Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1320,2,Mod(329,1320)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1320, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1320.329");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1320.ba (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(10.5402530668\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
329.1 | 0 | −1.72947 | − | 0.0944935i | 0 | 1.89340 | + | 1.18956i | 0 | −2.85425 | 0 | 2.98214 | + | 0.326848i | 0 | ||||||||||||
329.2 | 0 | −1.72947 | − | 0.0944935i | 0 | 1.89340 | + | 1.18956i | 0 | 2.85425 | 0 | 2.98214 | + | 0.326848i | 0 | ||||||||||||
329.3 | 0 | −1.72947 | + | 0.0944935i | 0 | 1.89340 | − | 1.18956i | 0 | −2.85425 | 0 | 2.98214 | − | 0.326848i | 0 | ||||||||||||
329.4 | 0 | −1.72947 | + | 0.0944935i | 0 | 1.89340 | − | 1.18956i | 0 | 2.85425 | 0 | 2.98214 | − | 0.326848i | 0 | ||||||||||||
329.5 | 0 | −1.72010 | − | 0.203093i | 0 | −0.910442 | − | 2.04233i | 0 | −4.06802 | 0 | 2.91751 | + | 0.698681i | 0 | ||||||||||||
329.6 | 0 | −1.72010 | − | 0.203093i | 0 | −0.910442 | − | 2.04233i | 0 | 4.06802 | 0 | 2.91751 | + | 0.698681i | 0 | ||||||||||||
329.7 | 0 | −1.72010 | + | 0.203093i | 0 | −0.910442 | + | 2.04233i | 0 | −4.06802 | 0 | 2.91751 | − | 0.698681i | 0 | ||||||||||||
329.8 | 0 | −1.72010 | + | 0.203093i | 0 | −0.910442 | + | 2.04233i | 0 | 4.06802 | 0 | 2.91751 | − | 0.698681i | 0 | ||||||||||||
329.9 | 0 | −1.54444 | − | 0.784039i | 0 | −2.21025 | + | 0.338784i | 0 | −1.57281 | 0 | 1.77056 | + | 2.42180i | 0 | ||||||||||||
329.10 | 0 | −1.54444 | − | 0.784039i | 0 | −2.21025 | + | 0.338784i | 0 | 1.57281 | 0 | 1.77056 | + | 2.42180i | 0 | ||||||||||||
329.11 | 0 | −1.54444 | + | 0.784039i | 0 | −2.21025 | − | 0.338784i | 0 | −1.57281 | 0 | 1.77056 | − | 2.42180i | 0 | ||||||||||||
329.12 | 0 | −1.54444 | + | 0.784039i | 0 | −2.21025 | − | 0.338784i | 0 | 1.57281 | 0 | 1.77056 | − | 2.42180i | 0 | ||||||||||||
329.13 | 0 | −1.28679 | − | 1.15938i | 0 | 2.05055 | − | 0.891762i | 0 | −2.43485 | 0 | 0.311664 | + | 2.98377i | 0 | ||||||||||||
329.14 | 0 | −1.28679 | − | 1.15938i | 0 | 2.05055 | − | 0.891762i | 0 | 2.43485 | 0 | 0.311664 | + | 2.98377i | 0 | ||||||||||||
329.15 | 0 | −1.28679 | + | 1.15938i | 0 | 2.05055 | + | 0.891762i | 0 | −2.43485 | 0 | 0.311664 | − | 2.98377i | 0 | ||||||||||||
329.16 | 0 | −1.28679 | + | 1.15938i | 0 | 2.05055 | + | 0.891762i | 0 | 2.43485 | 0 | 0.311664 | − | 2.98377i | 0 | ||||||||||||
329.17 | 0 | −1.28574 | − | 1.16055i | 0 | 0.277937 | + | 2.21873i | 0 | −1.10479 | 0 | 0.306234 | + | 2.98433i | 0 | ||||||||||||
329.18 | 0 | −1.28574 | − | 1.16055i | 0 | 0.277937 | + | 2.21873i | 0 | 1.10479 | 0 | 0.306234 | + | 2.98433i | 0 | ||||||||||||
329.19 | 0 | −1.28574 | + | 1.16055i | 0 | 0.277937 | − | 2.21873i | 0 | −1.10479 | 0 | 0.306234 | − | 2.98433i | 0 | ||||||||||||
329.20 | 0 | −1.28574 | + | 1.16055i | 0 | 0.277937 | − | 2.21873i | 0 | 1.10479 | 0 | 0.306234 | − | 2.98433i | 0 | ||||||||||||
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
33.d | even | 2 | 1 | inner |
55.d | odd | 2 | 1 | inner |
165.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1320.2.ba.a | ✓ | 72 |
3.b | odd | 2 | 1 | inner | 1320.2.ba.a | ✓ | 72 |
5.b | even | 2 | 1 | inner | 1320.2.ba.a | ✓ | 72 |
11.b | odd | 2 | 1 | inner | 1320.2.ba.a | ✓ | 72 |
15.d | odd | 2 | 1 | inner | 1320.2.ba.a | ✓ | 72 |
33.d | even | 2 | 1 | inner | 1320.2.ba.a | ✓ | 72 |
55.d | odd | 2 | 1 | inner | 1320.2.ba.a | ✓ | 72 |
165.d | even | 2 | 1 | inner | 1320.2.ba.a | ✓ | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1320.2.ba.a | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
1320.2.ba.a | ✓ | 72 | 3.b | odd | 2 | 1 | inner |
1320.2.ba.a | ✓ | 72 | 5.b | even | 2 | 1 | inner |
1320.2.ba.a | ✓ | 72 | 11.b | odd | 2 | 1 | inner |
1320.2.ba.a | ✓ | 72 | 15.d | odd | 2 | 1 | inner |
1320.2.ba.a | ✓ | 72 | 33.d | even | 2 | 1 | inner |
1320.2.ba.a | ✓ | 72 | 55.d | odd | 2 | 1 | inner |
1320.2.ba.a | ✓ | 72 | 165.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(1320, [\chi])\).