Properties

Label 1323.2.a.j
Level 13231323
Weight 22
Character orbit 1323.a
Self dual yes
Analytic conductor 10.56410.564
Analytic rank 11
Dimension 11
CM discriminant -3
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1323=3372 1323 = 3^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 10.564208187410.5642081874
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 189)
Fricke sign: +1+1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2q42q13+4q16+7q195q2511q3110q3713q43+4q52+13q618q6416q67+7q7314q764q795q97+O(q100) q - 2 q^{4} - 2 q^{13} + 4 q^{16} + 7 q^{19} - 5 q^{25} - 11 q^{31} - 10 q^{37} - 13 q^{43} + 4 q^{52} + 13 q^{61} - 8 q^{64} - 16 q^{67} + 7 q^{73} - 14 q^{76} - 4 q^{79} - 5 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 −2.00000 0 0 0 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
77 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.2.a.j 1
3.b odd 2 1 CM 1323.2.a.j 1
7.b odd 2 1 1323.2.a.k 1
7.d odd 6 2 189.2.e.b 2
21.c even 2 1 1323.2.a.k 1
21.g even 6 2 189.2.e.b 2
63.i even 6 2 567.2.h.d 2
63.k odd 6 2 567.2.g.c 2
63.s even 6 2 567.2.g.c 2
63.t odd 6 2 567.2.h.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.2.e.b 2 7.d odd 6 2
189.2.e.b 2 21.g even 6 2
567.2.g.c 2 63.k odd 6 2
567.2.g.c 2 63.s even 6 2
567.2.h.d 2 63.i even 6 2
567.2.h.d 2 63.t odd 6 2
1323.2.a.j 1 1.a even 1 1 trivial
1323.2.a.j 1 3.b odd 2 1 CM
1323.2.a.k 1 7.b odd 2 1
1323.2.a.k 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(1323))S_{2}^{\mathrm{new}}(\Gamma_0(1323)):

T2 T_{2} Copy content Toggle raw display
T5 T_{5} Copy content Toggle raw display
T13+2 T_{13} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T+2 T + 2 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T7 T - 7 Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T+11 T + 11 Copy content Toggle raw display
3737 T+10 T + 10 Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T+13 T + 13 Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T13 T - 13 Copy content Toggle raw display
6767 T+16 T + 16 Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T7 T - 7 Copy content Toggle raw display
7979 T+4 T + 4 Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T+5 T + 5 Copy content Toggle raw display
show more
show less