gp: [N,k,chi] = [1323,2,Mod(442,1323)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1323, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1323.442");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [12,2,0,-6,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 − 7 x 10 + 37 x 8 − 78 x 6 + 123 x 4 − 36 x 2 + 9 x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 x 1 2 − 7 x 1 0 + 3 7 x 8 − 7 8 x 6 + 1 2 3 x 4 − 3 6 x 2 + 9
x^12 - 7*x^10 + 37*x^8 - 78*x^6 + 123*x^4 - 36*x^2 + 9
:
β 1 \beta_{1} β 1 = = =
( − 49 ν 10 + 259 ν 8 − 1369 ν 6 + 861 ν 4 − 252 ν 2 − 7266 ) / 4299 ( -49\nu^{10} + 259\nu^{8} - 1369\nu^{6} + 861\nu^{4} - 252\nu^{2} - 7266 ) / 4299 ( − 4 9 ν 1 0 + 2 5 9 ν 8 − 1 3 6 9 ν 6 + 8 6 1 ν 4 − 2 5 2 ν 2 − 7 2 6 6 ) / 4 2 9 9
(-49*v^10 + 259*v^8 - 1369*v^6 + 861*v^4 - 252*v^2 - 7266) / 4299
β 2 \beta_{2} β 2 = = =
( − 148 ν 11 + 987 ν 9 − 5217 ν 7 + 10175 ν 5 − 17343 ν 3 − 3522 ν ) / 4299 ( -148\nu^{11} + 987\nu^{9} - 5217\nu^{7} + 10175\nu^{5} - 17343\nu^{3} - 3522\nu ) / 4299 ( − 1 4 8 ν 1 1 + 9 8 7 ν 9 − 5 2 1 7 ν 7 + 1 0 1 7 5 ν 5 − 1 7 3 4 3 ν 3 − 3 5 2 2 ν ) / 4 2 9 9
(-148*v^11 + 987*v^9 - 5217*v^7 + 10175*v^5 - 17343*v^3 - 3522*v) / 4299
β 3 \beta_{3} β 3 = = =
( − 148 ν 11 + 987 ν 9 − 5217 ν 7 + 10175 ν 5 − 17343 ν 3 + 9375 ν ) / 4299 ( -148\nu^{11} + 987\nu^{9} - 5217\nu^{7} + 10175\nu^{5} - 17343\nu^{3} + 9375\nu ) / 4299 ( − 1 4 8 ν 1 1 + 9 8 7 ν 9 − 5 2 1 7 ν 7 + 1 0 1 7 5 ν 5 − 1 7 3 4 3 ν 3 + 9 3 7 5 ν ) / 4 2 9 9
(-148*v^11 + 987*v^9 - 5217*v^7 + 10175*v^5 - 17343*v^3 + 9375*v) / 4299
β 4 \beta_{4} β 4 = = =
( 148 ν 10 − 987 ν 8 + 5217 ν 6 − 10175 ν 4 + 17343 ν 2 − 5076 ) / 4299 ( 148\nu^{10} - 987\nu^{8} + 5217\nu^{6} - 10175\nu^{4} + 17343\nu^{2} - 5076 ) / 4299 ( 1 4 8 ν 1 0 − 9 8 7 ν 8 + 5 2 1 7 ν 6 − 1 0 1 7 5 ν 4 + 1 7 3 4 3 ν 2 − 5 0 7 6 ) / 4 2 9 9
(148*v^10 - 987*v^8 + 5217*v^6 - 10175*v^4 + 17343*v^2 - 5076) / 4299
β 5 \beta_{5} β 5 = = =
( 161 ν 10 − 851 ν 8 + 3884 ν 6 − 2829 ν 4 + 828 ν 2 + 6678 ) / 4299 ( 161\nu^{10} - 851\nu^{8} + 3884\nu^{6} - 2829\nu^{4} + 828\nu^{2} + 6678 ) / 4299 ( 1 6 1 ν 1 0 − 8 5 1 ν 8 + 3 8 8 4 ν 6 − 2 8 2 9 ν 4 + 8 2 8 ν 2 + 6 6 7 8 ) / 4 2 9 9
(161*v^10 - 851*v^8 + 3884*v^6 - 2829*v^4 + 828*v^2 + 6678) / 4299
β 6 \beta_{6} β 6 = = =
( − 296 ν 10 + 1974 ν 8 − 10434 ν 6 + 20350 ν 4 − 30387 ν 2 + 1554 ) / 4299 ( -296\nu^{10} + 1974\nu^{8} - 10434\nu^{6} + 20350\nu^{4} - 30387\nu^{2} + 1554 ) / 4299 ( − 2 9 6 ν 1 0 + 1 9 7 4 ν 8 − 1 0 4 3 4 ν 6 + 2 0 3 5 0 ν 4 − 3 0 3 8 7 ν 2 + 1 5 5 4 ) / 4 2 9 9
(-296*v^10 + 1974*v^8 - 10434*v^6 + 20350*v^4 - 30387*v^2 + 1554) / 4299
β 7 \beta_{7} β 7 = = =
( − 120 ν 10 + 839 ν 8 − 4230 ν 6 + 8250 ν 4 − 10034 ν 2 + 630 ) / 1433 ( -120\nu^{10} + 839\nu^{8} - 4230\nu^{6} + 8250\nu^{4} - 10034\nu^{2} + 630 ) / 1433 ( − 1 2 0 ν 1 0 + 8 3 9 ν 8 − 4 2 3 0 ν 6 + 8 2 5 0 ν 4 − 1 0 0 3 4 ν 2 + 6 3 0 ) / 1 4 3 3
(-120*v^10 + 839*v^8 - 4230*v^6 + 8250*v^4 - 10034*v^2 + 630) / 1433
β 8 \beta_{8} β 8 = = =
( − 494 ν 11 + 3430 ν 9 − 18130 ν 7 + 38978 ν 5 − 64569 ν 3 + 34836 ν ) / 4299 ( -494\nu^{11} + 3430\nu^{9} - 18130\nu^{7} + 38978\nu^{5} - 64569\nu^{3} + 34836\nu ) / 4299 ( − 4 9 4 ν 1 1 + 3 4 3 0 ν 9 − 1 8 1 3 0 ν 7 + 3 8 9 7 8 ν 5 − 6 4 5 6 9 ν 3 + 3 4 8 3 6 ν ) / 4 2 9 9
(-494*v^11 + 3430*v^9 - 18130*v^7 + 38978*v^5 - 64569*v^3 + 34836*v) / 4299
β 9 \beta_{9} β 9 = = =
( 532 ν 11 − 4245 ν 9 + 23052 ν 7 − 58070 ν 5 + 93015 ν 3 − 50082 ν ) / 4299 ( 532\nu^{11} - 4245\nu^{9} + 23052\nu^{7} - 58070\nu^{5} + 93015\nu^{3} - 50082\nu ) / 4299 ( 5 3 2 ν 1 1 − 4 2 4 5 ν 9 + 2 3 0 5 2 ν 7 − 5 8 0 7 0 ν 5 + 9 3 0 1 5 ν 3 − 5 0 0 8 2 ν ) / 4 2 9 9
(532*v^11 - 4245*v^9 + 23052*v^7 - 58070*v^5 + 93015*v^3 - 50082*v) / 4299
β 10 \beta_{10} β 1 0 = = =
( 641 ν 11 − 4207 ν 9 + 22237 ν 7 − 41561 ν 5 + 65325 ν 3 + 12756 ν ) / 4299 ( 641\nu^{11} - 4207\nu^{9} + 22237\nu^{7} - 41561\nu^{5} + 65325\nu^{3} + 12756\nu ) / 4299 ( 6 4 1 ν 1 1 − 4 2 0 7 ν 9 + 2 2 2 3 7 ν 7 − 4 1 5 6 1 ν 5 + 6 5 3 2 5 ν 3 + 1 2 7 5 6 ν ) / 4 2 9 9
(641*v^11 - 4207*v^9 + 22237*v^7 - 41561*v^5 + 65325*v^3 + 12756*v) / 4299
β 11 \beta_{11} β 1 1 = = =
( − 1162 ν 11 + 7575 ν 9 − 38811 ν 7 + 69140 ν 5 − 96255 ν 3 − 17544 ν ) / 4299 ( -1162\nu^{11} + 7575\nu^{9} - 38811\nu^{7} + 69140\nu^{5} - 96255\nu^{3} - 17544\nu ) / 4299 ( − 1 1 6 2 ν 1 1 + 7 5 7 5 ν 9 − 3 8 8 1 1 ν 7 + 6 9 1 4 0 ν 5 − 9 6 2 5 5 ν 3 − 1 7 5 4 4 ν ) / 4 2 9 9
(-1162*v^11 + 7575*v^9 - 38811*v^7 + 69140*v^5 - 96255*v^3 - 17544*v) / 4299
ν \nu ν = = =
( β 3 − β 2 ) / 3 ( \beta_{3} - \beta_{2} ) / 3 ( β 3 − β 2 ) / 3
(b3 - b2) / 3
ν 2 \nu^{2} ν 2 = = =
β 6 + 2 β 4 + 2 \beta_{6} + 2\beta_{4} + 2 β 6 + 2 β 4 + 2
b6 + 2*b4 + 2
ν 3 \nu^{3} ν 3 = = =
( − 2 β 10 + β 8 − 4 β 3 − 8 β 2 ) / 3 ( -2\beta_{10} + \beta_{8} - 4\beta_{3} - 8\beta_{2} ) / 3 ( − 2 β 1 0 + β 8 − 4 β 3 − 8 β 2 ) / 3
(-2*b10 + b8 - 4*b3 - 8*b2) / 3
ν 4 \nu^{4} ν 4 = = =
− β 7 + 5 β 6 − β 5 + 7 β 4 − 5 β 1 -\beta_{7} + 5\beta_{6} - \beta_{5} + 7\beta_{4} - 5\beta_1 − β 7 + 5 β 6 − β 5 + 7 β 4 − 5 β 1
-b7 + 5*b6 - b5 + 7*b4 - 5*b1
ν 5 \nu^{5} ν 5 = = =
( − β 11 − 6 β 10 + 2 β 9 + 12 β 8 − 34 β 3 − 17 β 2 ) / 3 ( -\beta_{11} - 6\beta_{10} + 2\beta_{9} + 12\beta_{8} - 34\beta_{3} - 17\beta_{2} ) / 3 ( − β 1 1 − 6 β 1 0 + 2 β 9 + 1 2 β 8 − 3 4 β 3 − 1 7 β 2 ) / 3
(-b11 - 6*b10 + 2*b9 + 12*b8 - 34*b3 - 17*b2) / 3
ν 6 \nu^{6} ν 6 = = =
− 7 β 5 − 23 β 1 − 28 -7\beta_{5} - 23\beta _1 - 28 − 7 β 5 − 2 3 β 1 − 2 8
-7*b5 - 23*b1 - 28
ν 7 \nu^{7} ν 7 = = =
( 7 β 11 + 30 β 10 + 7 β 9 + 30 β 8 − 74 β 3 + 74 β 2 ) / 3 ( 7\beta_{11} + 30\beta_{10} + 7\beta_{9} + 30\beta_{8} - 74\beta_{3} + 74\beta_{2} ) / 3 ( 7 β 1 1 + 3 0 β 1 0 + 7 β 9 + 3 0 β 8 − 7 4 β 3 + 7 4 β 2 ) / 3
(7*b11 + 30*b10 + 7*b9 + 30*b8 - 74*b3 + 74*b2) / 3
ν 8 \nu^{8} ν 8 = = =
37 β 7 − 104 β 6 − 118 β 4 − 118 37\beta_{7} - 104\beta_{6} - 118\beta_{4} - 118 3 7 β 7 − 1 0 4 β 6 − 1 1 8 β 4 − 1 1 8
37*b7 - 104*b6 - 118*b4 - 118
ν 9 \nu^{9} ν 9 = = =
( 74 β 11 + 282 β 10 − 37 β 9 − 141 β 8 + 326 β 3 + 652 β 2 ) / 3 ( 74\beta_{11} + 282\beta_{10} - 37\beta_{9} - 141\beta_{8} + 326\beta_{3} + 652\beta_{2} ) / 3 ( 7 4 β 1 1 + 2 8 2 β 1 0 − 3 7 β 9 − 1 4 1 β 8 + 3 2 6 β 3 + 6 5 2 β 2 ) / 3
(74*b11 + 282*b10 - 37*b9 - 141*b8 + 326*b3 + 652*b2) / 3
ν 10 \nu^{10} ν 1 0 = = =
178 β 7 − 467 β 6 + 178 β 5 − 511 β 4 + 467 β 1 178\beta_{7} - 467\beta_{6} + 178\beta_{5} - 511\beta_{4} + 467\beta_1 1 7 8 β 7 − 4 6 7 β 6 + 1 7 8 β 5 − 5 1 1 β 4 + 4 6 7 β 1
178*b7 - 467*b6 + 178*b5 - 511*b4 + 467*b1
ν 11 \nu^{11} ν 1 1 = = =
( 178 β 11 + 645 β 10 − 356 β 9 − 1290 β 8 + 2890 β 3 + 1445 β 2 ) / 3 ( 178\beta_{11} + 645\beta_{10} - 356\beta_{9} - 1290\beta_{8} + 2890\beta_{3} + 1445\beta_{2} ) / 3 ( 1 7 8 β 1 1 + 6 4 5 β 1 0 − 3 5 6 β 9 − 1 2 9 0 β 8 + 2 8 9 0 β 3 + 1 4 4 5 β 2 ) / 3
(178*b11 + 645*b10 - 356*b9 - 1290*b8 + 2890*b3 + 1445*b2) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 1323 Z ) × \left(\mathbb{Z}/1323\mathbb{Z}\right)^\times ( Z / 1 3 2 3 Z ) × .
n n n
785 785 7 8 5
1081 1081 1 0 8 1
χ ( n ) \chi(n) χ ( n )
β 4 \beta_{4} β 4
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 1323 , [ χ ] ) S_{2}^{\mathrm{new}}(1323, [\chi]) S 2 n e w ( 1 3 2 3 , [ χ ] ) :
T 2 6 − T 2 5 + 5 T 2 4 + 2 T 2 3 + 17 T 2 2 − 4 T 2 + 1 T_{2}^{6} - T_{2}^{5} + 5T_{2}^{4} + 2T_{2}^{3} + 17T_{2}^{2} - 4T_{2} + 1 T 2 6 − T 2 5 + 5 T 2 4 + 2 T 2 3 + 1 7 T 2 2 − 4 T 2 + 1
T2^6 - T2^5 + 5*T2^4 + 2*T2^3 + 17*T2^2 - 4*T2 + 1
T 5 12 + 21 T 5 10 + 333 T 5 8 + 2106 T 5 6 + 9963 T 5 4 + 8748 T 5 2 + 6561 T_{5}^{12} + 21T_{5}^{10} + 333T_{5}^{8} + 2106T_{5}^{6} + 9963T_{5}^{4} + 8748T_{5}^{2} + 6561 T 5 1 2 + 2 1 T 5 1 0 + 3 3 3 T 5 8 + 2 1 0 6 T 5 6 + 9 9 6 3 T 5 4 + 8 7 4 8 T 5 2 + 6 5 6 1
T5^12 + 21*T5^10 + 333*T5^8 + 2106*T5^6 + 9963*T5^4 + 8748*T5^2 + 6561
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 6 − T 5 + 5 T 4 + ⋯ + 1 ) 2 (T^{6} - T^{5} + 5 T^{4} + \cdots + 1)^{2} ( T 6 − T 5 + 5 T 4 + ⋯ + 1 ) 2
(T^6 - T^5 + 5*T^4 + 2*T^3 + 17*T^2 - 4*T + 1)^2
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
T 12 + 21 T 10 + ⋯ + 6561 T^{12} + 21 T^{10} + \cdots + 6561 T 1 2 + 2 1 T 1 0 + ⋯ + 6 5 6 1
T^12 + 21*T^10 + 333*T^8 + 2106*T^6 + 9963*T^4 + 8748*T^2 + 6561
7 7 7
T 12 T^{12} T 1 2
T^12
11 11 1 1
( T 6 − 4 T 5 + 17 T 4 + ⋯ + 1 ) 2 (T^{6} - 4 T^{5} + 17 T^{4} + \cdots + 1)^{2} ( T 6 − 4 T 5 + 1 7 T 4 + ⋯ + 1 ) 2
(T^6 - 4*T^5 + 17*T^4 + 2*T^3 + 5*T^2 - T + 1)^2
13 13 1 3
T 12 + 39 T 10 + ⋯ + 6561 T^{12} + 39 T^{10} + \cdots + 6561 T 1 2 + 3 9 T 1 0 + ⋯ + 6 5 6 1
T^12 + 39*T^10 + 1170*T^8 + 13527*T^6 + 120042*T^4 + 28431*T^2 + 6561
17 17 1 7
( T 6 − 84 T 4 + ⋯ − 3969 ) 2 (T^{6} - 84 T^{4} + \cdots - 3969)^{2} ( T 6 − 8 4 T 4 + ⋯ − 3 9 6 9 ) 2
(T^6 - 84*T^4 + 1593*T^2 - 3969)^2
19 19 1 9
( T 6 − 75 T 4 + ⋯ − 3969 ) 2 (T^{6} - 75 T^{4} + \cdots - 3969)^{2} ( T 6 − 7 5 T 4 + ⋯ − 3 9 6 9 ) 2
(T^6 - 75*T^4 + 1296*T^2 - 3969)^2
23 23 2 3
( T 6 − 2 T 5 + ⋯ + 3481 ) 2 (T^{6} - 2 T^{5} + \cdots + 3481)^{2} ( T 6 − 2 T 5 + ⋯ + 3 4 8 1 ) 2
(T^6 - 2*T^5 + 29*T^4 - 68*T^3 + 743*T^2 - 1475*T + 3481)^2
29 29 2 9
( T 6 − 11 T 5 + ⋯ + 7921 ) 2 (T^{6} - 11 T^{5} + \cdots + 7921)^{2} ( T 6 − 1 1 T 5 + ⋯ + 7 9 2 1 ) 2
(T^6 - 11*T^5 + 107*T^4 - 332*T^3 + 1175*T^2 + 1246*T + 7921)^2
31 31 3 1
T 12 + ⋯ + 6059221281 T^{12} + \cdots + 6059221281 T 1 2 + ⋯ + 6 0 5 9 2 2 1 2 8 1
T^12 + 129*T^10 + 11133*T^8 + 554850*T^6 + 20296575*T^4 + 428748228*T^2 + 6059221281
37 37 3 7
( T 3 + 3 T 2 − 24 T + 27 ) 4 (T^{3} + 3 T^{2} - 24 T + 27)^{4} ( T 3 + 3 T 2 − 2 4 T + 2 7 ) 4
(T^3 + 3*T^2 - 24*T + 27)^4
41 41 4 1
T 12 + 162 T 10 + ⋯ + 43046721 T^{12} + 162 T^{10} + \cdots + 43046721 T 1 2 + 1 6 2 T 1 0 + ⋯ + 4 3 0 4 6 7 2 1
T^12 + 162*T^10 + 20169*T^8 + 971028*T^6 + 35842743*T^4 + 39858075*T^2 + 43046721
43 43 4 3
( T 6 + 3 T 5 + ⋯ + 729 ) 2 (T^{6} + 3 T^{5} + \cdots + 729)^{2} ( T 6 + 3 T 5 + ⋯ + 7 2 9 ) 2
(T^6 + 3*T^5 + 33*T^4 - 126*T^3 + 495*T^2 - 648*T + 729)^2
47 47 4 7
T 12 + ⋯ + 37822859361 T^{12} + \cdots + 37822859361 T 1 2 + ⋯ + 3 7 8 2 2 8 5 9 3 6 1
T^12 + 183*T^10 + 22905*T^8 + 1547910*T^6 + 76431033*T^4 + 2058386904*T^2 + 37822859361
53 53 5 3
( T 3 + 14 T 2 + ⋯ − 263 ) 4 (T^{3} + 14 T^{2} + \cdots - 263)^{4} ( T 3 + 1 4 T 2 + ⋯ − 2 6 3 ) 4
(T^3 + 14*T^2 + 11*T - 263)^4
59 59 5 9
T 12 + ⋯ + 22430753361 T^{12} + \cdots + 22430753361 T 1 2 + ⋯ + 2 2 4 3 0 7 5 3 3 6 1
T^12 + 183*T^10 + 24039*T^8 + 1429812*T^6 + 61894773*T^4 + 1415317050*T^2 + 22430753361
61 61 6 1
T 12 + ⋯ + 311374044081 T^{12} + \cdots + 311374044081 T 1 2 + ⋯ + 3 1 1 3 7 4 0 4 4 0 8 1
T^12 + 264*T^10 + 48177*T^8 + 4564998*T^6 + 315752985*T^4 + 12007795671*T^2 + 311374044081
67 67 6 7
( T 6 + 111 T 4 + ⋯ + 124609 ) 2 (T^{6} + 111 T^{4} + \cdots + 124609)^{2} ( T 6 + 1 1 1 T 4 + ⋯ + 1 2 4 6 0 9 ) 2
(T^6 + 111*T^4 + 706*T^3 + 12321*T^2 + 39183*T + 124609)^2
71 71 7 1
( T 3 + 19 T 2 + ⋯ + 227 ) 4 (T^{3} + 19 T^{2} + \cdots + 227)^{4} ( T 3 + 1 9 T 2 + ⋯ + 2 2 7 ) 4
(T^3 + 19*T^2 + 116*T + 227)^4
73 73 7 3
( T 6 − 75 T 4 + ⋯ − 3969 ) 2 (T^{6} - 75 T^{4} + \cdots - 3969)^{2} ( T 6 − 7 5 T 4 + ⋯ − 3 9 6 9 ) 2
(T^6 - 75*T^4 + 1296*T^2 - 3969)^2
79 79 7 9
( T 6 − 3 T 5 + ⋯ + 11449 ) 2 (T^{6} - 3 T^{5} + \cdots + 11449)^{2} ( T 6 − 3 T 5 + ⋯ + 1 1 4 4 9 ) 2
(T^6 - 3*T^5 + 87*T^4 + 20*T^3 + 6405*T^2 - 8346*T + 11449)^2
83 83 8 3
T 12 + ⋯ + 51769445841 T^{12} + \cdots + 51769445841 T 1 2 + ⋯ + 5 1 7 6 9 4 4 5 8 4 1
T^12 + 228*T^10 + 38619*T^8 + 2592162*T^6 + 126746613*T^4 + 3040925085*T^2 + 51769445841
89 89 8 9
( T 6 − 246 T 4 + ⋯ − 3969 ) 2 (T^{6} - 246 T^{4} + \cdots - 3969)^{2} ( T 6 − 2 4 6 T 4 + ⋯ − 3 9 6 9 ) 2
(T^6 - 246*T^4 + 5751*T^2 - 3969)^2
97 97 9 7
T 12 + 111 T 10 + ⋯ + 96059601 T^{12} + 111 T^{10} + \cdots + 96059601 T 1 2 + 1 1 1 T 1 0 + ⋯ + 9 6 0 5 9 6 0 1
T^12 + 111*T^10 + 10323*T^8 + 202176*T^6 + 2904093*T^4 + 19582398*T^2 + 96059601
show more
show less