Properties

Label 1323.2.h.b.802.3
Level $1323$
Weight $2$
Character 1323.802
Analytic conductor $10.564$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(226,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.226");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 802.3
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 1323.802
Dual form 1323.2.h.b.226.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.879385 q^{2} -1.22668 q^{4} +(-0.673648 + 1.16679i) q^{5} -2.83750 q^{8} +(-0.592396 + 1.02606i) q^{10} +(0.826352 + 1.43128i) q^{11} +(-1.68479 - 2.91815i) q^{13} -0.0418891 q^{16} +(-0.233956 + 0.405223i) q^{17} +(-1.61334 - 2.79439i) q^{19} +(0.826352 - 1.43128i) q^{20} +(0.726682 + 1.25865i) q^{22} +(4.47178 - 7.74535i) q^{23} +(1.59240 + 2.75811i) q^{25} +(-1.48158 - 2.56617i) q^{26} +(3.13429 - 5.42874i) q^{29} -9.23442 q^{31} +5.63816 q^{32} +(-0.205737 + 0.356347i) q^{34} +(-4.61721 - 7.99724i) q^{37} +(-1.41875 - 2.45734i) q^{38} +(1.91147 - 3.31077i) q^{40} +(-1.70574 - 2.95442i) q^{41} +(2.20574 - 3.82045i) q^{43} +(-1.01367 - 1.75573i) q^{44} +(3.93242 - 6.81115i) q^{46} +9.35504 q^{47} +(1.40033 + 2.42544i) q^{50} +(2.06670 + 3.57964i) q^{52} +(-0.286989 + 0.497079i) q^{53} -2.22668 q^{55} +(2.75624 - 4.77396i) q^{58} -10.3969 q^{59} -7.63816 q^{61} -8.12061 q^{62} +5.04189 q^{64} +4.53983 q^{65} +0.596267 q^{67} +(0.286989 - 0.497079i) q^{68} +0.554378 q^{71} +(1.02481 - 1.77503i) q^{73} +(-4.06031 - 7.03266i) q^{74} +(1.97906 + 3.42782i) q^{76} -2.40373 q^{79} +(0.0282185 - 0.0488759i) q^{80} +(-1.50000 - 2.59808i) q^{82} +(7.52481 - 13.0334i) q^{83} +(-0.315207 - 0.545955i) q^{85} +(1.93969 - 3.35965i) q^{86} +(-2.34477 - 4.06126i) q^{88} +(-4.54323 - 7.86911i) q^{89} +(-5.48545 + 9.50108i) q^{92} +8.22668 q^{94} +4.34730 q^{95} +(-0.949493 + 1.64457i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 6 q^{4} - 3 q^{5} - 12 q^{8} + 6 q^{11} - 3 q^{13} + 6 q^{16} - 6 q^{17} - 3 q^{19} + 6 q^{20} - 9 q^{22} + 12 q^{23} + 6 q^{25} + 3 q^{26} + 9 q^{29} + 6 q^{31} + 9 q^{34} + 3 q^{37} - 6 q^{38}+ \cdots - 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.879385 0.621819 0.310910 0.950439i \(-0.399366\pi\)
0.310910 + 0.950439i \(0.399366\pi\)
\(3\) 0 0
\(4\) −1.22668 −0.613341
\(5\) −0.673648 + 1.16679i −0.301265 + 0.521806i −0.976423 0.215867i \(-0.930742\pi\)
0.675158 + 0.737673i \(0.264075\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −2.83750 −1.00321
\(9\) 0 0
\(10\) −0.592396 + 1.02606i −0.187332 + 0.324469i
\(11\) 0.826352 + 1.43128i 0.249154 + 0.431548i 0.963291 0.268458i \(-0.0865140\pi\)
−0.714137 + 0.700006i \(0.753181\pi\)
\(12\) 0 0
\(13\) −1.68479 2.91815i −0.467277 0.809348i 0.532024 0.846729i \(-0.321432\pi\)
−0.999301 + 0.0373813i \(0.988098\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.0418891 −0.0104723
\(17\) −0.233956 + 0.405223i −0.0567426 + 0.0982810i −0.893001 0.450054i \(-0.851405\pi\)
0.836259 + 0.548335i \(0.184738\pi\)
\(18\) 0 0
\(19\) −1.61334 2.79439i −0.370126 0.641077i 0.619459 0.785029i \(-0.287352\pi\)
−0.989585 + 0.143953i \(0.954019\pi\)
\(20\) 0.826352 1.43128i 0.184778 0.320045i
\(21\) 0 0
\(22\) 0.726682 + 1.25865i 0.154929 + 0.268345i
\(23\) 4.47178 7.74535i 0.932431 1.61502i 0.153279 0.988183i \(-0.451017\pi\)
0.779152 0.626835i \(-0.215650\pi\)
\(24\) 0 0
\(25\) 1.59240 + 2.75811i 0.318479 + 0.551622i
\(26\) −1.48158 2.56617i −0.290562 0.503268i
\(27\) 0 0
\(28\) 0 0
\(29\) 3.13429 5.42874i 0.582022 1.00809i −0.413217 0.910632i \(-0.635595\pi\)
0.995239 0.0974595i \(-0.0310717\pi\)
\(30\) 0 0
\(31\) −9.23442 −1.65855 −0.829276 0.558840i \(-0.811247\pi\)
−0.829276 + 0.558840i \(0.811247\pi\)
\(32\) 5.63816 0.996695
\(33\) 0 0
\(34\) −0.205737 + 0.356347i −0.0352836 + 0.0611130i
\(35\) 0 0
\(36\) 0 0
\(37\) −4.61721 7.99724i −0.759065 1.31474i −0.943328 0.331862i \(-0.892323\pi\)
0.184263 0.982877i \(-0.441010\pi\)
\(38\) −1.41875 2.45734i −0.230151 0.398634i
\(39\) 0 0
\(40\) 1.91147 3.31077i 0.302231 0.523479i
\(41\) −1.70574 2.95442i −0.266391 0.461403i 0.701536 0.712634i \(-0.252498\pi\)
−0.967927 + 0.251231i \(0.919165\pi\)
\(42\) 0 0
\(43\) 2.20574 3.82045i 0.336372 0.582613i −0.647376 0.762171i \(-0.724133\pi\)
0.983747 + 0.179558i \(0.0574668\pi\)
\(44\) −1.01367 1.75573i −0.152817 0.264686i
\(45\) 0 0
\(46\) 3.93242 6.81115i 0.579803 1.00425i
\(47\) 9.35504 1.36457 0.682286 0.731085i \(-0.260986\pi\)
0.682286 + 0.731085i \(0.260986\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.40033 + 2.42544i 0.198037 + 0.343009i
\(51\) 0 0
\(52\) 2.06670 + 3.57964i 0.286600 + 0.496406i
\(53\) −0.286989 + 0.497079i −0.0394210 + 0.0682791i −0.885063 0.465472i \(-0.845885\pi\)
0.845642 + 0.533751i \(0.179218\pi\)
\(54\) 0 0
\(55\) −2.22668 −0.300246
\(56\) 0 0
\(57\) 0 0
\(58\) 2.75624 4.77396i 0.361913 0.626851i
\(59\) −10.3969 −1.35356 −0.676782 0.736183i \(-0.736626\pi\)
−0.676782 + 0.736183i \(0.736626\pi\)
\(60\) 0 0
\(61\) −7.63816 −0.977966 −0.488983 0.872293i \(-0.662632\pi\)
−0.488983 + 0.872293i \(0.662632\pi\)
\(62\) −8.12061 −1.03132
\(63\) 0 0
\(64\) 5.04189 0.630236
\(65\) 4.53983 0.563097
\(66\) 0 0
\(67\) 0.596267 0.0728456 0.0364228 0.999336i \(-0.488404\pi\)
0.0364228 + 0.999336i \(0.488404\pi\)
\(68\) 0.286989 0.497079i 0.0348025 0.0602797i
\(69\) 0 0
\(70\) 0 0
\(71\) 0.554378 0.0657925 0.0328963 0.999459i \(-0.489527\pi\)
0.0328963 + 0.999459i \(0.489527\pi\)
\(72\) 0 0
\(73\) 1.02481 1.77503i 0.119946 0.207752i −0.799800 0.600266i \(-0.795061\pi\)
0.919746 + 0.392514i \(0.128395\pi\)
\(74\) −4.06031 7.03266i −0.472001 0.817530i
\(75\) 0 0
\(76\) 1.97906 + 3.42782i 0.227013 + 0.393198i
\(77\) 0 0
\(78\) 0 0
\(79\) −2.40373 −0.270441 −0.135221 0.990816i \(-0.543174\pi\)
−0.135221 + 0.990816i \(0.543174\pi\)
\(80\) 0.0282185 0.0488759i 0.00315492 0.00546449i
\(81\) 0 0
\(82\) −1.50000 2.59808i −0.165647 0.286910i
\(83\) 7.52481 13.0334i 0.825956 1.43060i −0.0752309 0.997166i \(-0.523969\pi\)
0.901187 0.433431i \(-0.142697\pi\)
\(84\) 0 0
\(85\) −0.315207 0.545955i −0.0341891 0.0592172i
\(86\) 1.93969 3.35965i 0.209162 0.362280i
\(87\) 0 0
\(88\) −2.34477 4.06126i −0.249953 0.432932i
\(89\) −4.54323 7.86911i −0.481582 0.834124i 0.518195 0.855263i \(-0.326604\pi\)
−0.999777 + 0.0211385i \(0.993271\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −5.48545 + 9.50108i −0.571898 + 0.990556i
\(93\) 0 0
\(94\) 8.22668 0.848517
\(95\) 4.34730 0.446023
\(96\) 0 0
\(97\) −0.949493 + 1.64457i −0.0964064 + 0.166981i −0.910195 0.414181i \(-0.864068\pi\)
0.813788 + 0.581161i \(0.197402\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −1.95336 3.38332i −0.195336 0.338332i
\(101\) 0.854570 + 1.48016i 0.0850329 + 0.147281i 0.905405 0.424548i \(-0.139567\pi\)
−0.820372 + 0.571830i \(0.806234\pi\)
\(102\) 0 0
\(103\) −1.81908 + 3.15074i −0.179239 + 0.310451i −0.941620 0.336677i \(-0.890697\pi\)
0.762381 + 0.647128i \(0.224030\pi\)
\(104\) 4.78059 + 8.28023i 0.468776 + 0.811943i
\(105\) 0 0
\(106\) −0.252374 + 0.437124i −0.0245127 + 0.0424573i
\(107\) 3.56418 + 6.17334i 0.344562 + 0.596799i 0.985274 0.170982i \(-0.0546941\pi\)
−0.640712 + 0.767781i \(0.721361\pi\)
\(108\) 0 0
\(109\) −0.201867 + 0.349643i −0.0193353 + 0.0334898i −0.875531 0.483162i \(-0.839488\pi\)
0.856196 + 0.516651i \(0.172822\pi\)
\(110\) −1.95811 −0.186699
\(111\) 0 0
\(112\) 0 0
\(113\) 7.18479 + 12.4444i 0.675888 + 1.17067i 0.976208 + 0.216835i \(0.0695732\pi\)
−0.300320 + 0.953839i \(0.597093\pi\)
\(114\) 0 0
\(115\) 6.02481 + 10.4353i 0.561817 + 0.973095i
\(116\) −3.84477 + 6.65934i −0.356978 + 0.618304i
\(117\) 0 0
\(118\) −9.14290 −0.841672
\(119\) 0 0
\(120\) 0 0
\(121\) 4.13429 7.16079i 0.375844 0.650981i
\(122\) −6.71688 −0.608118
\(123\) 0 0
\(124\) 11.3277 1.01726
\(125\) −11.0273 −0.986315
\(126\) 0 0
\(127\) −20.7716 −1.84318 −0.921589 0.388167i \(-0.873108\pi\)
−0.921589 + 0.388167i \(0.873108\pi\)
\(128\) −6.84255 −0.604802
\(129\) 0 0
\(130\) 3.99226 0.350144
\(131\) 3.58260 6.20524i 0.313013 0.542154i −0.666000 0.745952i \(-0.731995\pi\)
0.979013 + 0.203797i \(0.0653284\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.524348 0.0452968
\(135\) 0 0
\(136\) 0.663848 1.14982i 0.0569245 0.0985961i
\(137\) 1.28446 + 2.22475i 0.109739 + 0.190074i 0.915665 0.401943i \(-0.131665\pi\)
−0.805925 + 0.592017i \(0.798332\pi\)
\(138\) 0 0
\(139\) −3.06670 5.31169i −0.260114 0.450531i 0.706158 0.708055i \(-0.250427\pi\)
−0.966272 + 0.257523i \(0.917094\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.487511 0.0409111
\(143\) 2.78446 4.82283i 0.232848 0.403305i
\(144\) 0 0
\(145\) 4.22281 + 7.31412i 0.350685 + 0.607405i
\(146\) 0.901207 1.56094i 0.0745844 0.129184i
\(147\) 0 0
\(148\) 5.66385 + 9.81007i 0.465565 + 0.806383i
\(149\) 0.215537 0.373321i 0.0176575 0.0305837i −0.857062 0.515214i \(-0.827712\pi\)
0.874719 + 0.484630i \(0.161046\pi\)
\(150\) 0 0
\(151\) 1.23530 + 2.13960i 0.100527 + 0.174118i 0.911902 0.410408i \(-0.134614\pi\)
−0.811375 + 0.584526i \(0.801280\pi\)
\(152\) 4.57785 + 7.92907i 0.371313 + 0.643132i
\(153\) 0 0
\(154\) 0 0
\(155\) 6.22075 10.7747i 0.499663 0.865441i
\(156\) 0 0
\(157\) −10.1334 −0.808734 −0.404367 0.914597i \(-0.632508\pi\)
−0.404367 + 0.914597i \(0.632508\pi\)
\(158\) −2.11381 −0.168166
\(159\) 0 0
\(160\) −3.79813 + 6.57856i −0.300269 + 0.520081i
\(161\) 0 0
\(162\) 0 0
\(163\) 1.29813 + 2.24843i 0.101678 + 0.176111i 0.912376 0.409353i \(-0.134246\pi\)
−0.810698 + 0.585464i \(0.800912\pi\)
\(164\) 2.09240 + 3.62414i 0.163389 + 0.282998i
\(165\) 0 0
\(166\) 6.61721 11.4613i 0.513595 0.889573i
\(167\) 11.5915 + 20.0771i 0.896979 + 1.55361i 0.831337 + 0.555769i \(0.187576\pi\)
0.0656422 + 0.997843i \(0.479090\pi\)
\(168\) 0 0
\(169\) 0.822948 1.42539i 0.0633037 0.109645i
\(170\) −0.277189 0.480105i −0.0212594 0.0368224i
\(171\) 0 0
\(172\) −2.70574 + 4.68647i −0.206311 + 0.357340i
\(173\) −4.75196 −0.361285 −0.180643 0.983549i \(-0.557818\pi\)
−0.180643 + 0.983549i \(0.557818\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.0346151 0.0599551i −0.00260921 0.00451929i
\(177\) 0 0
\(178\) −3.99525 6.91998i −0.299457 0.518674i
\(179\) −4.26604 + 7.38901i −0.318859 + 0.552280i −0.980250 0.197761i \(-0.936633\pi\)
0.661391 + 0.750041i \(0.269966\pi\)
\(180\) 0 0
\(181\) 17.2344 1.28102 0.640512 0.767948i \(-0.278722\pi\)
0.640512 + 0.767948i \(0.278722\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −12.6887 + 21.9774i −0.935421 + 1.62020i
\(185\) 12.4415 0.914718
\(186\) 0 0
\(187\) −0.773318 −0.0565506
\(188\) −11.4757 −0.836948
\(189\) 0 0
\(190\) 3.82295 0.277346
\(191\) −12.9094 −0.934092 −0.467046 0.884233i \(-0.654682\pi\)
−0.467046 + 0.884233i \(0.654682\pi\)
\(192\) 0 0
\(193\) −0.638156 −0.0459355 −0.0229677 0.999736i \(-0.507311\pi\)
−0.0229677 + 0.999736i \(0.507311\pi\)
\(194\) −0.834970 + 1.44621i −0.0599473 + 0.103832i
\(195\) 0 0
\(196\) 0 0
\(197\) −11.4456 −0.815467 −0.407733 0.913101i \(-0.633681\pi\)
−0.407733 + 0.913101i \(0.633681\pi\)
\(198\) 0 0
\(199\) −1.81908 + 3.15074i −0.128951 + 0.223350i −0.923270 0.384151i \(-0.874494\pi\)
0.794319 + 0.607500i \(0.207828\pi\)
\(200\) −4.51842 7.82613i −0.319500 0.553391i
\(201\) 0 0
\(202\) 0.751497 + 1.30163i 0.0528751 + 0.0915824i
\(203\) 0 0
\(204\) 0 0
\(205\) 4.59627 0.321017
\(206\) −1.59967 + 2.77071i −0.111454 + 0.193045i
\(207\) 0 0
\(208\) 0.0705744 + 0.122238i 0.00489345 + 0.00847571i
\(209\) 2.66637 4.61830i 0.184437 0.319454i
\(210\) 0 0
\(211\) −2.91147 5.04282i −0.200434 0.347162i 0.748234 0.663435i \(-0.230902\pi\)
−0.948668 + 0.316273i \(0.897569\pi\)
\(212\) 0.352044 0.609758i 0.0241785 0.0418784i
\(213\) 0 0
\(214\) 3.13429 + 5.42874i 0.214255 + 0.371101i
\(215\) 2.97178 + 5.14728i 0.202674 + 0.351041i
\(216\) 0 0
\(217\) 0 0
\(218\) −0.177519 + 0.307471i −0.0120231 + 0.0208246i
\(219\) 0 0
\(220\) 2.73143 0.184153
\(221\) 1.57667 0.106058
\(222\) 0 0
\(223\) 3.54189 6.13473i 0.237182 0.410812i −0.722722 0.691139i \(-0.757109\pi\)
0.959905 + 0.280327i \(0.0904428\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 6.31820 + 10.9434i 0.420280 + 0.727947i
\(227\) 5.97178 + 10.3434i 0.396361 + 0.686517i 0.993274 0.115789i \(-0.0369395\pi\)
−0.596913 + 0.802306i \(0.703606\pi\)
\(228\) 0 0
\(229\) −8.77631 + 15.2010i −0.579955 + 1.00451i 0.415529 + 0.909580i \(0.363597\pi\)
−0.995484 + 0.0949315i \(0.969737\pi\)
\(230\) 5.29813 + 9.17664i 0.349349 + 0.605089i
\(231\) 0 0
\(232\) −8.89352 + 15.4040i −0.583888 + 1.01132i
\(233\) 8.12701 + 14.0764i 0.532418 + 0.922175i 0.999284 + 0.0378470i \(0.0120499\pi\)
−0.466865 + 0.884328i \(0.654617\pi\)
\(234\) 0 0
\(235\) −6.30200 + 10.9154i −0.411097 + 0.712042i
\(236\) 12.7537 0.830196
\(237\) 0 0
\(238\) 0 0
\(239\) −7.54963 13.0763i −0.488345 0.845838i 0.511565 0.859244i \(-0.329066\pi\)
−0.999910 + 0.0134062i \(0.995733\pi\)
\(240\) 0 0
\(241\) −7.81908 13.5430i −0.503671 0.872384i −0.999991 0.00424420i \(-0.998649\pi\)
0.496320 0.868140i \(-0.334684\pi\)
\(242\) 3.63563 6.29710i 0.233707 0.404793i
\(243\) 0 0
\(244\) 9.36959 0.599826
\(245\) 0 0
\(246\) 0 0
\(247\) −5.43629 + 9.41593i −0.345903 + 0.599121i
\(248\) 26.2026 1.66387
\(249\) 0 0
\(250\) −9.69728 −0.613310
\(251\) 19.0651 1.20338 0.601690 0.798730i \(-0.294494\pi\)
0.601690 + 0.798730i \(0.294494\pi\)
\(252\) 0 0
\(253\) 14.7811 0.929277
\(254\) −18.2662 −1.14612
\(255\) 0 0
\(256\) −16.1010 −1.00631
\(257\) −13.2909 + 23.0204i −0.829061 + 1.43598i 0.0697146 + 0.997567i \(0.477791\pi\)
−0.898776 + 0.438409i \(0.855542\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −5.56893 −0.345370
\(261\) 0 0
\(262\) 3.15048 5.45680i 0.194637 0.337122i
\(263\) −0.367059 0.635765i −0.0226338 0.0392029i 0.854487 0.519473i \(-0.173872\pi\)
−0.877120 + 0.480270i \(0.840539\pi\)
\(264\) 0 0
\(265\) −0.386659 0.669713i −0.0237523 0.0411402i
\(266\) 0 0
\(267\) 0 0
\(268\) −0.731429 −0.0446792
\(269\) 10.4251 18.0569i 0.635632 1.10095i −0.350749 0.936470i \(-0.614073\pi\)
0.986381 0.164478i \(-0.0525939\pi\)
\(270\) 0 0
\(271\) 3.47906 + 6.02590i 0.211338 + 0.366047i 0.952133 0.305683i \(-0.0988847\pi\)
−0.740796 + 0.671730i \(0.765551\pi\)
\(272\) 0.00980018 0.0169744i 0.000594223 0.00102922i
\(273\) 0 0
\(274\) 1.12954 + 1.95642i 0.0682379 + 0.118191i
\(275\) −2.63176 + 4.55834i −0.158701 + 0.274878i
\(276\) 0 0
\(277\) −8.93629 15.4781i −0.536930 0.929989i −0.999067 0.0431811i \(-0.986251\pi\)
0.462138 0.886808i \(-0.347083\pi\)
\(278\) −2.69681 4.67102i −0.161744 0.280149i
\(279\) 0 0
\(280\) 0 0
\(281\) 11.1552 19.3214i 0.665465 1.15262i −0.313694 0.949524i \(-0.601567\pi\)
0.979159 0.203095i \(-0.0651001\pi\)
\(282\) 0 0
\(283\) 18.5945 1.10533 0.552665 0.833404i \(-0.313611\pi\)
0.552665 + 0.833404i \(0.313611\pi\)
\(284\) −0.680045 −0.0403532
\(285\) 0 0
\(286\) 2.44862 4.24113i 0.144790 0.250783i
\(287\) 0 0
\(288\) 0 0
\(289\) 8.39053 + 14.5328i 0.493561 + 0.854872i
\(290\) 3.71348 + 6.43193i 0.218063 + 0.377696i
\(291\) 0 0
\(292\) −1.25712 + 2.17740i −0.0735675 + 0.127423i
\(293\) −6.54576 11.3376i −0.382407 0.662349i 0.608998 0.793171i \(-0.291572\pi\)
−0.991406 + 0.130822i \(0.958238\pi\)
\(294\) 0 0
\(295\) 7.00387 12.1311i 0.407781 0.706298i
\(296\) 13.1013 + 22.6922i 0.761499 + 1.31895i
\(297\) 0 0
\(298\) 0.189540 0.328293i 0.0109798 0.0190175i
\(299\) −30.1361 −1.74282
\(300\) 0 0
\(301\) 0 0
\(302\) 1.08630 + 1.88153i 0.0625098 + 0.108270i
\(303\) 0 0
\(304\) 0.0675813 + 0.117054i 0.00387606 + 0.00671353i
\(305\) 5.14543 8.91215i 0.294626 0.510308i
\(306\) 0 0
\(307\) −6.31046 −0.360157 −0.180078 0.983652i \(-0.557635\pi\)
−0.180078 + 0.983652i \(0.557635\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 5.47044 9.47508i 0.310700 0.538148i
\(311\) −9.52435 −0.540076 −0.270038 0.962850i \(-0.587036\pi\)
−0.270038 + 0.962850i \(0.587036\pi\)
\(312\) 0 0
\(313\) 17.6287 0.996431 0.498215 0.867053i \(-0.333989\pi\)
0.498215 + 0.867053i \(0.333989\pi\)
\(314\) −8.91117 −0.502886
\(315\) 0 0
\(316\) 2.94862 0.165873
\(317\) −8.07697 −0.453648 −0.226824 0.973936i \(-0.572834\pi\)
−0.226824 + 0.973936i \(0.572834\pi\)
\(318\) 0 0
\(319\) 10.3601 0.580054
\(320\) −3.39646 + 5.88284i −0.189868 + 0.328861i
\(321\) 0 0
\(322\) 0 0
\(323\) 1.50980 0.0840075
\(324\) 0 0
\(325\) 5.36571 9.29369i 0.297636 0.515521i
\(326\) 1.14156 + 1.97724i 0.0632251 + 0.109509i
\(327\) 0 0
\(328\) 4.84002 + 8.38316i 0.267246 + 0.462883i
\(329\) 0 0
\(330\) 0 0
\(331\) 23.0496 1.26692 0.633461 0.773775i \(-0.281634\pi\)
0.633461 + 0.773775i \(0.281634\pi\)
\(332\) −9.23055 + 15.9878i −0.506592 + 0.877444i
\(333\) 0 0
\(334\) 10.1934 + 17.6555i 0.557759 + 0.966066i
\(335\) −0.401674 + 0.695720i −0.0219458 + 0.0380112i
\(336\) 0 0
\(337\) −14.5116 25.1348i −0.790498 1.36918i −0.925659 0.378359i \(-0.876489\pi\)
0.135161 0.990824i \(-0.456845\pi\)
\(338\) 0.723689 1.25347i 0.0393635 0.0681795i
\(339\) 0 0
\(340\) 0.386659 + 0.669713i 0.0209695 + 0.0363203i
\(341\) −7.63088 13.2171i −0.413235 0.715745i
\(342\) 0 0
\(343\) 0 0
\(344\) −6.25877 + 10.8405i −0.337450 + 0.584481i
\(345\) 0 0
\(346\) −4.17881 −0.224654
\(347\) −12.9463 −0.694991 −0.347496 0.937682i \(-0.612968\pi\)
−0.347496 + 0.937682i \(0.612968\pi\)
\(348\) 0 0
\(349\) 0.731429 1.26687i 0.0391525 0.0678141i −0.845785 0.533524i \(-0.820868\pi\)
0.884938 + 0.465710i \(0.154201\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.65910 + 8.06980i 0.248331 + 0.430122i
\(353\) −7.16637 12.4125i −0.381428 0.660652i 0.609839 0.792525i \(-0.291234\pi\)
−0.991267 + 0.131873i \(0.957901\pi\)
\(354\) 0 0
\(355\) −0.373455 + 0.646844i −0.0198210 + 0.0343309i
\(356\) 5.57310 + 9.65289i 0.295374 + 0.511602i
\(357\) 0 0
\(358\) −3.75150 + 6.49778i −0.198273 + 0.343418i
\(359\) −10.4684 18.1318i −0.552500 0.956958i −0.998093 0.0617224i \(-0.980341\pi\)
0.445593 0.895235i \(-0.352993\pi\)
\(360\) 0 0
\(361\) 4.29426 7.43788i 0.226014 0.391467i
\(362\) 15.1557 0.796566
\(363\) 0 0
\(364\) 0 0
\(365\) 1.38073 + 2.39149i 0.0722707 + 0.125176i
\(366\) 0 0
\(367\) −6.02869 10.4420i −0.314695 0.545067i 0.664678 0.747130i \(-0.268569\pi\)
−0.979373 + 0.202063i \(0.935236\pi\)
\(368\) −0.187319 + 0.324446i −0.00976466 + 0.0169129i
\(369\) 0 0
\(370\) 10.9409 0.568789
\(371\) 0 0
\(372\) 0 0
\(373\) 0.390530 0.676417i 0.0202209 0.0350235i −0.855738 0.517410i \(-0.826896\pi\)
0.875959 + 0.482386i \(0.160230\pi\)
\(374\) −0.680045 −0.0351643
\(375\) 0 0
\(376\) −26.5449 −1.36895
\(377\) −21.1225 −1.08786
\(378\) 0 0
\(379\) −6.92396 −0.355660 −0.177830 0.984061i \(-0.556908\pi\)
−0.177830 + 0.984061i \(0.556908\pi\)
\(380\) −5.33275 −0.273564
\(381\) 0 0
\(382\) −11.3523 −0.580837
\(383\) −3.86618 + 6.69642i −0.197553 + 0.342171i −0.947734 0.319061i \(-0.896633\pi\)
0.750182 + 0.661232i \(0.229966\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −0.561185 −0.0285636
\(387\) 0 0
\(388\) 1.16473 2.01736i 0.0591300 0.102416i
\(389\) 2.69981 + 4.67620i 0.136886 + 0.237093i 0.926316 0.376747i \(-0.122957\pi\)
−0.789431 + 0.613840i \(0.789624\pi\)
\(390\) 0 0
\(391\) 2.09240 + 3.62414i 0.105817 + 0.183280i
\(392\) 0 0
\(393\) 0 0
\(394\) −10.0651 −0.507073
\(395\) 1.61927 2.80466i 0.0814743 0.141118i
\(396\) 0 0
\(397\) −14.6172 25.3178i −0.733617 1.27066i −0.955328 0.295549i \(-0.904497\pi\)
0.221711 0.975112i \(-0.428836\pi\)
\(398\) −1.59967 + 2.77071i −0.0801842 + 0.138883i
\(399\) 0 0
\(400\) −0.0667040 0.115535i −0.00333520 0.00577674i
\(401\) −13.6989 + 23.7272i −0.684092 + 1.18488i 0.289629 + 0.957139i \(0.406468\pi\)
−0.973721 + 0.227743i \(0.926865\pi\)
\(402\) 0 0
\(403\) 15.5581 + 26.9474i 0.775003 + 1.34235i
\(404\) −1.04829 1.81568i −0.0521542 0.0903337i
\(405\) 0 0
\(406\) 0 0
\(407\) 7.63088 13.2171i 0.378249 0.655146i
\(408\) 0 0
\(409\) 9.02498 0.446256 0.223128 0.974789i \(-0.428373\pi\)
0.223128 + 0.974789i \(0.428373\pi\)
\(410\) 4.04189 0.199615
\(411\) 0 0
\(412\) 2.23143 3.86495i 0.109935 0.190412i
\(413\) 0 0
\(414\) 0 0
\(415\) 10.1382 + 17.5598i 0.497662 + 0.861977i
\(416\) −9.49912 16.4530i −0.465733 0.806673i
\(417\) 0 0
\(418\) 2.34477 4.06126i 0.114686 0.198643i
\(419\) −0.0876485 0.151812i −0.00428191 0.00741649i 0.863877 0.503704i \(-0.168030\pi\)
−0.868158 + 0.496287i \(0.834696\pi\)
\(420\) 0 0
\(421\) 12.3525 21.3952i 0.602025 1.04274i −0.390490 0.920607i \(-0.627694\pi\)
0.992514 0.122130i \(-0.0389724\pi\)
\(422\) −2.56031 4.43458i −0.124634 0.215872i
\(423\) 0 0
\(424\) 0.814330 1.41046i 0.0395474 0.0684980i
\(425\) −1.49020 −0.0722853
\(426\) 0 0
\(427\) 0 0
\(428\) −4.37211 7.57272i −0.211334 0.366041i
\(429\) 0 0
\(430\) 2.61334 + 4.52644i 0.126026 + 0.218284i
\(431\) −14.6596 + 25.3911i −0.706126 + 1.22305i 0.260157 + 0.965566i \(0.416226\pi\)
−0.966283 + 0.257481i \(0.917108\pi\)
\(432\) 0 0
\(433\) −19.6554 −0.944578 −0.472289 0.881444i \(-0.656572\pi\)
−0.472289 + 0.881444i \(0.656572\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.247626 0.428901i 0.0118591 0.0205406i
\(437\) −28.8580 −1.38047
\(438\) 0 0
\(439\) 21.9299 1.04666 0.523330 0.852130i \(-0.324690\pi\)
0.523330 + 0.852130i \(0.324690\pi\)
\(440\) 6.31820 0.301208
\(441\) 0 0
\(442\) 1.38650 0.0659489
\(443\) 18.7101 0.888942 0.444471 0.895793i \(-0.353392\pi\)
0.444471 + 0.895793i \(0.353392\pi\)
\(444\) 0 0
\(445\) 12.2422 0.580334
\(446\) 3.11468 5.39479i 0.147485 0.255451i
\(447\) 0 0
\(448\) 0 0
\(449\) −6.68004 −0.315251 −0.157625 0.987499i \(-0.550384\pi\)
−0.157625 + 0.987499i \(0.550384\pi\)
\(450\) 0 0
\(451\) 2.81908 4.88279i 0.132745 0.229921i
\(452\) −8.81345 15.2653i −0.414550 0.718022i
\(453\) 0 0
\(454\) 5.25150 + 9.09586i 0.246465 + 0.426890i
\(455\) 0 0
\(456\) 0 0
\(457\) −19.4287 −0.908837 −0.454418 0.890788i \(-0.650153\pi\)
−0.454418 + 0.890788i \(0.650153\pi\)
\(458\) −7.71776 + 13.3676i −0.360627 + 0.624625i
\(459\) 0 0
\(460\) −7.39053 12.8008i −0.344585 0.596839i
\(461\) 0.482926 0.836452i 0.0224921 0.0389575i −0.854560 0.519352i \(-0.826173\pi\)
0.877052 + 0.480395i \(0.159507\pi\)
\(462\) 0 0
\(463\) 0.222811 + 0.385920i 0.0103549 + 0.0179352i 0.871156 0.491006i \(-0.163371\pi\)
−0.860802 + 0.508941i \(0.830037\pi\)
\(464\) −0.131292 + 0.227405i −0.00609509 + 0.0105570i
\(465\) 0 0
\(466\) 7.14677 + 12.3786i 0.331068 + 0.573426i
\(467\) 17.1074 + 29.6309i 0.791637 + 1.37115i 0.924953 + 0.380081i \(0.124104\pi\)
−0.133317 + 0.991074i \(0.542563\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −5.54189 + 9.59883i −0.255628 + 0.442761i
\(471\) 0 0
\(472\) 29.5012 1.35790
\(473\) 7.29086 0.335234
\(474\) 0 0
\(475\) 5.13816 8.89955i 0.235755 0.408339i
\(476\) 0 0
\(477\) 0 0
\(478\) −6.63903 11.4991i −0.303662 0.525959i
\(479\) 10.8965 + 18.8732i 0.497872 + 0.862339i 0.999997 0.00245553i \(-0.000781622\pi\)
−0.502125 + 0.864795i \(0.667448\pi\)
\(480\) 0 0
\(481\) −15.5581 + 26.9474i −0.709388 + 1.22870i
\(482\) −6.87598 11.9095i −0.313192 0.542465i
\(483\) 0 0
\(484\) −5.07145 + 8.78401i −0.230521 + 0.399273i
\(485\) −1.27925 2.21572i −0.0580877 0.100611i
\(486\) 0 0
\(487\) −9.69640 + 16.7947i −0.439386 + 0.761039i −0.997642 0.0686297i \(-0.978137\pi\)
0.558256 + 0.829669i \(0.311471\pi\)
\(488\) 21.6732 0.981101
\(489\) 0 0
\(490\) 0 0
\(491\) 13.0783 + 22.6523i 0.590216 + 1.02228i 0.994203 + 0.107519i \(0.0342908\pi\)
−0.403987 + 0.914765i \(0.632376\pi\)
\(492\) 0 0
\(493\) 1.46657 + 2.54017i 0.0660509 + 0.114403i
\(494\) −4.78059 + 8.28023i −0.215089 + 0.372545i
\(495\) 0 0
\(496\) 0.386821 0.0173688
\(497\) 0 0
\(498\) 0 0
\(499\) 7.15064 12.3853i 0.320107 0.554441i −0.660403 0.750911i \(-0.729615\pi\)
0.980510 + 0.196470i \(0.0629479\pi\)
\(500\) 13.5270 0.604947
\(501\) 0 0
\(502\) 16.7656 0.748284
\(503\) 18.7033 0.833937 0.416969 0.908921i \(-0.363092\pi\)
0.416969 + 0.908921i \(0.363092\pi\)
\(504\) 0 0
\(505\) −2.30272 −0.102470
\(506\) 12.9982 0.577842
\(507\) 0 0
\(508\) 25.4801 1.13050
\(509\) 12.8045 22.1781i 0.567551 0.983027i −0.429257 0.903183i \(-0.641224\pi\)
0.996807 0.0798442i \(-0.0254423\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −0.473897 −0.0209435
\(513\) 0 0
\(514\) −11.6878 + 20.2438i −0.515526 + 0.892917i
\(515\) −2.45084 4.24497i −0.107997 0.187056i
\(516\) 0 0
\(517\) 7.73055 + 13.3897i 0.339989 + 0.588879i
\(518\) 0 0
\(519\) 0 0
\(520\) −12.8817 −0.564902
\(521\) 10.6061 18.3702i 0.464660 0.804815i −0.534526 0.845152i \(-0.679510\pi\)
0.999186 + 0.0403370i \(0.0128431\pi\)
\(522\) 0 0
\(523\) 10.4029 + 18.0183i 0.454885 + 0.787884i 0.998682 0.0513330i \(-0.0163470\pi\)
−0.543796 + 0.839217i \(0.683014\pi\)
\(524\) −4.39470 + 7.61185i −0.191984 + 0.332525i
\(525\) 0 0
\(526\) −0.322786 0.559082i −0.0140741 0.0243771i
\(527\) 2.16044 3.74200i 0.0941104 0.163004i
\(528\) 0 0
\(529\) −28.4937 49.3525i −1.23885 2.14576i
\(530\) −0.340022 0.588936i −0.0147696 0.0255817i
\(531\) 0 0
\(532\) 0 0
\(533\) −5.74763 + 9.95518i −0.248957 + 0.431207i
\(534\) 0 0
\(535\) −9.60401 −0.415217
\(536\) −1.69190 −0.0730791
\(537\) 0 0
\(538\) 9.16772 15.8790i 0.395248 0.684590i
\(539\) 0 0
\(540\) 0 0
\(541\) −13.3648 23.1486i −0.574599 0.995235i −0.996085 0.0884001i \(-0.971825\pi\)
0.421486 0.906835i \(-0.361509\pi\)
\(542\) 3.05943 + 5.29909i 0.131414 + 0.227615i
\(543\) 0 0
\(544\) −1.31908 + 2.28471i −0.0565550 + 0.0979561i
\(545\) −0.271974 0.471073i −0.0116501 0.0201786i
\(546\) 0 0
\(547\) −18.3812 + 31.8372i −0.785923 + 1.36126i 0.142523 + 0.989792i \(0.454479\pi\)
−0.928446 + 0.371467i \(0.878855\pi\)
\(548\) −1.57563 2.72907i −0.0673074 0.116580i
\(549\) 0 0
\(550\) −2.31433 + 4.00854i −0.0986834 + 0.170925i
\(551\) −20.2267 −0.861686
\(552\) 0 0
\(553\) 0 0
\(554\) −7.85844 13.6112i −0.333873 0.578285i
\(555\) 0 0
\(556\) 3.76187 + 6.51575i 0.159539 + 0.276329i
\(557\) 16.1694 28.0062i 0.685118 1.18666i −0.288282 0.957546i \(-0.593084\pi\)
0.973400 0.229114i \(-0.0735827\pi\)
\(558\) 0 0
\(559\) −14.8648 −0.628716
\(560\) 0 0
\(561\) 0 0
\(562\) 9.80974 16.9910i 0.413799 0.716721i
\(563\) −17.7419 −0.747730 −0.373865 0.927483i \(-0.621968\pi\)
−0.373865 + 0.927483i \(0.621968\pi\)
\(564\) 0 0
\(565\) −19.3601 −0.814485
\(566\) 16.3517 0.687315
\(567\) 0 0
\(568\) −1.57304 −0.0660035
\(569\) 26.6013 1.11519 0.557593 0.830115i \(-0.311725\pi\)
0.557593 + 0.830115i \(0.311725\pi\)
\(570\) 0 0
\(571\) −10.0172 −0.419208 −0.209604 0.977786i \(-0.567218\pi\)
−0.209604 + 0.977786i \(0.567218\pi\)
\(572\) −3.41565 + 5.91608i −0.142815 + 0.247364i
\(573\) 0 0
\(574\) 0 0
\(575\) 28.4834 1.18784
\(576\) 0 0
\(577\) −16.4572 + 28.5048i −0.685124 + 1.18667i 0.288274 + 0.957548i \(0.406918\pi\)
−0.973398 + 0.229121i \(0.926415\pi\)
\(578\) 7.37851 + 12.7800i 0.306905 + 0.531576i
\(579\) 0 0
\(580\) −5.18004 8.97210i −0.215090 0.372546i
\(581\) 0 0
\(582\) 0 0
\(583\) −0.948615 −0.0392876
\(584\) −2.90791 + 5.03665i −0.120330 + 0.208418i
\(585\) 0 0
\(586\) −5.75624 9.97011i −0.237788 0.411861i
\(587\) 7.53643 13.0535i 0.311062 0.538774i −0.667531 0.744582i \(-0.732649\pi\)
0.978592 + 0.205808i \(0.0659821\pi\)
\(588\) 0 0
\(589\) 14.8983 + 25.8046i 0.613873 + 1.06326i
\(590\) 6.15910 10.6679i 0.253566 0.439189i
\(591\) 0 0
\(592\) 0.193411 + 0.334997i 0.00794913 + 0.0137683i
\(593\) −20.5005 35.5079i −0.841853 1.45813i −0.888326 0.459213i \(-0.848131\pi\)
0.0464729 0.998920i \(-0.485202\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.264396 + 0.457947i −0.0108301 + 0.0187582i
\(597\) 0 0
\(598\) −26.5012 −1.08372
\(599\) −6.07367 −0.248164 −0.124082 0.992272i \(-0.539599\pi\)
−0.124082 + 0.992272i \(0.539599\pi\)
\(600\) 0 0
\(601\) −7.06758 + 12.2414i −0.288293 + 0.499338i −0.973402 0.229102i \(-0.926421\pi\)
0.685110 + 0.728440i \(0.259754\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.51532 2.62461i −0.0616575 0.106794i
\(605\) 5.57011 + 9.64771i 0.226457 + 0.392235i
\(606\) 0 0
\(607\) 23.0449 39.9149i 0.935363 1.62010i 0.161377 0.986893i \(-0.448406\pi\)
0.773986 0.633203i \(-0.218260\pi\)
\(608\) −9.09627 15.7552i −0.368902 0.638958i
\(609\) 0 0
\(610\) 4.52481 7.83721i 0.183204 0.317319i
\(611\) −15.7613 27.2994i −0.637634 1.10441i
\(612\) 0 0
\(613\) 13.2469 22.9443i 0.535038 0.926712i −0.464124 0.885770i \(-0.653631\pi\)
0.999162 0.0409421i \(-0.0130359\pi\)
\(614\) −5.54933 −0.223953
\(615\) 0 0
\(616\) 0 0
\(617\) −1.12495 1.94847i −0.0452889 0.0784426i 0.842492 0.538708i \(-0.181087\pi\)
−0.887781 + 0.460266i \(0.847754\pi\)
\(618\) 0 0
\(619\) 3.09539 + 5.36137i 0.124414 + 0.215492i 0.921504 0.388369i \(-0.126962\pi\)
−0.797090 + 0.603861i \(0.793628\pi\)
\(620\) −7.63088 + 13.2171i −0.306464 + 0.530811i
\(621\) 0 0
\(622\) −8.37557 −0.335830
\(623\) 0 0
\(624\) 0 0
\(625\) −0.533433 + 0.923933i −0.0213373 + 0.0369573i
\(626\) 15.5024 0.619600
\(627\) 0 0
\(628\) 12.4305 0.496030
\(629\) 4.32089 0.172285
\(630\) 0 0
\(631\) 26.1661 1.04166 0.520829 0.853661i \(-0.325623\pi\)
0.520829 + 0.853661i \(0.325623\pi\)
\(632\) 6.82058 0.271308
\(633\) 0 0
\(634\) −7.10277 −0.282087
\(635\) 13.9927 24.2361i 0.555284 0.961781i
\(636\) 0 0
\(637\) 0 0
\(638\) 9.11051 0.360689
\(639\) 0 0
\(640\) 4.60947 7.98384i 0.182205 0.315589i
\(641\) 2.44444 + 4.23389i 0.0965496 + 0.167229i 0.910254 0.414050i \(-0.135886\pi\)
−0.813705 + 0.581278i \(0.802553\pi\)
\(642\) 0 0
\(643\) −20.1839 34.9596i −0.795976 1.37867i −0.922218 0.386671i \(-0.873625\pi\)
0.126242 0.992000i \(-0.459709\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.32770 0.0522375
\(647\) 1.14038 1.97519i 0.0448329 0.0776528i −0.842738 0.538324i \(-0.819058\pi\)
0.887571 + 0.460671i \(0.152391\pi\)
\(648\) 0 0
\(649\) −8.59152 14.8809i −0.337247 0.584128i
\(650\) 4.71853 8.17273i 0.185076 0.320561i
\(651\) 0 0
\(652\) −1.59240 2.75811i −0.0623631 0.108016i
\(653\) 11.7396 20.3336i 0.459407 0.795717i −0.539522 0.841971i \(-0.681395\pi\)
0.998930 + 0.0462542i \(0.0147284\pi\)
\(654\) 0 0
\(655\) 4.82682 + 8.36030i 0.188599 + 0.326664i
\(656\) 0.0714517 + 0.123758i 0.00278972 + 0.00483194i
\(657\) 0 0
\(658\) 0 0
\(659\) −23.9812 + 41.5366i −0.934174 + 1.61804i −0.158073 + 0.987427i \(0.550528\pi\)
−0.776101 + 0.630609i \(0.782805\pi\)
\(660\) 0 0
\(661\) −29.3090 −1.13999 −0.569995 0.821648i \(-0.693055\pi\)
−0.569995 + 0.821648i \(0.693055\pi\)
\(662\) 20.2695 0.787797
\(663\) 0 0
\(664\) −21.3516 + 36.9821i −0.828604 + 1.43518i
\(665\) 0 0
\(666\) 0 0
\(667\) −28.0317 48.5523i −1.08539 1.87995i
\(668\) −14.2191 24.6282i −0.550154 0.952894i
\(669\) 0 0
\(670\) −0.353226 + 0.611806i −0.0136463 + 0.0236361i
\(671\) −6.31180 10.9324i −0.243664 0.422039i
\(672\) 0 0
\(673\) −13.1591 + 22.7922i −0.507246 + 0.878576i 0.492719 + 0.870189i \(0.336003\pi\)
−0.999965 + 0.00838731i \(0.997330\pi\)
\(674\) −12.7613 22.1032i −0.491547 0.851384i
\(675\) 0 0
\(676\) −1.00950 + 1.74850i −0.0388267 + 0.0672499i
\(677\) 35.8907 1.37939 0.689697 0.724098i \(-0.257744\pi\)
0.689697 + 0.724098i \(0.257744\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.894400 + 1.54915i 0.0342987 + 0.0594070i
\(681\) 0 0
\(682\) −6.71048 11.6229i −0.256958 0.445064i
\(683\) 17.5321 30.3665i 0.670847 1.16194i −0.306818 0.951768i \(-0.599264\pi\)
0.977664 0.210172i \(-0.0674025\pi\)
\(684\) 0 0
\(685\) −3.46110 −0.132242
\(686\) 0 0
\(687\) 0 0
\(688\) −0.0923963 + 0.160035i −0.00352257 + 0.00610128i
\(689\) 1.93407 0.0736821
\(690\) 0 0
\(691\) −2.06687 −0.0786273 −0.0393136 0.999227i \(-0.512517\pi\)
−0.0393136 + 0.999227i \(0.512517\pi\)
\(692\) 5.82915 0.221591
\(693\) 0 0
\(694\) −11.3847 −0.432159
\(695\) 8.26352 0.313453
\(696\) 0 0
\(697\) 1.59627 0.0604629
\(698\) 0.643208 1.11407i 0.0243458 0.0421681i
\(699\) 0 0
\(700\) 0 0
\(701\) 7.36009 0.277987 0.138993 0.990293i \(-0.455613\pi\)
0.138993 + 0.990293i \(0.455613\pi\)
\(702\) 0 0
\(703\) −14.8983 + 25.8046i −0.561899 + 0.973237i
\(704\) 4.16637 + 7.21637i 0.157026 + 0.271977i
\(705\) 0 0
\(706\) −6.30200 10.9154i −0.237179 0.410806i
\(707\) 0 0
\(708\) 0 0
\(709\) 9.10876 0.342086 0.171043 0.985264i \(-0.445286\pi\)
0.171043 + 0.985264i \(0.445286\pi\)
\(710\) −0.328411 + 0.568825i −0.0123251 + 0.0213476i
\(711\) 0 0
\(712\) 12.8914 + 22.3286i 0.483126 + 0.836799i
\(713\) −41.2943 + 71.5239i −1.54648 + 2.67859i
\(714\) 0 0
\(715\) 3.75150 + 6.49778i 0.140298 + 0.243003i
\(716\) 5.23308 9.06396i 0.195569 0.338736i
\(717\) 0 0
\(718\) −9.20574 15.9448i −0.343555 0.595055i
\(719\) 12.9768 + 22.4765i 0.483954 + 0.838233i 0.999830 0.0184300i \(-0.00586678\pi\)
−0.515876 + 0.856663i \(0.672533\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.77631 6.54076i 0.140540 0.243422i
\(723\) 0 0
\(724\) −21.1411 −0.785705
\(725\) 19.9641 0.741448
\(726\) 0 0
\(727\) −5.08007 + 8.79894i −0.188409 + 0.326335i −0.944720 0.327878i \(-0.893667\pi\)
0.756311 + 0.654213i \(0.227000\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 1.21419 + 2.10304i 0.0449393 + 0.0778372i
\(731\) 1.03209 + 1.78763i 0.0381732 + 0.0661179i
\(732\) 0 0
\(733\) 20.3307 35.2138i 0.750931 1.30065i −0.196441 0.980516i \(-0.562938\pi\)
0.947372 0.320135i \(-0.103728\pi\)
\(734\) −5.30154 9.18253i −0.195683 0.338933i
\(735\) 0 0
\(736\) 25.2126 43.6695i 0.929349 1.60968i
\(737\) 0.492726 + 0.853427i 0.0181498 + 0.0314364i
\(738\) 0 0
\(739\) 12.6809 21.9640i 0.466475 0.807959i −0.532791 0.846247i \(-0.678857\pi\)
0.999267 + 0.0382877i \(0.0121903\pi\)
\(740\) −15.2618 −0.561034
\(741\) 0 0
\(742\) 0 0
\(743\) −11.2221 19.4372i −0.411699 0.713083i 0.583377 0.812202i \(-0.301731\pi\)
−0.995076 + 0.0991184i \(0.968398\pi\)
\(744\) 0 0
\(745\) 0.290393 + 0.502975i 0.0106392 + 0.0184276i
\(746\) 0.343426 0.594831i 0.0125737 0.0217783i
\(747\) 0 0
\(748\) 0.948615 0.0346848
\(749\) 0 0
\(750\) 0 0
\(751\) −12.1086 + 20.9727i −0.441849 + 0.765305i −0.997827 0.0658924i \(-0.979011\pi\)
0.555978 + 0.831197i \(0.312344\pi\)
\(752\) −0.391874 −0.0142902
\(753\) 0 0
\(754\) −18.5748 −0.676454
\(755\) −3.32863 −0.121141
\(756\) 0 0
\(757\) 9.11793 0.331397 0.165698 0.986176i \(-0.447012\pi\)
0.165698 + 0.986176i \(0.447012\pi\)
\(758\) −6.08883 −0.221156
\(759\) 0 0
\(760\) −12.3354 −0.447453
\(761\) 9.13610 15.8242i 0.331183 0.573626i −0.651561 0.758596i \(-0.725886\pi\)
0.982744 + 0.184970i \(0.0592188\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 15.8357 0.572917
\(765\) 0 0
\(766\) −3.39986 + 5.88874i −0.122842 + 0.212769i
\(767\) 17.5167 + 30.3398i 0.632490 + 1.09550i
\(768\) 0 0
\(769\) 9.26470 + 16.0469i 0.334094 + 0.578667i 0.983310 0.181936i \(-0.0582365\pi\)
−0.649217 + 0.760604i \(0.724903\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0.782814 0.0281741
\(773\) 1.48040 2.56413i 0.0532463 0.0922253i −0.838174 0.545403i \(-0.816376\pi\)
0.891420 + 0.453178i \(0.149710\pi\)
\(774\) 0 0
\(775\) −14.7049 25.4696i −0.528214 0.914894i
\(776\) 2.69418 4.66646i 0.0967155 0.167516i
\(777\) 0 0
\(778\) 2.37417 + 4.11218i 0.0851181 + 0.147429i
\(779\) −5.50387 + 9.53298i −0.197197 + 0.341555i
\(780\) 0 0
\(781\) 0.458111 + 0.793471i 0.0163925 + 0.0283926i
\(782\) 1.84002 + 3.18701i 0.0657991 + 0.113967i
\(783\) 0 0
\(784\) 0 0
\(785\) 6.82635 11.8236i 0.243643 0.422002i
\(786\) 0 0
\(787\) 33.4020 1.19065 0.595326 0.803484i \(-0.297023\pi\)
0.595326 + 0.803484i \(0.297023\pi\)
\(788\) 14.0401 0.500159
\(789\) 0 0
\(790\) 1.42396 2.46638i 0.0506623 0.0877497i
\(791\) 0 0
\(792\) 0 0
\(793\) 12.8687 + 22.2893i 0.456981 + 0.791515i
\(794\) −12.8542 22.2641i −0.456177 0.790122i
\(795\) 0 0
\(796\) 2.23143 3.86495i 0.0790909 0.136989i
\(797\) −24.6755 42.7391i −0.874050 1.51390i −0.857772 0.514031i \(-0.828152\pi\)
−0.0162779 0.999868i \(-0.505182\pi\)
\(798\) 0 0
\(799\) −2.18866 + 3.79088i −0.0774293 + 0.134112i
\(800\) 8.97818 + 15.5507i 0.317427 + 0.549799i
\(801\) 0 0
\(802\) −12.0466 + 20.8654i −0.425382 + 0.736782i
\(803\) 3.38743 0.119540
\(804\) 0 0
\(805\) 0 0
\(806\) 13.6816 + 23.6971i 0.481912 + 0.834696i
\(807\) 0 0
\(808\) −2.42484 4.19995i −0.0853056 0.147754i
\(809\) 9.91400 17.1716i 0.348558 0.603720i −0.637436 0.770503i \(-0.720005\pi\)
0.985993 + 0.166784i \(0.0533382\pi\)
\(810\) 0 0
\(811\) 23.8557 0.837686 0.418843 0.908059i \(-0.362436\pi\)
0.418843 + 0.908059i \(0.362436\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 6.71048 11.6229i 0.235202 0.407382i
\(815\) −3.49794 −0.122528
\(816\) 0 0
\(817\) −14.2344 −0.497999
\(818\) 7.93643 0.277491
\(819\) 0 0
\(820\) −5.63816 −0.196893
\(821\) 50.9427 1.77791 0.888957 0.457991i \(-0.151431\pi\)
0.888957 + 0.457991i \(0.151431\pi\)
\(822\) 0 0
\(823\) 13.6149 0.474587 0.237293 0.971438i \(-0.423740\pi\)
0.237293 + 0.971438i \(0.423740\pi\)
\(824\) 5.16163 8.94020i 0.179814 0.311447i
\(825\) 0 0
\(826\) 0 0
\(827\) −36.2158 −1.25935 −0.629673 0.776861i \(-0.716811\pi\)
−0.629673 + 0.776861i \(0.716811\pi\)
\(828\) 0 0
\(829\) 12.6630 21.9329i 0.439803 0.761761i −0.557871 0.829928i \(-0.688382\pi\)
0.997674 + 0.0681664i \(0.0217149\pi\)
\(830\) 8.91534 + 15.4418i 0.309456 + 0.535994i
\(831\) 0 0
\(832\) −8.49454 14.7130i −0.294495 0.510080i
\(833\) 0 0
\(834\) 0 0
\(835\) −31.2344 −1.08091
\(836\) −3.27079 + 5.66518i −0.113123 + 0.195934i
\(837\) 0 0
\(838\) −0.0770768 0.133501i −0.00266257 0.00461171i
\(839\) −4.35710 + 7.54671i −0.150424 + 0.260541i −0.931383 0.364040i \(-0.881397\pi\)
0.780960 + 0.624582i \(0.214730\pi\)
\(840\) 0 0
\(841\) −5.14749 8.91571i −0.177500 0.307438i
\(842\) 10.8626 18.8146i 0.374350 0.648394i
\(843\) 0 0
\(844\) 3.57145 + 6.18594i 0.122934 + 0.212929i
\(845\) 1.10876 + 1.92042i 0.0381423 + 0.0660645i
\(846\) 0 0
\(847\) 0 0
\(848\) 0.0120217 0.0208222i 0.000412827 0.000715037i
\(849\) 0 0
\(850\) −1.31046 −0.0449484
\(851\) −82.5886 −2.83110
\(852\) 0 0
\(853\) −5.99067 + 10.3761i −0.205117 + 0.355272i −0.950170 0.311733i \(-0.899091\pi\)
0.745053 + 0.667005i \(0.232424\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −10.1133 17.5168i −0.345667 0.598713i
\(857\) −3.25015 5.62943i −0.111023 0.192298i 0.805160 0.593058i \(-0.202079\pi\)
−0.916183 + 0.400760i \(0.868746\pi\)
\(858\) 0 0
\(859\) −26.7763 + 46.3779i −0.913596 + 1.58239i −0.104652 + 0.994509i \(0.533373\pi\)
−0.808944 + 0.587886i \(0.799960\pi\)
\(860\) −3.64543 6.31407i −0.124308 0.215308i
\(861\) 0 0
\(862\) −12.8914 + 22.3286i −0.439083 + 0.760514i
\(863\) 1.84982 + 3.20399i 0.0629687 + 0.109065i 0.895791 0.444475i \(-0.146610\pi\)
−0.832822 + 0.553540i \(0.813277\pi\)
\(864\) 0 0
\(865\) 3.20115 5.54456i 0.108842 0.188521i
\(866\) −17.2847 −0.587357
\(867\) 0 0
\(868\) 0 0
\(869\) −1.98633 3.44042i −0.0673816 0.116708i
\(870\) 0 0
\(871\) −1.00459 1.73999i −0.0340391 0.0589574i
\(872\) 0.572796 0.992112i 0.0193973 0.0335971i
\(873\) 0 0
\(874\) −25.3773 −0.858401
\(875\) 0 0
\(876\) 0 0
\(877\) 5.89440 10.2094i 0.199040 0.344747i −0.749178 0.662369i \(-0.769551\pi\)
0.948217 + 0.317622i \(0.102884\pi\)
\(878\) 19.2849 0.650833
\(879\) 0 0
\(880\) 0.0932736 0.00314425
\(881\) 49.4858 1.66722 0.833609 0.552355i \(-0.186271\pi\)
0.833609 + 0.552355i \(0.186271\pi\)
\(882\) 0 0
\(883\) −21.5357 −0.724734 −0.362367 0.932035i \(-0.618031\pi\)
−0.362367 + 0.932035i \(0.618031\pi\)
\(884\) −1.93407 −0.0650497
\(885\) 0 0
\(886\) 16.4534 0.552762
\(887\) −5.94238 + 10.2925i −0.199526 + 0.345589i −0.948375 0.317152i \(-0.897273\pi\)
0.748849 + 0.662741i \(0.230607\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 10.7656 0.360863
\(891\) 0 0
\(892\) −4.34477 + 7.52536i −0.145474 + 0.251968i
\(893\) −15.0929 26.1416i −0.505063 0.874795i
\(894\) 0 0
\(895\) −5.74763 9.95518i −0.192122 0.332765i
\(896\) 0 0
\(897\) 0 0
\(898\) −5.87433 −0.196029
\(899\) −28.9433 + 50.1313i −0.965314 + 1.67197i
\(900\) 0 0
\(901\) −0.134285 0.232589i −0.00447369 0.00774866i
\(902\) 2.47906 4.29385i 0.0825435 0.142970i
\(903\) 0 0
\(904\) −20.3868 35.3110i −0.678056 1.17443i
\(905\) −11.6099 + 20.1090i −0.385927 + 0.668446i
\(906\) 0 0
\(907\) 13.0107 + 22.5353i 0.432014 + 0.748271i 0.997047 0.0767980i \(-0.0244697\pi\)
−0.565032 + 0.825069i \(0.691136\pi\)
\(908\) −7.32547 12.6881i −0.243104 0.421069i
\(909\) 0 0
\(910\) 0 0
\(911\) −2.01636 + 3.49244i −0.0668050 + 0.115710i −0.897493 0.441028i \(-0.854614\pi\)
0.830688 + 0.556738i \(0.187947\pi\)
\(912\) 0 0
\(913\) 24.8726 0.823162
\(914\) −17.0853 −0.565132
\(915\) 0 0
\(916\) 10.7657 18.6468i 0.355710 0.616108i
\(917\) 0 0
\(918\) 0 0
\(919\) −13.7135 23.7524i −0.452366 0.783521i 0.546167 0.837677i \(-0.316087\pi\)
−0.998532 + 0.0541559i \(0.982753\pi\)
\(920\) −17.0954 29.6101i −0.563618 0.976216i
\(921\) 0 0
\(922\) 0.424678 0.735564i 0.0139860 0.0242245i
\(923\) −0.934011 1.61775i −0.0307434 0.0532491i
\(924\) 0 0
\(925\) 14.7049 25.4696i 0.483493 0.837434i
\(926\) 0.195937 + 0.339373i 0.00643889 + 0.0111525i
\(927\) 0 0
\(928\) 17.6716 30.6081i 0.580098 1.00476i
\(929\) 7.67675 0.251866 0.125933 0.992039i \(-0.459808\pi\)
0.125933 + 0.992039i \(0.459808\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −9.96926 17.2673i −0.326554 0.565608i
\(933\) 0 0
\(934\) 15.0440 + 26.0570i 0.492255 + 0.852610i
\(935\) 0.520945 0.902302i 0.0170367 0.0295084i
\(936\) 0 0
\(937\) 2.02465 0.0661425 0.0330713 0.999453i \(-0.489471\pi\)
0.0330713 + 0.999453i \(0.489471\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 7.73055 13.3897i 0.252143 0.436724i
\(941\) −6.13928 −0.200135 −0.100067 0.994981i \(-0.531906\pi\)
−0.100067 + 0.994981i \(0.531906\pi\)
\(942\) 0 0
\(943\) −30.5107 −0.993566
\(944\) 0.435518 0.0141749
\(945\) 0 0
\(946\) 6.41147 0.208455
\(947\) −5.56448 −0.180821 −0.0904107 0.995905i \(-0.528818\pi\)
−0.0904107 + 0.995905i \(0.528818\pi\)
\(948\) 0 0
\(949\) −6.90640 −0.224191
\(950\) 4.51842 7.82613i 0.146597 0.253913i
\(951\) 0 0
\(952\) 0 0
\(953\) 8.72018 0.282474 0.141237 0.989976i \(-0.454892\pi\)
0.141237 + 0.989976i \(0.454892\pi\)
\(954\) 0 0
\(955\) 8.69640 15.0626i 0.281409 0.487415i
\(956\) 9.26099 + 16.0405i 0.299522 + 0.518787i
\(957\) 0 0
\(958\) 9.58219 + 16.5968i 0.309586 + 0.536219i
\(959\) 0 0
\(960\) 0 0
\(961\) 54.2746 1.75079
\(962\) −13.6816 + 23.6971i −0.441111 + 0.764027i
\(963\) 0 0
\(964\) 9.59152 + 16.6130i 0.308922 + 0.535069i
\(965\) 0.429892 0.744596i 0.0138387 0.0239694i
\(966\) 0 0
\(967\) 28.8849 + 50.0301i 0.928876 + 1.60886i 0.785206 + 0.619235i \(0.212557\pi\)
0.143670 + 0.989626i \(0.454110\pi\)
\(968\) −11.7310 + 20.3187i −0.377049 + 0.653068i
\(969\) 0 0
\(970\) −1.12495 1.94847i −0.0361200 0.0625617i
\(971\) 15.3596 + 26.6036i 0.492914 + 0.853752i 0.999967 0.00816326i \(-0.00259847\pi\)
−0.507053 + 0.861915i \(0.669265\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −8.52687 + 14.7690i −0.273219 + 0.473229i
\(975\) 0 0
\(976\) 0.319955 0.0102415
\(977\) −10.3000 −0.329527 −0.164764 0.986333i \(-0.552686\pi\)
−0.164764 + 0.986333i \(0.552686\pi\)
\(978\) 0 0
\(979\) 7.50862 13.0053i 0.239976 0.415651i
\(980\) 0 0
\(981\) 0 0
\(982\) 11.5009 + 19.9201i 0.367008 + 0.635676i
\(983\) −6.84817 11.8614i −0.218423 0.378319i 0.735903 0.677087i \(-0.236758\pi\)
−0.954326 + 0.298767i \(0.903425\pi\)
\(984\) 0 0
\(985\) 7.71032 13.3547i 0.245671 0.425515i
\(986\) 1.28968 + 2.23379i 0.0410717 + 0.0711383i
\(987\) 0 0
\(988\) 6.66860 11.5503i 0.212156 0.367465i
\(989\) −19.7271 34.1684i −0.627287 1.08649i
\(990\) 0 0
\(991\) −28.9907 + 50.2133i −0.920919 + 1.59508i −0.122922 + 0.992416i \(0.539227\pi\)
−0.797997 + 0.602662i \(0.794107\pi\)
\(992\) −52.0651 −1.65307
\(993\) 0 0
\(994\) 0 0
\(995\) −2.45084 4.24497i −0.0776968 0.134575i
\(996\) 0 0
\(997\) 8.10876 + 14.0448i 0.256807 + 0.444803i 0.965385 0.260830i \(-0.0839962\pi\)
−0.708578 + 0.705633i \(0.750663\pi\)
\(998\) 6.28817 10.8914i 0.199049 0.344762i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.h.b.802.3 6
3.2 odd 2 441.2.h.e.214.1 6
7.2 even 3 1323.2.g.e.667.1 6
7.3 odd 6 189.2.f.b.127.1 6
7.4 even 3 1323.2.f.d.883.1 6
7.5 odd 6 1323.2.g.d.667.1 6
7.6 odd 2 1323.2.h.c.802.3 6
9.4 even 3 1323.2.g.e.361.1 6
9.5 odd 6 441.2.g.b.67.3 6
21.2 odd 6 441.2.g.b.79.3 6
21.5 even 6 441.2.g.c.79.3 6
21.11 odd 6 441.2.f.c.295.3 6
21.17 even 6 63.2.f.a.43.3 yes 6
21.20 even 2 441.2.h.d.214.1 6
28.3 even 6 3024.2.r.k.2017.2 6
63.4 even 3 1323.2.f.d.442.1 6
63.5 even 6 441.2.h.d.373.1 6
63.11 odd 6 3969.2.a.q.1.1 3
63.13 odd 6 1323.2.g.d.361.1 6
63.23 odd 6 441.2.h.e.373.1 6
63.25 even 3 3969.2.a.l.1.3 3
63.31 odd 6 189.2.f.b.64.1 6
63.32 odd 6 441.2.f.c.148.3 6
63.38 even 6 567.2.a.h.1.1 3
63.40 odd 6 1323.2.h.c.226.3 6
63.41 even 6 441.2.g.c.67.3 6
63.52 odd 6 567.2.a.c.1.3 3
63.58 even 3 inner 1323.2.h.b.226.3 6
63.59 even 6 63.2.f.a.22.3 6
84.59 odd 6 1008.2.r.h.673.2 6
252.31 even 6 3024.2.r.k.1009.2 6
252.59 odd 6 1008.2.r.h.337.2 6
252.115 even 6 9072.2.a.bs.1.2 3
252.227 odd 6 9072.2.a.ca.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.f.a.22.3 6 63.59 even 6
63.2.f.a.43.3 yes 6 21.17 even 6
189.2.f.b.64.1 6 63.31 odd 6
189.2.f.b.127.1 6 7.3 odd 6
441.2.f.c.148.3 6 63.32 odd 6
441.2.f.c.295.3 6 21.11 odd 6
441.2.g.b.67.3 6 9.5 odd 6
441.2.g.b.79.3 6 21.2 odd 6
441.2.g.c.67.3 6 63.41 even 6
441.2.g.c.79.3 6 21.5 even 6
441.2.h.d.214.1 6 21.20 even 2
441.2.h.d.373.1 6 63.5 even 6
441.2.h.e.214.1 6 3.2 odd 2
441.2.h.e.373.1 6 63.23 odd 6
567.2.a.c.1.3 3 63.52 odd 6
567.2.a.h.1.1 3 63.38 even 6
1008.2.r.h.337.2 6 252.59 odd 6
1008.2.r.h.673.2 6 84.59 odd 6
1323.2.f.d.442.1 6 63.4 even 3
1323.2.f.d.883.1 6 7.4 even 3
1323.2.g.d.361.1 6 63.13 odd 6
1323.2.g.d.667.1 6 7.5 odd 6
1323.2.g.e.361.1 6 9.4 even 3
1323.2.g.e.667.1 6 7.2 even 3
1323.2.h.b.226.3 6 63.58 even 3 inner
1323.2.h.b.802.3 6 1.1 even 1 trivial
1323.2.h.c.226.3 6 63.40 odd 6
1323.2.h.c.802.3 6 7.6 odd 2
3024.2.r.k.1009.2 6 252.31 even 6
3024.2.r.k.2017.2 6 28.3 even 6
3969.2.a.l.1.3 3 63.25 even 3
3969.2.a.q.1.1 3 63.11 odd 6
9072.2.a.bs.1.2 3 252.115 even 6
9072.2.a.ca.1.2 3 252.227 odd 6