi\)
0.445634 0.895215i \(-0.352978\pi\)
\(588\) 0 0
\(589\) −32639.9 + 23714.3i −2.28337 + 1.65896i
\(590\) 0 0
\(591\) 1803.41 5550.33i 0.125520 0.386312i
\(592\) 0 0
\(593\) 7232.26 0.500832 0.250416 0.968138i \(-0.419433\pi\)
0.250416 + 0.968138i \(0.419433\pi\)
\(594\) 0 0
\(595\) −5289.95 −0.364482
\(596\) 0 0
\(597\) −1118.55 + 3442.53i −0.0766818 + 0.236002i
\(598\) 0 0
\(599\) −18957.0 + 13773.1i −1.29309 + 0.939488i −0.999863 0.0165537i \(-0.994731\pi\)
−0.293231 + 0.956042i \(0.594731\pi\)
\(600\) 0 0
\(601\) 5041.51 + 15516.2i 0.342175 + 1.05311i 0.963079 + 0.269220i \(0.0867659\pi\)
−0.620904 + 0.783887i \(0.713234\pi\)
\(602\) 0 0
\(603\) 6018.16 + 4372.45i 0.406432 + 0.295290i
\(604\) 0 0
\(605\) −6825.59 + 14142.7i −0.458677 + 0.950383i
\(606\) 0 0
\(607\) 3262.01 + 2369.99i 0.218124 + 0.158476i 0.691482 0.722394i \(-0.256958\pi\)
−0.473358 + 0.880870i \(0.656958\pi\)
\(608\) 0 0
\(609\) 2224.41 + 6846.04i 0.148009 + 0.455526i
\(610\) 0 0
\(611\) −19709.1 + 14319.5i −1.30498 + 0.948126i
\(612\) 0 0
\(613\) 7325.66 22546.0i 0.482676 1.48552i −0.352643 0.935758i \(-0.614717\pi\)
0.835319 0.549766i \(-0.185283\pi\)
\(614\) 0 0
\(615\) −10417.9 −0.683073
\(616\) 0 0
\(617\) 8595.80 0.560865 0.280433 0.959874i \(-0.409522\pi\)
0.280433 + 0.959874i \(0.409522\pi\)
\(618\) 0 0
\(619\) 1070.89 3295.86i 0.0695358 0.214009i −0.910250 0.414059i \(-0.864111\pi\)
0.979786 + 0.200050i \(0.0641106\pi\)
\(620\) 0 0
\(621\) 4041.04 2935.99i 0.261129 0.189722i
\(622\) 0 0
\(623\) −2653.38 8166.28i −0.170635 0.525161i
\(624\) 0 0
\(625\) 13913.9 + 10109.0i 0.890489 + 0.646978i
\(626\) 0 0
\(627\) 5811.68 14470.5i 0.370169 0.921684i
\(628\) 0 0
\(629\) −4739.90 3443.74i −0.300464 0.218300i
\(630\) 0 0
\(631\) 46.0667 + 141.779i 0.00290631 + 0.00894472i 0.952499 0.304541i \(-0.0985031\pi\)
−0.949593 + 0.313486i \(0.898503\pi\)
\(632\) 0 0
\(633\) −10073.1 + 7318.52i −0.632495 + 0.459534i
\(634\) 0 0
\(635\) 10085.0 31038.4i 0.630253 1.93972i
\(636\) 0 0
\(637\) 6180.77 0.384444
\(638\) 0 0
\(639\) 1258.33 0.0779011
\(640\) 0 0
\(641\) −6179.58 + 19018.8i −0.380778 + 1.17191i 0.558719 + 0.829357i \(0.311293\pi\)
−0.939497 + 0.342557i \(0.888707\pi\)
\(642\) 0 0
\(643\) −16772.4 + 12185.9i −1.02868 + 0.747379i −0.968044 0.250781i \(-0.919313\pi\)
−0.0606354 + 0.998160i \(0.519313\pi\)
\(644\) 0 0
\(645\) 1959.75 + 6031.50i 0.119636 + 0.368201i
\(646\) 0 0
\(647\) 16397.9 + 11913.8i 0.996395 + 0.723923i 0.961312 0.275461i \(-0.0888305\pi\)
0.0350829 + 0.999384i \(0.488830\pi\)
\(648\) 0 0
\(649\) 8905.20 5590.22i 0.538613 0.338113i
\(650\) 0 0
\(651\) −10633.5 7725.67i −0.640182 0.465120i
\(652\) 0 0
\(653\) −4467.82 13750.5i −0.267748 0.824044i −0.991048 0.133509i \(-0.957375\pi\)
0.723300 0.690534i \(-0.242625\pi\)
\(654\) 0 0
\(655\) −2631.60 + 1911.97i −0.156985 + 0.114056i
\(656\) 0 0
\(657\) 680.360 2093.93i 0.0404009 0.124341i
\(658\) 0 0
\(659\) −19629.0 −1.16030 −0.580151 0.814509i \(-0.697006\pi\)
−0.580151 + 0.814509i \(0.697006\pi\)
\(660\) 0 0
\(661\) −6788.41 −0.399453 −0.199727 0.979852i \(-0.564005\pi\)
−0.199727 + 0.979852i \(0.564005\pi\)
\(662\) 0 0
\(663\) −1602.55 + 4932.14i −0.0938730 + 0.288912i
\(664\) 0 0
\(665\) −21041.4 + 15287.5i −1.22700 + 0.891464i
\(666\) 0 0
\(667\) 8865.75 + 27286.0i 0.514668 + 1.58398i
\(668\) 0 0
\(669\) 12362.6 + 8981.99i 0.714451 + 0.519079i
\(670\) 0 0
\(671\) 4245.25 + 3547.26i 0.244242 + 0.204084i
\(672\) 0 0
\(673\) −5895.91 4283.63i −0.337698 0.245352i 0.405992 0.913877i \(-0.366926\pi\)
−0.743690 + 0.668525i \(0.766926\pi\)
\(674\) 0 0
\(675\) −118.491 364.677i −0.00675661 0.0207947i
\(676\) 0 0
\(677\) −16792.4 + 12200.4i −0.953300 + 0.692613i −0.951585 0.307386i \(-0.900546\pi\)
−0.00171474 + 0.999999i \(0.500546\pi\)
\(678\) 0 0
\(679\) −689.450 + 2121.91i −0.0389671 + 0.119928i
\(680\) 0 0
\(681\) −15012.6 −0.844766
\(682\) 0 0
\(683\) 27424.1 1.53639 0.768195 0.640216i \(-0.221155\pi\)
0.768195 + 0.640216i \(0.221155\pi\)
\(684\) 0 0
\(685\) 2215.29 6817.96i 0.123565 0.380293i
\(686\) 0 0
\(687\) 8357.98 6072.43i 0.464159 0.337231i
\(688\) 0 0
\(689\) −6628.52 20400.5i −0.366512 1.12801i
\(690\) 0 0
\(691\) 20008.2 + 14536.8i 1.10151 + 0.800297i 0.981306 0.192452i \(-0.0616440\pi\)
0.120208 + 0.992749i \(0.461644\pi\)
\(692\) 0 0
\(693\) 5068.56 + 343.897i 0.277834 + 0.0188508i
\(694\) 0 0
\(695\) 19353.2 + 14060.9i 1.05627 + 0.767426i
\(696\) 0 0
\(697\) 2635.71 + 8111.89i 0.143235 + 0.440832i
\(698\) 0 0
\(699\) −11819.2 + 8587.14i −0.639546 + 0.464657i
\(700\) 0 0
\(701\) 3857.44 11872.0i 0.207837 0.639655i −0.791748 0.610847i \(-0.790829\pi\)
0.999585 0.0288078i \(-0.00917106\pi\)
\(702\) 0 0
\(703\) −28805.6 −1.54541
\(704\) 0 0
\(705\) −14455.2 −0.772219
\(706\) 0 0
\(707\) 6509.95 20035.6i 0.346297 1.06579i
\(708\) 0 0
\(709\) −18069.7 + 13128.4i −0.957154 + 0.695413i −0.952488 0.304576i \(-0.901485\pi\)
−0.00466600 + 0.999989i \(0.501485\pi\)
\(710\) 0 0
\(711\) 1564.84 + 4816.09i 0.0825403 + 0.254033i
\(712\) 0 0
\(713\) −42381.4 30791.9i −2.22608 1.61734i
\(714\) 0 0
\(715\) −6263.27 24901.1i −0.327598 1.30245i
\(716\) 0 0
\(717\) −8658.19 6290.54i −0.450971 0.327649i
\(718\) 0 0
\(719\) −2186.19 6728.41i −0.113395 0.348995i 0.878214 0.478268i \(-0.158735\pi\)
−0.991609 + 0.129274i \(0.958735\pi\)
\(720\) 0 0
\(721\) 6491.98 4716.70i 0.335331 0.243633i
\(722\) 0 0
\(723\) −3158.14 + 9719.75i −0.162452 + 0.499974i
\(724\) 0 0
\(725\) 2202.42 0.112822
\(726\) 0 0
\(727\) −6628.00 −0.338128 −0.169064 0.985605i \(-0.554074\pi\)
−0.169064 + 0.985605i \(0.554074\pi\)
\(728\) 0 0
\(729\) 225.273 693.320i 0.0114451 0.0352243i
\(730\) 0 0
\(731\) 4200.61 3051.92i 0.212538 0.154418i
\(732\) 0 0
\(733\) −9252.91 28477.5i −0.466254 1.43498i −0.857399 0.514653i \(-0.827921\pi\)
0.391144 0.920329i \(-0.372079\pi\)
\(734\) 0 0
\(735\) 2966.98 + 2155.64i 0.148896 + 0.108180i
\(736\) 0 0
\(737\) 7355.53 + 29243.7i 0.367632 + 1.46161i
\(738\) 0 0
\(739\) −4019.71 2920.49i −0.200091 0.145375i 0.483228 0.875495i \(-0.339464\pi\)
−0.683319 + 0.730120i \(0.739464\pi\)
\(740\) 0 0
\(741\) 7879.11 + 24249.4i 0.390616 + 1.20219i
\(742\) 0 0
\(743\) 21362.0 15520.4i 1.05477 0.766338i 0.0816595 0.996660i \(-0.473978\pi\)
0.973114 + 0.230322i \(0.0739780\pi\)
\(744\) 0 0
\(745\) 9105.39 28023.5i 0.447779 1.37812i
\(746\) 0 0
\(747\) 491.427 0.0240701
\(748\) 0 0
\(749\) 19933.3 0.972426
\(750\) 0 0
\(751\) 3114.11 9584.26i 0.151312 0.465692i −0.846456 0.532458i \(-0.821268\pi\)
0.997769 + 0.0667666i \(0.0212683\pi\)
\(752\) 0 0
\(753\) 9179.16 6669.05i 0.444233 0.322754i
\(754\) 0 0
\(755\) 12034.9 + 37039.6i 0.580125 + 1.78544i
\(756\) 0 0
\(757\) 500.634 + 363.732i 0.0240368 + 0.0174638i 0.599739 0.800196i \(-0.295271\pi\)
−0.575702 + 0.817660i \(0.695271\pi\)
\(758\) 0 0
\(759\) 20201.5 + 1370.66i 0.966100 + 0.0655491i
\(760\) 0 0
\(761\) −5255.50 3818.34i −0.250344 0.181886i 0.455535 0.890218i \(-0.349448\pi\)
−0.705879 + 0.708332i \(0.749448\pi\)
\(762\) 0 0
\(763\) −5250.99 16160.9i −0.249146 0.766794i
\(764\) 0 0
\(765\) −2489.44 + 1808.68i −0.117655 + 0.0854811i
\(766\) 0 0
\(767\) −5312.60 + 16350.5i −0.250100 + 0.769730i
\(768\) 0 0
\(769\) 30937.3 1.45075 0.725375 0.688354i \(-0.241666\pi\)
0.725375 + 0.688354i \(0.241666\pi\)
\(770\) 0 0
\(771\) 21315.8 0.995682
\(772\) 0 0
\(773\) −605.321 + 1862.99i −0.0281654 + 0.0866843i −0.964151 0.265354i \(-0.914511\pi\)
0.935986 + 0.352038i \(0.114511\pi\)
\(774\) 0 0
\(775\) −3253.43 + 2363.76i −0.150796 + 0.109560i
\(776\) 0 0
\(777\) −2899.92 8925.04i −0.133892 0.412077i
\(778\) 0 0
\(779\) 33926.5 + 24649.1i 1.56039 + 1.13369i
\(780\) 0 0
\(781\) 3914.24 + 3270.67i 0.179337 + 0.149851i
\(782\) 0 0
\(783\) 3387.53 + 2461.18i 0.154611 + 0.112331i
\(784\) 0 0
\(785\) 1807.01 + 5561.42i 0.0821593 + 0.252860i
\(786\) 0 0
\(787\) 19992.4 14525.4i 0.905532 0.657908i −0.0343488 0.999410i \(-0.510936\pi\)
0.939881 + 0.341502i \(0.110936\pi\)
\(788\) 0 0
\(789\) 93.2968 287.138i 0.00420970 0.0129561i
\(790\) 0 0
\(791\) −15132.5 −0.680214
\(792\) 0 0
\(793\) −9045.59 −0.405067
\(794\) 0 0
\(795\) 3933.07 12104.7i 0.175461 0.540014i
\(796\) 0 0
\(797\) 147.480 107.151i 0.00655461 0.00476220i −0.584503 0.811391i \(-0.698711\pi\)
0.591058 + 0.806629i \(0.298711\pi\)
\(798\) 0 0
\(799\) 3657.14 + 11255.5i 0.161928 + 0.498363i
\(800\) 0 0
\(801\) −4040.80 2935.82i −0.178246 0.129503i
\(802\) 0 0
\(803\) 7558.94 4745.11i 0.332191 0.208532i
\(804\) 0 0
\(805\) −27321.3 19850.1i −1.19621 0.869099i
\(806\) 0 0
\(807\) 2338.95 + 7198.53i 0.102026 + 0.314003i
\(808\) 0 0
\(809\) 33264.0 24167.7i 1.44561 1.05030i 0.458778 0.888551i \(-0.348287\pi\)
0.986832 0.161747i \(-0.0517128\pi\)
\(810\) 0 0
\(811\) 4563.83 14046.0i 0.197605 0.608166i −0.802331 0.596879i \(-0.796407\pi\)
0.999936 0.0112869i \(-0.00359279\pi\)
\(812\) 0 0
\(813\) 16300.8 0.703189
\(814\) 0 0
\(815\) −1538.83 −0.0661387
\(816\) 0 0
\(817\) 7888.65 24278.8i 0.337808 1.03967i
\(818\) 0 0
\(819\) −6720.15 + 4882.47i −0.286717 + 0.208312i
\(820\) 0 0
\(821\) −4221.09 12991.2i −0.179436 0.552248i 0.820372 0.571830i \(-0.193766\pi\)
−0.999808 + 0.0195823i \(0.993766\pi\)
\(822\) 0 0
\(823\) 10717.4 + 7786.61i 0.453929 + 0.329799i 0.791145 0.611629i \(-0.209485\pi\)
−0.337216 + 0.941427i \(0.609485\pi\)
\(824\) 0 0
\(825\) 579.288 1442.37i 0.0244463 0.0608688i
\(826\) 0 0
\(827\) 8174.05 + 5938.79i 0.343700 + 0.249712i 0.746221 0.665698i \(-0.231866\pi\)
−0.402522 + 0.915411i \(0.631866\pi\)
\(828\) 0 0
\(829\) −7469.61 22989.1i −0.312943 0.963141i −0.976593 0.215097i \(-0.930993\pi\)
0.663649 0.748044i \(-0.269007\pi\)
\(830\) 0 0
\(831\) 9307.43 6762.25i 0.388533 0.282286i
\(832\) 0 0
\(833\) 927.846 2855.62i 0.0385930 0.118777i
\(834\) 0 0
\(835\) 13008.2 0.539123
\(836\) 0 0
\(837\) −7645.57 −0.315734
\(838\) 0 0
\(839\) −9834.13 + 30266.3i −0.404663 + 1.24542i 0.516514 + 0.856279i \(0.327229\pi\)
−0.921177 + 0.389145i \(0.872771\pi\)
\(840\) 0 0
\(841\) 273.902 199.001i 0.0112305 0.00815947i
\(842\) 0 0
\(843\) 2083.48 + 6412.30i 0.0851233 + 0.261983i
\(844\) 0 0
\(845\) 12994.8 + 9441.31i 0.529037 + 0.384368i
\(846\) 0 0
\(847\) 14872.7 + 14244.0i 0.603343 + 0.577839i
\(848\) 0 0
\(849\) −2201.20 1599.27i −0.0889812 0.0646486i
\(850\) 0 0
\(851\) −11558.1 35572.2i −0.465578 1.43290i
\(852\) 0 0
\(853\) 9955.28 7232.94i 0.399604 0.290329i −0.369776 0.929121i \(-0.620565\pi\)
0.769380 + 0.638792i \(0.220565\pi\)
\(854\) 0 0
\(855\) −4675.11 + 14388.5i −0.187001 + 0.575529i
\(856\) 0 0
\(857\) −39962.7 −1.59288 −0.796441 0.604717i \(-0.793286\pi\)
−0.796441 + 0.604717i \(0.793286\pi\)
\(858\) 0 0
\(859\) −19713.0 −0.783001 −0.391501 0.920178i \(-0.628044\pi\)
−0.391501 + 0.920178i \(0.628044\pi\)
\(860\) 0 0
\(861\) −4221.73 + 12993.1i −0.167104 + 0.514292i
\(862\) 0 0
\(863\) −38883.0 + 28250.2i −1.53371 + 1.11431i −0.579582 + 0.814914i \(0.696784\pi\)
−0.954130 + 0.299393i \(0.903216\pi\)
\(864\) 0 0
\(865\) 3396.89 + 10454.6i 0.133523 + 0.410943i
\(866\) 0 0
\(867\) −9885.95 7182.56i −0.387248 0.281352i
\(868\) 0 0
\(869\) −7650.34 + 19048.6i −0.298642 + 0.743588i
\(870\) 0 0
\(871\) −39888.7 28980.8i −1.55175 1.12741i
\(872\) 0 0
\(873\) 401.047 + 1234.30i 0.0155480 + 0.0478517i
\(874\) 0 0
\(875\) 16363.0 11888.4i 0.632195 0.459317i
\(876\) 0 0
\(877\) 11169.4 34375.8i 0.430061 1.32359i −0.468004 0.883727i \(-0.655027\pi\)
0.898064 0.439864i \(-0.144973\pi\)
\(878\) 0 0
\(879\) 8557.17 0.328357
\(880\) 0 0
\(881\) −5409.60 −0.206872 −0.103436 0.994636i \(-0.532984\pi\)
−0.103436 + 0.994636i \(0.532984\pi\)
\(882\) 0 0
\(883\) 11320.6 34841.3i 0.431448 1.32786i −0.465234 0.885188i \(-0.654030\pi\)
0.896683 0.442674i \(-0.145970\pi\)
\(884\) 0 0
\(885\) −8252.73 + 5995.96i −0.313460 + 0.227742i
\(886\) 0 0
\(887\) −6570.05 20220.5i −0.248704 0.765433i −0.995005 0.0998242i \(-0.968172\pi\)
0.746301 0.665609i \(-0.231828\pi\)
\(888\) 0 0
\(889\) −34624.2 25155.9i −1.30625 0.949047i
\(890\) 0 0
\(891\) 2502.83 1571.15i 0.0941056 0.0590746i
\(892\) 0 0
\(893\) 47074.3 + 34201.4i 1.76403 + 1.28164i
\(894\) 0 0
\(895\) 13663.3 + 42051.5i 0.510297 + 1.57053i
\(896\) 0 0
\(897\) −26784.2 + 19459.9i −0.996989 + 0.724355i
\(898\) 0 0
\(899\) 13570.3 41765.1i 0.503443 1.54944i
\(900\) 0 0
\(901\) −10420.4 −0.385299
\(902\) 0 0
\(903\) 8316.62 0.306489
\(904\) 0 0
\(905\) −16730.0 + 51489.5i −0.614500 + 1.89124i
\(906\) 0 0
\(907\) 5888.70 4278.39i 0.215580 0.156628i −0.474755 0.880118i \(-0.657463\pi\)
0.690335 + 0.723490i \(0.257463\pi\)
\(908\) 0 0
\(909\) −3786.78 11654.5i −0.138173 0.425253i
\(910\) 0 0
\(911\) 24919.6 + 18105.2i 0.906283 + 0.658453i 0.940072 0.340976i \(-0.110758\pi\)
−0.0337894 + 0.999429i \(0.510758\pi\)
\(912\) 0 0
\(913\) 1528.66 + 1277.32i 0.0554121 + 0.0463014i
\(914\) 0 0
\(915\) −4342.20 3154.79i −0.156884 0.113983i
\(916\) 0 0
\(917\) 1318.18 + 4056.93i 0.0474700 + 0.146098i
\(918\) 0 0
\(919\) −34484.2 + 25054.2i −1.23779 + 0.899306i −0.997449 0.0713830i \(-0.977259\pi\)
−0.240339 + 0.970689i \(0.577259\pi\)
\(920\) 0 0
\(921\) 1010.04 3108.60i 0.0361369 0.111218i
\(922\) 0 0
\(923\) −8340.29 −0.297426
\(924\) 0 0
\(925\) −2871.25 −0.102061
\(926\) 0 0
\(927\) 1442.43 4439.34i 0.0511063 0.157289i
\(928\) 0 0
\(929\) 43617.2 31689.8i 1.54040 1.11917i 0.590323 0.807167i \(-0.299001\pi\)
0.950082 0.312002i \(-0.100999\pi\)
\(930\) 0 0
\(931\) −4561.86 14040.0i −0.160590 0.494244i
\(932\) 0 0
\(933\) 14623.3 + 10624.4i 0.513124 + 0.372806i
\(934\) 0 0
\(935\) −12444.9 844.379i −0.435287 0.0295338i
\(936\) 0 0
\(937\) 18126.9 + 13169.9i 0.631995 + 0.459171i 0.857091 0.515166i \(-0.172270\pi\)
−0.225096 + 0.974337i \(0.572270\pi\)
\(938\) 0 0
\(939\) 8545.04 + 26298.9i 0.296972 + 0.913987i
\(940\) 0 0
\(941\) −7153.87 + 5197.59i −0.247832 + 0.180060i −0.704765 0.709441i \(-0.748948\pi\)
0.456934 + 0.889501i \(0.348948\pi\)
\(942\) 0 0
\(943\) −16826.4 + 51786.2i −0.581063 + 1.78833i
\(944\) 0 0
\(945\) −4928.74 −0.169664
\(946\) 0 0
\(947\) −37683.8 −1.29309 −0.646546 0.762875i \(-0.723787\pi\)
−0.646546 + 0.762875i \(0.723787\pi\)
\(948\) 0 0
\(949\) −4509.46 + 13878.7i −0.154250 + 0.474733i
\(950\) 0 0
\(951\) −1738.25 + 1262.91i −0.0592708 + 0.0430627i
\(952\) 0 0
\(953\) −6886.14 21193.4i −0.234065 0.720379i −0.997244 0.0741912i \(-0.976362\pi\)
0.763179 0.646187i \(-0.223638\pi\)
\(954\) 0 0
\(955\) −7574.16 5502.95i −0.256643 0.186462i
\(956\) 0 0
\(957\) 4140.31 + 16460.8i 0.139851 + 0.556011i
\(958\) 0 0
\(959\) −7605.61 5525.80i −0.256098 0.186066i
\(960\) 0 0
\(961\) 15572.5 + 47927.3i 0.522726 + 1.60878i
\(962\) 0 0
\(963\) 9380.56 6815.38i 0.313899 0.228061i
\(964\) 0 0
\(965\) −1607.55 + 4947.54i −0.0536259 + 0.165044i
\(966\) 0 0
\(967\) −4416.02 −0.146856 −0.0734279 0.997301i \(-0.523394\pi\)
−0.0734279 + 0.997301i \(0.523394\pi\)
\(968\) 0 0
\(969\) 12386.4 0.410639
\(970\) 0 0
\(971\) −1612.77 + 4963.61i −0.0533022 + 0.164047i −0.974164 0.225842i \(-0.927487\pi\)
0.920862 + 0.389889i \(0.127487\pi\)
\(972\) 0 0
\(973\) 25379.4 18439.2i 0.836202 0.607537i
\(974\) 0 0
\(975\) 785.363 + 2417.10i 0.0257966 + 0.0793939i
\(976\) 0 0
\(977\) −31023.8 22540.1i −1.01590 0.738098i −0.0504656 0.998726i \(-0.516071\pi\)
−0.965439 + 0.260628i \(0.916071\pi\)
\(978\) 0 0
\(979\) −4938.76 19635.2i −0.161229 0.641005i
\(980\) 0 0
\(981\) −7996.67 5809.92i −0.260259 0.189089i
\(982\) 0 0
\(983\) 4230.45 + 13020.0i 0.137264 + 0.422455i 0.995935 0.0900716i \(-0.0287096\pi\)
−0.858671 + 0.512527i \(0.828710\pi\)
\(984\) 0 0
\(985\) −18568.3 + 13490.6i −0.600644 + 0.436393i
\(986\) 0 0
\(987\) −5857.80 + 18028.5i −0.188912 + 0.581410i
\(988\) 0 0
\(989\) 33147.2 1.06574
\(990\) 0 0
\(991\) −14149.5 −0.453555 −0.226778 0.973947i \(-0.572819\pi\)
−0.226778 + 0.973947i \(0.572819\pi\)
\(992\) 0 0
\(993\) −549.663 + 1691.69i −0.0175660 + 0.0540625i
\(994\) 0 0
\(995\) 11516.8 8367.41i 0.366940 0.266598i
\(996\) 0 0
\(997\) 1568.11 + 4826.14i 0.0498120 + 0.153305i 0.972868 0.231359i \(-0.0743172\pi\)
−0.923056 + 0.384664i \(0.874317\pi\)
\(998\) 0 0
\(999\) −4416.25 3208.59i −0.139864 0.101617i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 132.4.i.a.37.1 yes 4
3.2 odd 2 396.4.j.a.37.1 4
11.3 even 5 inner 132.4.i.a.25.1 4
11.5 even 5 1452.4.a.l.1.1 2
11.6 odd 10 1452.4.a.m.1.1 2
33.14 odd 10 396.4.j.a.289.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.4.i.a.25.1 4 11.3 even 5 inner
132.4.i.a.37.1 yes 4 1.1 even 1 trivial
396.4.j.a.37.1 4 3.2 odd 2
396.4.j.a.289.1 4 33.14 odd 10
1452.4.a.l.1.1 2 11.5 even 5
1452.4.a.m.1.1 2 11.6 odd 10