Properties

Label 1323.2.f.g
Level 13231323
Weight 22
Character orbit 1323.f
Analytic conductor 10.56410.564
Analytic rank 00
Dimension 1212
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1323,2,Mod(442,1323)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1323.442"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1323=3372 1323 = 3^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1323.f (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,2,0,-6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.564208187410.5642081874
Analytic rank: 00
Dimension: 1212
Relative dimension: 66 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x127x10+37x878x6+123x436x2+9 x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 35 3^{5}
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β6q2+(β7+β6+β1)q4+(β3+β2)q5+(β5β12)q8+(β8+2β3)q10+(β7+β4+1)q11++(β11+β10+2β2)q97+O(q100) q + \beta_{6} q^{2} + ( - \beta_{7} + \beta_{6} + \cdots - \beta_1) q^{4} + (\beta_{3} + \beta_{2}) q^{5} + ( - \beta_{5} - \beta_1 - 2) q^{8} + ( - \beta_{8} + 2 \beta_{3}) q^{10} + (\beta_{7} + \beta_{4} + 1) q^{11}+ \cdots + (\beta_{11} + \beta_{10} + 2 \beta_{2}) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+2q26q424q8+8q116q166q22+4q2312q25+22q29+16q3212q376q43+28q44+24q46+56q5056q5318q5848q64++60q95+O(q100) 12 q + 2 q^{2} - 6 q^{4} - 24 q^{8} + 8 q^{11} - 6 q^{16} - 6 q^{22} + 4 q^{23} - 12 q^{25} + 22 q^{29} + 16 q^{32} - 12 q^{37} - 6 q^{43} + 28 q^{44} + 24 q^{46} + 56 q^{50} - 56 q^{53} - 18 q^{58} - 48 q^{64}+ \cdots + 60 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x127x10+37x878x6+123x436x2+9 x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 : Copy content Toggle raw display

β1\beta_{1}== (49ν10+259ν81369ν6+861ν4252ν27266)/4299 ( -49\nu^{10} + 259\nu^{8} - 1369\nu^{6} + 861\nu^{4} - 252\nu^{2} - 7266 ) / 4299 Copy content Toggle raw display
β2\beta_{2}== (148ν11+987ν95217ν7+10175ν517343ν33522ν)/4299 ( -148\nu^{11} + 987\nu^{9} - 5217\nu^{7} + 10175\nu^{5} - 17343\nu^{3} - 3522\nu ) / 4299 Copy content Toggle raw display
β3\beta_{3}== (148ν11+987ν95217ν7+10175ν517343ν3+9375ν)/4299 ( -148\nu^{11} + 987\nu^{9} - 5217\nu^{7} + 10175\nu^{5} - 17343\nu^{3} + 9375\nu ) / 4299 Copy content Toggle raw display
β4\beta_{4}== (148ν10987ν8+5217ν610175ν4+17343ν25076)/4299 ( 148\nu^{10} - 987\nu^{8} + 5217\nu^{6} - 10175\nu^{4} + 17343\nu^{2} - 5076 ) / 4299 Copy content Toggle raw display
β5\beta_{5}== (161ν10851ν8+3884ν62829ν4+828ν2+6678)/4299 ( 161\nu^{10} - 851\nu^{8} + 3884\nu^{6} - 2829\nu^{4} + 828\nu^{2} + 6678 ) / 4299 Copy content Toggle raw display
β6\beta_{6}== (296ν10+1974ν810434ν6+20350ν430387ν2+1554)/4299 ( -296\nu^{10} + 1974\nu^{8} - 10434\nu^{6} + 20350\nu^{4} - 30387\nu^{2} + 1554 ) / 4299 Copy content Toggle raw display
β7\beta_{7}== (120ν10+839ν84230ν6+8250ν410034ν2+630)/1433 ( -120\nu^{10} + 839\nu^{8} - 4230\nu^{6} + 8250\nu^{4} - 10034\nu^{2} + 630 ) / 1433 Copy content Toggle raw display
β8\beta_{8}== (494ν11+3430ν918130ν7+38978ν564569ν3+34836ν)/4299 ( -494\nu^{11} + 3430\nu^{9} - 18130\nu^{7} + 38978\nu^{5} - 64569\nu^{3} + 34836\nu ) / 4299 Copy content Toggle raw display
β9\beta_{9}== (532ν114245ν9+23052ν758070ν5+93015ν350082ν)/4299 ( 532\nu^{11} - 4245\nu^{9} + 23052\nu^{7} - 58070\nu^{5} + 93015\nu^{3} - 50082\nu ) / 4299 Copy content Toggle raw display
β10\beta_{10}== (641ν114207ν9+22237ν741561ν5+65325ν3+12756ν)/4299 ( 641\nu^{11} - 4207\nu^{9} + 22237\nu^{7} - 41561\nu^{5} + 65325\nu^{3} + 12756\nu ) / 4299 Copy content Toggle raw display
β11\beta_{11}== (1162ν11+7575ν938811ν7+69140ν596255ν317544ν)/4299 ( -1162\nu^{11} + 7575\nu^{9} - 38811\nu^{7} + 69140\nu^{5} - 96255\nu^{3} - 17544\nu ) / 4299 Copy content Toggle raw display
ν\nu== (β3β2)/3 ( \beta_{3} - \beta_{2} ) / 3 Copy content Toggle raw display
ν2\nu^{2}== β6+2β4+2 \beta_{6} + 2\beta_{4} + 2 Copy content Toggle raw display
ν3\nu^{3}== (2β10+β84β38β2)/3 ( -2\beta_{10} + \beta_{8} - 4\beta_{3} - 8\beta_{2} ) / 3 Copy content Toggle raw display
ν4\nu^{4}== β7+5β6β5+7β45β1 -\beta_{7} + 5\beta_{6} - \beta_{5} + 7\beta_{4} - 5\beta_1 Copy content Toggle raw display
ν5\nu^{5}== (β116β10+2β9+12β834β317β2)/3 ( -\beta_{11} - 6\beta_{10} + 2\beta_{9} + 12\beta_{8} - 34\beta_{3} - 17\beta_{2} ) / 3 Copy content Toggle raw display
ν6\nu^{6}== 7β523β128 -7\beta_{5} - 23\beta _1 - 28 Copy content Toggle raw display
ν7\nu^{7}== (7β11+30β10+7β9+30β874β3+74β2)/3 ( 7\beta_{11} + 30\beta_{10} + 7\beta_{9} + 30\beta_{8} - 74\beta_{3} + 74\beta_{2} ) / 3 Copy content Toggle raw display
ν8\nu^{8}== 37β7104β6118β4118 37\beta_{7} - 104\beta_{6} - 118\beta_{4} - 118 Copy content Toggle raw display
ν9\nu^{9}== (74β11+282β1037β9141β8+326β3+652β2)/3 ( 74\beta_{11} + 282\beta_{10} - 37\beta_{9} - 141\beta_{8} + 326\beta_{3} + 652\beta_{2} ) / 3 Copy content Toggle raw display
ν10\nu^{10}== 178β7467β6+178β5511β4+467β1 178\beta_{7} - 467\beta_{6} + 178\beta_{5} - 511\beta_{4} + 467\beta_1 Copy content Toggle raw display
ν11\nu^{11}== (178β11+645β10356β91290β8+2890β3+1445β2)/3 ( 178\beta_{11} + 645\beta_{10} - 356\beta_{9} - 1290\beta_{8} + 2890\beta_{3} + 1445\beta_{2} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1323Z)×\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times.

nn 785785 10811081
χ(n)\chi(n) β4\beta_{4} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
442.1
−0.474636 0.274031i
0.474636 + 0.274031i
−1.29589 0.748185i
1.29589 + 0.748185i
−1.82904 1.05600i
1.82904 + 1.05600i
−0.474636 + 0.274031i
0.474636 0.274031i
−1.29589 + 0.748185i
1.29589 0.748185i
−1.82904 + 1.05600i
1.82904 1.05600i
−0.849814 1.47192i 0 −0.444368 + 0.769668i −0.474636 + 0.822093i 0 0 −1.88874 0 1.61341
442.2 −0.849814 1.47192i 0 −0.444368 + 0.769668i 0.474636 0.822093i 0 0 −1.88874 0 −1.61341
442.3 0.119562 + 0.207087i 0 0.971410 1.68253i −1.29589 + 2.24456i 0 0 0.942820 0 −0.619757
442.4 0.119562 + 0.207087i 0 0.971410 1.68253i 1.29589 2.24456i 0 0 0.942820 0 0.619757
442.5 1.23025 + 2.13086i 0 −2.02704 + 3.51094i −1.82904 + 3.16799i 0 0 −5.05408 0 −9.00071
442.6 1.23025 + 2.13086i 0 −2.02704 + 3.51094i 1.82904 3.16799i 0 0 −5.05408 0 9.00071
883.1 −0.849814 + 1.47192i 0 −0.444368 0.769668i −0.474636 0.822093i 0 0 −1.88874 0 1.61341
883.2 −0.849814 + 1.47192i 0 −0.444368 0.769668i 0.474636 + 0.822093i 0 0 −1.88874 0 −1.61341
883.3 0.119562 0.207087i 0 0.971410 + 1.68253i −1.29589 2.24456i 0 0 0.942820 0 −0.619757
883.4 0.119562 0.207087i 0 0.971410 + 1.68253i 1.29589 + 2.24456i 0 0 0.942820 0 0.619757
883.5 1.23025 2.13086i 0 −2.02704 3.51094i −1.82904 3.16799i 0 0 −5.05408 0 −9.00071
883.6 1.23025 2.13086i 0 −2.02704 3.51094i 1.82904 + 3.16799i 0 0 −5.05408 0 9.00071
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 442.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
9.c even 3 1 inner
63.l odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.2.f.g 12
3.b odd 2 1 441.2.f.g 12
7.b odd 2 1 inner 1323.2.f.g 12
7.c even 3 1 1323.2.g.g 12
7.c even 3 1 1323.2.h.g 12
7.d odd 6 1 1323.2.g.g 12
7.d odd 6 1 1323.2.h.g 12
9.c even 3 1 inner 1323.2.f.g 12
9.c even 3 1 3969.2.a.bd 6
9.d odd 6 1 441.2.f.g 12
9.d odd 6 1 3969.2.a.be 6
21.c even 2 1 441.2.f.g 12
21.g even 6 1 441.2.g.g 12
21.g even 6 1 441.2.h.g 12
21.h odd 6 1 441.2.g.g 12
21.h odd 6 1 441.2.h.g 12
63.g even 3 1 1323.2.h.g 12
63.h even 3 1 1323.2.g.g 12
63.i even 6 1 441.2.g.g 12
63.j odd 6 1 441.2.g.g 12
63.k odd 6 1 1323.2.h.g 12
63.l odd 6 1 inner 1323.2.f.g 12
63.l odd 6 1 3969.2.a.bd 6
63.n odd 6 1 441.2.h.g 12
63.o even 6 1 441.2.f.g 12
63.o even 6 1 3969.2.a.be 6
63.s even 6 1 441.2.h.g 12
63.t odd 6 1 1323.2.g.g 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
441.2.f.g 12 3.b odd 2 1
441.2.f.g 12 9.d odd 6 1
441.2.f.g 12 21.c even 2 1
441.2.f.g 12 63.o even 6 1
441.2.g.g 12 21.g even 6 1
441.2.g.g 12 21.h odd 6 1
441.2.g.g 12 63.i even 6 1
441.2.g.g 12 63.j odd 6 1
441.2.h.g 12 21.g even 6 1
441.2.h.g 12 21.h odd 6 1
441.2.h.g 12 63.n odd 6 1
441.2.h.g 12 63.s even 6 1
1323.2.f.g 12 1.a even 1 1 trivial
1323.2.f.g 12 7.b odd 2 1 inner
1323.2.f.g 12 9.c even 3 1 inner
1323.2.f.g 12 63.l odd 6 1 inner
1323.2.g.g 12 7.c even 3 1
1323.2.g.g 12 7.d odd 6 1
1323.2.g.g 12 63.h even 3 1
1323.2.g.g 12 63.t odd 6 1
1323.2.h.g 12 7.c even 3 1
1323.2.h.g 12 7.d odd 6 1
1323.2.h.g 12 63.g even 3 1
1323.2.h.g 12 63.k odd 6 1
3969.2.a.bd 6 9.c even 3 1
3969.2.a.bd 6 63.l odd 6 1
3969.2.a.be 6 9.d odd 6 1
3969.2.a.be 6 63.o even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1323,[χ])S_{2}^{\mathrm{new}}(1323, [\chi]):

T26T25+5T24+2T23+17T224T2+1 T_{2}^{6} - T_{2}^{5} + 5T_{2}^{4} + 2T_{2}^{3} + 17T_{2}^{2} - 4T_{2} + 1 Copy content Toggle raw display
T512+21T510+333T58+2106T56+9963T54+8748T52+6561 T_{5}^{12} + 21T_{5}^{10} + 333T_{5}^{8} + 2106T_{5}^{6} + 9963T_{5}^{4} + 8748T_{5}^{2} + 6561 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T6T5+5T4++1)2 (T^{6} - T^{5} + 5 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12+21T10++6561 T^{12} + 21 T^{10} + \cdots + 6561 Copy content Toggle raw display
77 T12 T^{12} Copy content Toggle raw display
1111 (T64T5+17T4++1)2 (T^{6} - 4 T^{5} + 17 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
1313 T12+39T10++6561 T^{12} + 39 T^{10} + \cdots + 6561 Copy content Toggle raw display
1717 (T684T4+3969)2 (T^{6} - 84 T^{4} + \cdots - 3969)^{2} Copy content Toggle raw display
1919 (T675T4+3969)2 (T^{6} - 75 T^{4} + \cdots - 3969)^{2} Copy content Toggle raw display
2323 (T62T5++3481)2 (T^{6} - 2 T^{5} + \cdots + 3481)^{2} Copy content Toggle raw display
2929 (T611T5++7921)2 (T^{6} - 11 T^{5} + \cdots + 7921)^{2} Copy content Toggle raw display
3131 T12++6059221281 T^{12} + \cdots + 6059221281 Copy content Toggle raw display
3737 (T3+3T224T+27)4 (T^{3} + 3 T^{2} - 24 T + 27)^{4} Copy content Toggle raw display
4141 T12+162T10++43046721 T^{12} + 162 T^{10} + \cdots + 43046721 Copy content Toggle raw display
4343 (T6+3T5++729)2 (T^{6} + 3 T^{5} + \cdots + 729)^{2} Copy content Toggle raw display
4747 T12++37822859361 T^{12} + \cdots + 37822859361 Copy content Toggle raw display
5353 (T3+14T2+263)4 (T^{3} + 14 T^{2} + \cdots - 263)^{4} Copy content Toggle raw display
5959 T12++22430753361 T^{12} + \cdots + 22430753361 Copy content Toggle raw display
6161 T12++311374044081 T^{12} + \cdots + 311374044081 Copy content Toggle raw display
6767 (T6+111T4++124609)2 (T^{6} + 111 T^{4} + \cdots + 124609)^{2} Copy content Toggle raw display
7171 (T3+19T2++227)4 (T^{3} + 19 T^{2} + \cdots + 227)^{4} Copy content Toggle raw display
7373 (T675T4+3969)2 (T^{6} - 75 T^{4} + \cdots - 3969)^{2} Copy content Toggle raw display
7979 (T63T5++11449)2 (T^{6} - 3 T^{5} + \cdots + 11449)^{2} Copy content Toggle raw display
8383 T12++51769445841 T^{12} + \cdots + 51769445841 Copy content Toggle raw display
8989 (T6246T4+3969)2 (T^{6} - 246 T^{4} + \cdots - 3969)^{2} Copy content Toggle raw display
9797 T12+111T10++96059601 T^{12} + 111 T^{10} + \cdots + 96059601 Copy content Toggle raw display
show more
show less