Properties

Label 1323.2.a.p
Level $1323$
Weight $2$
Character orbit 1323.a
Self dual yes
Analytic conductor $10.564$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - q^{4} + 4 q^{5} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - q^{4} + 4 q^{5} - 3 q^{8} + 4 q^{10} + 2 q^{11} - q^{13} - q^{16} + 6 q^{17} - 4 q^{19} - 4 q^{20} + 2 q^{22} + 6 q^{23} + 11 q^{25} - q^{26} + 2 q^{29} - 3 q^{31} + 5 q^{32} + 6 q^{34} + 3 q^{37} - 4 q^{38} - 12 q^{40} + 2 q^{41} - q^{43} - 2 q^{44} + 6 q^{46} - 6 q^{47} + 11 q^{50} + q^{52} - 6 q^{53} + 8 q^{55} + 2 q^{58} - 6 q^{59} + 5 q^{61} - 3 q^{62} + 7 q^{64} - 4 q^{65} + 7 q^{67} - 6 q^{68} + 6 q^{73} + 3 q^{74} + 4 q^{76} + 11 q^{79} - 4 q^{80} + 2 q^{82} - 6 q^{83} + 24 q^{85} - q^{86} - 6 q^{88} + 4 q^{89} - 6 q^{92} - 6 q^{94} - 16 q^{95} - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 −1.00000 4.00000 0 0 −3.00000 0 4.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.2.a.p 1
3.b odd 2 1 1323.2.a.d 1
7.b odd 2 1 1323.2.a.m 1
7.d odd 6 2 189.2.e.a 2
21.c even 2 1 1323.2.a.g 1
21.g even 6 2 189.2.e.c yes 2
63.i even 6 2 567.2.h.b 2
63.k odd 6 2 567.2.g.b 2
63.s even 6 2 567.2.g.e 2
63.t odd 6 2 567.2.h.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.2.e.a 2 7.d odd 6 2
189.2.e.c yes 2 21.g even 6 2
567.2.g.b 2 63.k odd 6 2
567.2.g.e 2 63.s even 6 2
567.2.h.b 2 63.i even 6 2
567.2.h.e 2 63.t odd 6 2
1323.2.a.d 1 3.b odd 2 1
1323.2.a.g 1 21.c even 2 1
1323.2.a.m 1 7.b odd 2 1
1323.2.a.p 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1323))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{5} - 4 \) Copy content Toggle raw display
\( T_{13} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 4 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 2 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T - 6 \) Copy content Toggle raw display
$19$ \( T + 4 \) Copy content Toggle raw display
$23$ \( T - 6 \) Copy content Toggle raw display
$29$ \( T - 2 \) Copy content Toggle raw display
$31$ \( T + 3 \) Copy content Toggle raw display
$37$ \( T - 3 \) Copy content Toggle raw display
$41$ \( T - 2 \) Copy content Toggle raw display
$43$ \( T + 1 \) Copy content Toggle raw display
$47$ \( T + 6 \) Copy content Toggle raw display
$53$ \( T + 6 \) Copy content Toggle raw display
$59$ \( T + 6 \) Copy content Toggle raw display
$61$ \( T - 5 \) Copy content Toggle raw display
$67$ \( T - 7 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 6 \) Copy content Toggle raw display
$79$ \( T - 11 \) Copy content Toggle raw display
$83$ \( T + 6 \) Copy content Toggle raw display
$89$ \( T - 4 \) Copy content Toggle raw display
$97$ \( T + 9 \) Copy content Toggle raw display
show more
show less