Properties

Label 1323.2.a.h
Level $1323$
Weight $2$
Character orbit 1323.a
Self dual yes
Analytic conductor $10.564$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.5642081874\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{4} - 3 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{4} - 3 q^{5} + 6 q^{11} + 4 q^{13} + 4 q^{16} - 3 q^{17} - 2 q^{19} + 6 q^{20} - 6 q^{23} + 4 q^{25} - 6 q^{29} + 4 q^{31} - 7 q^{37} + 3 q^{41} - q^{43} - 12 q^{44} - 9 q^{47} - 8 q^{52} - 6 q^{53} - 18 q^{55} - 9 q^{59} + 10 q^{61} - 8 q^{64} - 12 q^{65} - 4 q^{67} + 6 q^{68} - 2 q^{73} + 4 q^{76} - q^{79} - 12 q^{80} - 3 q^{83} + 9 q^{85} - 6 q^{89} + 12 q^{92} + 6 q^{95} + 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 −2.00000 −3.00000 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.2.a.h 1
3.b odd 2 1 1323.2.a.l 1
7.b odd 2 1 189.2.a.c yes 1
21.c even 2 1 189.2.a.b 1
28.d even 2 1 3024.2.a.y 1
35.c odd 2 1 4725.2.a.k 1
63.l odd 6 2 567.2.f.d 2
63.o even 6 2 567.2.f.e 2
84.h odd 2 1 3024.2.a.f 1
105.g even 2 1 4725.2.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.2.a.b 1 21.c even 2 1
189.2.a.c yes 1 7.b odd 2 1
567.2.f.d 2 63.l odd 6 2
567.2.f.e 2 63.o even 6 2
1323.2.a.h 1 1.a even 1 1 trivial
1323.2.a.l 1 3.b odd 2 1
3024.2.a.f 1 84.h odd 2 1
3024.2.a.y 1 28.d even 2 1
4725.2.a.i 1 105.g even 2 1
4725.2.a.k 1 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1323))\):

\( T_{2} \) Copy content Toggle raw display
\( T_{5} + 3 \) Copy content Toggle raw display
\( T_{13} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 3 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 6 \) Copy content Toggle raw display
$13$ \( T - 4 \) Copy content Toggle raw display
$17$ \( T + 3 \) Copy content Toggle raw display
$19$ \( T + 2 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T + 7 \) Copy content Toggle raw display
$41$ \( T - 3 \) Copy content Toggle raw display
$43$ \( T + 1 \) Copy content Toggle raw display
$47$ \( T + 9 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T + 9 \) Copy content Toggle raw display
$61$ \( T - 10 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T + 1 \) Copy content Toggle raw display
$83$ \( T + 3 \) Copy content Toggle raw display
$89$ \( T + 6 \) Copy content Toggle raw display
$97$ \( T - 10 \) Copy content Toggle raw display
show more
show less