Properties

Label 1323.4.a.bk.1.5
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 43x^{5} + 10x^{4} + 513x^{3} + 258x^{2} - 936x - 504 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.44197\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.44197 q^{2} -5.92074 q^{4} -6.60364 q^{5} -20.0732 q^{8} -9.52221 q^{10} +29.1645 q^{11} -16.7957 q^{13} +18.4210 q^{16} -47.1072 q^{17} -3.43125 q^{19} +39.0984 q^{20} +42.0542 q^{22} -29.5426 q^{23} -81.3920 q^{25} -24.2188 q^{26} -223.924 q^{29} -120.781 q^{31} +187.148 q^{32} -67.9269 q^{34} +34.9788 q^{37} -4.94775 q^{38} +132.556 q^{40} +192.991 q^{41} -5.61007 q^{43} -172.675 q^{44} -42.5994 q^{46} -359.246 q^{47} -117.364 q^{50} +99.4428 q^{52} -33.2997 q^{53} -192.592 q^{55} -322.890 q^{58} +742.285 q^{59} -658.795 q^{61} -174.162 q^{62} +122.493 q^{64} +110.913 q^{65} +941.546 q^{67} +278.909 q^{68} +871.189 q^{71} +732.553 q^{73} +50.4382 q^{74} +20.3156 q^{76} +1342.65 q^{79} -121.646 q^{80} +278.287 q^{82} -588.404 q^{83} +311.079 q^{85} -8.08952 q^{86} -585.426 q^{88} -1247.78 q^{89} +174.914 q^{92} -518.020 q^{94} +22.6588 q^{95} -691.412 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} + 31 q^{4} + q^{5} + 84 q^{8} - 12 q^{10} + 98 q^{11} + 124 q^{13} + 139 q^{16} - 30 q^{17} - 182 q^{19} + 110 q^{20} + 276 q^{22} - 6 q^{23} + 388 q^{25} + 245 q^{26} + 323 q^{29} - 26 q^{31}+ \cdots + 3730 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.44197 0.509812 0.254906 0.966966i \(-0.417956\pi\)
0.254906 + 0.966966i \(0.417956\pi\)
\(3\) 0 0
\(4\) −5.92074 −0.740092
\(5\) −6.60364 −0.590647 −0.295324 0.955397i \(-0.595427\pi\)
−0.295324 + 0.955397i \(0.595427\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −20.0732 −0.887119
\(9\) 0 0
\(10\) −9.52221 −0.301119
\(11\) 29.1645 0.799403 0.399701 0.916645i \(-0.369114\pi\)
0.399701 + 0.916645i \(0.369114\pi\)
\(12\) 0 0
\(13\) −16.7957 −0.358330 −0.179165 0.983819i \(-0.557340\pi\)
−0.179165 + 0.983819i \(0.557340\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 18.4210 0.287828
\(17\) −47.1072 −0.672069 −0.336034 0.941850i \(-0.609086\pi\)
−0.336034 + 0.941850i \(0.609086\pi\)
\(18\) 0 0
\(19\) −3.43125 −0.0414307 −0.0207154 0.999785i \(-0.506594\pi\)
−0.0207154 + 0.999785i \(0.506594\pi\)
\(20\) 39.0984 0.437133
\(21\) 0 0
\(22\) 42.0542 0.407545
\(23\) −29.5426 −0.267828 −0.133914 0.990993i \(-0.542755\pi\)
−0.133914 + 0.990993i \(0.542755\pi\)
\(24\) 0 0
\(25\) −81.3920 −0.651136
\(26\) −24.2188 −0.182681
\(27\) 0 0
\(28\) 0 0
\(29\) −223.924 −1.43385 −0.716924 0.697152i \(-0.754450\pi\)
−0.716924 + 0.697152i \(0.754450\pi\)
\(30\) 0 0
\(31\) −120.781 −0.699770 −0.349885 0.936793i \(-0.613779\pi\)
−0.349885 + 0.936793i \(0.613779\pi\)
\(32\) 187.148 1.03386
\(33\) 0 0
\(34\) −67.9269 −0.342628
\(35\) 0 0
\(36\) 0 0
\(37\) 34.9788 0.155418 0.0777092 0.996976i \(-0.475239\pi\)
0.0777092 + 0.996976i \(0.475239\pi\)
\(38\) −4.94775 −0.0211219
\(39\) 0 0
\(40\) 132.556 0.523974
\(41\) 192.991 0.735127 0.367563 0.929998i \(-0.380192\pi\)
0.367563 + 0.929998i \(0.380192\pi\)
\(42\) 0 0
\(43\) −5.61007 −0.0198960 −0.00994799 0.999951i \(-0.503167\pi\)
−0.00994799 + 0.999951i \(0.503167\pi\)
\(44\) −172.675 −0.591632
\(45\) 0 0
\(46\) −42.5994 −0.136542
\(47\) −359.246 −1.11492 −0.557462 0.830202i \(-0.688225\pi\)
−0.557462 + 0.830202i \(0.688225\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −117.364 −0.331957
\(51\) 0 0
\(52\) 99.4428 0.265197
\(53\) −33.2997 −0.0863030 −0.0431515 0.999069i \(-0.513740\pi\)
−0.0431515 + 0.999069i \(0.513740\pi\)
\(54\) 0 0
\(55\) −192.592 −0.472165
\(56\) 0 0
\(57\) 0 0
\(58\) −322.890 −0.730992
\(59\) 742.285 1.63792 0.818960 0.573851i \(-0.194551\pi\)
0.818960 + 0.573851i \(0.194551\pi\)
\(60\) 0 0
\(61\) −658.795 −1.38279 −0.691394 0.722478i \(-0.743003\pi\)
−0.691394 + 0.722478i \(0.743003\pi\)
\(62\) −174.162 −0.356751
\(63\) 0 0
\(64\) 122.493 0.239244
\(65\) 110.913 0.211646
\(66\) 0 0
\(67\) 941.546 1.71684 0.858419 0.512949i \(-0.171447\pi\)
0.858419 + 0.512949i \(0.171447\pi\)
\(68\) 278.909 0.497393
\(69\) 0 0
\(70\) 0 0
\(71\) 871.189 1.45621 0.728107 0.685464i \(-0.240400\pi\)
0.728107 + 0.685464i \(0.240400\pi\)
\(72\) 0 0
\(73\) 732.553 1.17451 0.587253 0.809404i \(-0.300210\pi\)
0.587253 + 0.809404i \(0.300210\pi\)
\(74\) 50.4382 0.0792341
\(75\) 0 0
\(76\) 20.3156 0.0306626
\(77\) 0 0
\(78\) 0 0
\(79\) 1342.65 1.91216 0.956078 0.293112i \(-0.0946910\pi\)
0.956078 + 0.293112i \(0.0946910\pi\)
\(80\) −121.646 −0.170005
\(81\) 0 0
\(82\) 278.287 0.374776
\(83\) −588.404 −0.778142 −0.389071 0.921208i \(-0.627204\pi\)
−0.389071 + 0.921208i \(0.627204\pi\)
\(84\) 0 0
\(85\) 311.079 0.396956
\(86\) −8.08952 −0.0101432
\(87\) 0 0
\(88\) −585.426 −0.709166
\(89\) −1247.78 −1.48612 −0.743061 0.669224i \(-0.766627\pi\)
−0.743061 + 0.669224i \(0.766627\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 174.914 0.198218
\(93\) 0 0
\(94\) −518.020 −0.568401
\(95\) 22.6588 0.0244709
\(96\) 0 0
\(97\) −691.412 −0.723735 −0.361867 0.932230i \(-0.617861\pi\)
−0.361867 + 0.932230i \(0.617861\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 481.901 0.481901
\(101\) 1352.30 1.33227 0.666134 0.745832i \(-0.267948\pi\)
0.666134 + 0.745832i \(0.267948\pi\)
\(102\) 0 0
\(103\) 922.650 0.882635 0.441318 0.897351i \(-0.354511\pi\)
0.441318 + 0.897351i \(0.354511\pi\)
\(104\) 337.143 0.317881
\(105\) 0 0
\(106\) −48.0169 −0.0439983
\(107\) 1005.99 0.908908 0.454454 0.890770i \(-0.349834\pi\)
0.454454 + 0.890770i \(0.349834\pi\)
\(108\) 0 0
\(109\) 912.295 0.801670 0.400835 0.916150i \(-0.368720\pi\)
0.400835 + 0.916150i \(0.368720\pi\)
\(110\) −277.711 −0.240715
\(111\) 0 0
\(112\) 0 0
\(113\) 1287.35 1.07172 0.535858 0.844308i \(-0.319988\pi\)
0.535858 + 0.844308i \(0.319988\pi\)
\(114\) 0 0
\(115\) 195.088 0.158192
\(116\) 1325.79 1.06118
\(117\) 0 0
\(118\) 1070.35 0.835031
\(119\) 0 0
\(120\) 0 0
\(121\) −480.431 −0.360955
\(122\) −949.959 −0.704961
\(123\) 0 0
\(124\) 715.111 0.517894
\(125\) 1362.94 0.975239
\(126\) 0 0
\(127\) −521.970 −0.364704 −0.182352 0.983233i \(-0.558371\pi\)
−0.182352 + 0.983233i \(0.558371\pi\)
\(128\) −1320.55 −0.911888
\(129\) 0 0
\(130\) 159.932 0.107900
\(131\) −952.092 −0.634998 −0.317499 0.948259i \(-0.602843\pi\)
−0.317499 + 0.948259i \(0.602843\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1357.68 0.875264
\(135\) 0 0
\(136\) 945.593 0.596205
\(137\) 2917.18 1.81921 0.909604 0.415476i \(-0.136385\pi\)
0.909604 + 0.415476i \(0.136385\pi\)
\(138\) 0 0
\(139\) −1223.71 −0.746717 −0.373358 0.927687i \(-0.621794\pi\)
−0.373358 + 0.927687i \(0.621794\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1256.22 0.742395
\(143\) −489.838 −0.286450
\(144\) 0 0
\(145\) 1478.71 0.846898
\(146\) 1056.32 0.598776
\(147\) 0 0
\(148\) −207.100 −0.115024
\(149\) 2502.62 1.37599 0.687997 0.725714i \(-0.258490\pi\)
0.687997 + 0.725714i \(0.258490\pi\)
\(150\) 0 0
\(151\) −264.177 −0.142374 −0.0711868 0.997463i \(-0.522679\pi\)
−0.0711868 + 0.997463i \(0.522679\pi\)
\(152\) 68.8763 0.0367540
\(153\) 0 0
\(154\) 0 0
\(155\) 797.592 0.413317
\(156\) 0 0
\(157\) −191.509 −0.0973511 −0.0486755 0.998815i \(-0.515500\pi\)
−0.0486755 + 0.998815i \(0.515500\pi\)
\(158\) 1936.06 0.974839
\(159\) 0 0
\(160\) −1235.86 −0.610645
\(161\) 0 0
\(162\) 0 0
\(163\) −1716.96 −0.825048 −0.412524 0.910947i \(-0.635353\pi\)
−0.412524 + 0.910947i \(0.635353\pi\)
\(164\) −1142.65 −0.544062
\(165\) 0 0
\(166\) −848.458 −0.396706
\(167\) 2927.93 1.35671 0.678354 0.734735i \(-0.262694\pi\)
0.678354 + 0.734735i \(0.262694\pi\)
\(168\) 0 0
\(169\) −1914.90 −0.871600
\(170\) 448.565 0.202373
\(171\) 0 0
\(172\) 33.2157 0.0147249
\(173\) −2768.31 −1.21660 −0.608298 0.793709i \(-0.708147\pi\)
−0.608298 + 0.793709i \(0.708147\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 537.240 0.230091
\(177\) 0 0
\(178\) −1799.26 −0.757642
\(179\) 3579.36 1.49460 0.747302 0.664485i \(-0.231349\pi\)
0.747302 + 0.664485i \(0.231349\pi\)
\(180\) 0 0
\(181\) −721.949 −0.296475 −0.148238 0.988952i \(-0.547360\pi\)
−0.148238 + 0.988952i \(0.547360\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 593.015 0.237596
\(185\) −230.987 −0.0917975
\(186\) 0 0
\(187\) −1373.86 −0.537254
\(188\) 2127.00 0.825147
\(189\) 0 0
\(190\) 32.6731 0.0124756
\(191\) 815.525 0.308949 0.154475 0.987997i \(-0.450632\pi\)
0.154475 + 0.987997i \(0.450632\pi\)
\(192\) 0 0
\(193\) −2864.97 −1.06852 −0.534261 0.845319i \(-0.679410\pi\)
−0.534261 + 0.845319i \(0.679410\pi\)
\(194\) −996.992 −0.368968
\(195\) 0 0
\(196\) 0 0
\(197\) 25.5763 0.00924992 0.00462496 0.999989i \(-0.498528\pi\)
0.00462496 + 0.999989i \(0.498528\pi\)
\(198\) 0 0
\(199\) 2847.18 1.01423 0.507114 0.861879i \(-0.330712\pi\)
0.507114 + 0.861879i \(0.330712\pi\)
\(200\) 1633.80 0.577635
\(201\) 0 0
\(202\) 1949.97 0.679206
\(203\) 0 0
\(204\) 0 0
\(205\) −1274.45 −0.434201
\(206\) 1330.43 0.449978
\(207\) 0 0
\(208\) −309.394 −0.103137
\(209\) −100.071 −0.0331198
\(210\) 0 0
\(211\) 2059.84 0.672063 0.336031 0.941851i \(-0.390915\pi\)
0.336031 + 0.941851i \(0.390915\pi\)
\(212\) 197.158 0.0638722
\(213\) 0 0
\(214\) 1450.61 0.463372
\(215\) 37.0468 0.0117515
\(216\) 0 0
\(217\) 0 0
\(218\) 1315.50 0.408701
\(219\) 0 0
\(220\) 1140.29 0.349446
\(221\) 791.197 0.240822
\(222\) 0 0
\(223\) 826.484 0.248186 0.124093 0.992271i \(-0.460398\pi\)
0.124093 + 0.992271i \(0.460398\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1856.32 0.546373
\(227\) 2311.44 0.675840 0.337920 0.941175i \(-0.390277\pi\)
0.337920 + 0.941175i \(0.390277\pi\)
\(228\) 0 0
\(229\) −6638.39 −1.91562 −0.957811 0.287399i \(-0.907209\pi\)
−0.957811 + 0.287399i \(0.907209\pi\)
\(230\) 281.311 0.0806482
\(231\) 0 0
\(232\) 4494.87 1.27199
\(233\) −66.4886 −0.0186945 −0.00934724 0.999956i \(-0.502975\pi\)
−0.00934724 + 0.999956i \(0.502975\pi\)
\(234\) 0 0
\(235\) 2372.33 0.658527
\(236\) −4394.87 −1.21221
\(237\) 0 0
\(238\) 0 0
\(239\) 6136.26 1.66076 0.830380 0.557198i \(-0.188124\pi\)
0.830380 + 0.557198i \(0.188124\pi\)
\(240\) 0 0
\(241\) −6054.14 −1.61818 −0.809091 0.587684i \(-0.800040\pi\)
−0.809091 + 0.587684i \(0.800040\pi\)
\(242\) −692.765 −0.184019
\(243\) 0 0
\(244\) 3900.55 1.02339
\(245\) 0 0
\(246\) 0 0
\(247\) 57.6303 0.0148459
\(248\) 2424.46 0.620779
\(249\) 0 0
\(250\) 1965.31 0.497188
\(251\) −4244.07 −1.06727 −0.533633 0.845716i \(-0.679173\pi\)
−0.533633 + 0.845716i \(0.679173\pi\)
\(252\) 0 0
\(253\) −861.595 −0.214103
\(254\) −752.663 −0.185930
\(255\) 0 0
\(256\) −2884.14 −0.704135
\(257\) −3223.76 −0.782462 −0.391231 0.920293i \(-0.627951\pi\)
−0.391231 + 0.920293i \(0.627951\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −656.684 −0.156638
\(261\) 0 0
\(262\) −1372.88 −0.323729
\(263\) 4249.87 0.996418 0.498209 0.867057i \(-0.333991\pi\)
0.498209 + 0.867057i \(0.333991\pi\)
\(264\) 0 0
\(265\) 219.899 0.0509746
\(266\) 0 0
\(267\) 0 0
\(268\) −5574.64 −1.27062
\(269\) 4435.75 1.00540 0.502700 0.864461i \(-0.332340\pi\)
0.502700 + 0.864461i \(0.332340\pi\)
\(270\) 0 0
\(271\) 5819.59 1.30448 0.652242 0.758011i \(-0.273829\pi\)
0.652242 + 0.758011i \(0.273829\pi\)
\(272\) −867.762 −0.193441
\(273\) 0 0
\(274\) 4206.47 0.927454
\(275\) −2373.76 −0.520520
\(276\) 0 0
\(277\) 154.892 0.0335976 0.0167988 0.999859i \(-0.494653\pi\)
0.0167988 + 0.999859i \(0.494653\pi\)
\(278\) −1764.55 −0.380685
\(279\) 0 0
\(280\) 0 0
\(281\) −376.133 −0.0798514 −0.0399257 0.999203i \(-0.512712\pi\)
−0.0399257 + 0.999203i \(0.512712\pi\)
\(282\) 0 0
\(283\) 23.8430 0.00500820 0.00250410 0.999997i \(-0.499203\pi\)
0.00250410 + 0.999997i \(0.499203\pi\)
\(284\) −5158.08 −1.07773
\(285\) 0 0
\(286\) −706.329 −0.146035
\(287\) 0 0
\(288\) 0 0
\(289\) −2693.91 −0.548324
\(290\) 2132.25 0.431758
\(291\) 0 0
\(292\) −4337.26 −0.869242
\(293\) 1801.80 0.359256 0.179628 0.983735i \(-0.442511\pi\)
0.179628 + 0.983735i \(0.442511\pi\)
\(294\) 0 0
\(295\) −4901.78 −0.967433
\(296\) −702.137 −0.137875
\(297\) 0 0
\(298\) 3608.70 0.701497
\(299\) 496.188 0.0959708
\(300\) 0 0
\(301\) 0 0
\(302\) −380.934 −0.0725837
\(303\) 0 0
\(304\) −63.2072 −0.0119249
\(305\) 4350.44 0.816739
\(306\) 0 0
\(307\) −1120.29 −0.208269 −0.104134 0.994563i \(-0.533207\pi\)
−0.104134 + 0.994563i \(0.533207\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1150.10 0.210714
\(311\) 5287.18 0.964014 0.482007 0.876167i \(-0.339908\pi\)
0.482007 + 0.876167i \(0.339908\pi\)
\(312\) 0 0
\(313\) −2453.40 −0.443050 −0.221525 0.975155i \(-0.571103\pi\)
−0.221525 + 0.975155i \(0.571103\pi\)
\(314\) −276.150 −0.0496307
\(315\) 0 0
\(316\) −7949.50 −1.41517
\(317\) 3808.40 0.674767 0.337384 0.941367i \(-0.390458\pi\)
0.337384 + 0.941367i \(0.390458\pi\)
\(318\) 0 0
\(319\) −6530.62 −1.14622
\(320\) −808.899 −0.141309
\(321\) 0 0
\(322\) 0 0
\(323\) 161.637 0.0278443
\(324\) 0 0
\(325\) 1367.03 0.233321
\(326\) −2475.80 −0.420619
\(327\) 0 0
\(328\) −3873.96 −0.652145
\(329\) 0 0
\(330\) 0 0
\(331\) −3389.02 −0.562771 −0.281386 0.959595i \(-0.590794\pi\)
−0.281386 + 0.959595i \(0.590794\pi\)
\(332\) 3483.79 0.575896
\(333\) 0 0
\(334\) 4221.98 0.691665
\(335\) −6217.63 −1.01405
\(336\) 0 0
\(337\) 75.8509 0.0122607 0.00613036 0.999981i \(-0.498049\pi\)
0.00613036 + 0.999981i \(0.498049\pi\)
\(338\) −2761.23 −0.444352
\(339\) 0 0
\(340\) −1841.82 −0.293784
\(341\) −3522.51 −0.559398
\(342\) 0 0
\(343\) 0 0
\(344\) 112.612 0.0176501
\(345\) 0 0
\(346\) −3991.81 −0.620234
\(347\) 3320.56 0.513709 0.256854 0.966450i \(-0.417314\pi\)
0.256854 + 0.966450i \(0.417314\pi\)
\(348\) 0 0
\(349\) 8840.82 1.35598 0.677991 0.735070i \(-0.262851\pi\)
0.677991 + 0.735070i \(0.262851\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5458.09 0.826469
\(353\) −10966.0 −1.65343 −0.826717 0.562618i \(-0.809794\pi\)
−0.826717 + 0.562618i \(0.809794\pi\)
\(354\) 0 0
\(355\) −5753.02 −0.860108
\(356\) 7387.80 1.09987
\(357\) 0 0
\(358\) 5161.31 0.761966
\(359\) −4597.22 −0.675854 −0.337927 0.941172i \(-0.609726\pi\)
−0.337927 + 0.941172i \(0.609726\pi\)
\(360\) 0 0
\(361\) −6847.23 −0.998283
\(362\) −1041.03 −0.151147
\(363\) 0 0
\(364\) 0 0
\(365\) −4837.52 −0.693718
\(366\) 0 0
\(367\) 9073.27 1.29052 0.645260 0.763963i \(-0.276749\pi\)
0.645260 + 0.763963i \(0.276749\pi\)
\(368\) −544.204 −0.0770886
\(369\) 0 0
\(370\) −333.076 −0.0467994
\(371\) 0 0
\(372\) 0 0
\(373\) −5313.30 −0.737566 −0.368783 0.929516i \(-0.620225\pi\)
−0.368783 + 0.929516i \(0.620225\pi\)
\(374\) −1981.06 −0.273898
\(375\) 0 0
\(376\) 7211.23 0.989071
\(377\) 3760.95 0.513790
\(378\) 0 0
\(379\) −10987.4 −1.48914 −0.744571 0.667543i \(-0.767346\pi\)
−0.744571 + 0.667543i \(0.767346\pi\)
\(380\) −134.157 −0.0181108
\(381\) 0 0
\(382\) 1175.96 0.157506
\(383\) 14557.0 1.94211 0.971053 0.238864i \(-0.0767749\pi\)
0.971053 + 0.238864i \(0.0767749\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4131.18 −0.544745
\(387\) 0 0
\(388\) 4093.67 0.535631
\(389\) 8451.48 1.10156 0.550780 0.834650i \(-0.314330\pi\)
0.550780 + 0.834650i \(0.314330\pi\)
\(390\) 0 0
\(391\) 1391.67 0.179999
\(392\) 0 0
\(393\) 0 0
\(394\) 36.8801 0.00471572
\(395\) −8866.40 −1.12941
\(396\) 0 0
\(397\) 11550.7 1.46023 0.730117 0.683322i \(-0.239465\pi\)
0.730117 + 0.683322i \(0.239465\pi\)
\(398\) 4105.54 0.517065
\(399\) 0 0
\(400\) −1499.32 −0.187415
\(401\) 11935.6 1.48638 0.743188 0.669083i \(-0.233313\pi\)
0.743188 + 0.669083i \(0.233313\pi\)
\(402\) 0 0
\(403\) 2028.59 0.250748
\(404\) −8006.63 −0.986001
\(405\) 0 0
\(406\) 0 0
\(407\) 1020.14 0.124242
\(408\) 0 0
\(409\) −7300.90 −0.882656 −0.441328 0.897346i \(-0.645492\pi\)
−0.441328 + 0.897346i \(0.645492\pi\)
\(410\) −1837.71 −0.221361
\(411\) 0 0
\(412\) −5462.77 −0.653232
\(413\) 0 0
\(414\) 0 0
\(415\) 3885.61 0.459607
\(416\) −3143.28 −0.370462
\(417\) 0 0
\(418\) −144.299 −0.0168849
\(419\) 1840.07 0.214542 0.107271 0.994230i \(-0.465789\pi\)
0.107271 + 0.994230i \(0.465789\pi\)
\(420\) 0 0
\(421\) 1332.32 0.154236 0.0771181 0.997022i \(-0.475428\pi\)
0.0771181 + 0.997022i \(0.475428\pi\)
\(422\) 2970.22 0.342625
\(423\) 0 0
\(424\) 668.431 0.0765610
\(425\) 3834.15 0.437608
\(426\) 0 0
\(427\) 0 0
\(428\) −5956.23 −0.672675
\(429\) 0 0
\(430\) 53.4203 0.00599105
\(431\) −9329.41 −1.04265 −0.521325 0.853358i \(-0.674562\pi\)
−0.521325 + 0.853358i \(0.674562\pi\)
\(432\) 0 0
\(433\) 1295.25 0.143755 0.0718775 0.997413i \(-0.477101\pi\)
0.0718775 + 0.997413i \(0.477101\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −5401.46 −0.593310
\(437\) 101.368 0.0110963
\(438\) 0 0
\(439\) −11862.2 −1.28964 −0.644821 0.764334i \(-0.723068\pi\)
−0.644821 + 0.764334i \(0.723068\pi\)
\(440\) 3865.94 0.418867
\(441\) 0 0
\(442\) 1140.88 0.122774
\(443\) −8321.32 −0.892455 −0.446228 0.894920i \(-0.647233\pi\)
−0.446228 + 0.894920i \(0.647233\pi\)
\(444\) 0 0
\(445\) 8239.91 0.877774
\(446\) 1191.76 0.126528
\(447\) 0 0
\(448\) 0 0
\(449\) −2710.45 −0.284886 −0.142443 0.989803i \(-0.545496\pi\)
−0.142443 + 0.989803i \(0.545496\pi\)
\(450\) 0 0
\(451\) 5628.50 0.587663
\(452\) −7622.07 −0.793168
\(453\) 0 0
\(454\) 3333.02 0.344551
\(455\) 0 0
\(456\) 0 0
\(457\) 8893.10 0.910288 0.455144 0.890418i \(-0.349588\pi\)
0.455144 + 0.890418i \(0.349588\pi\)
\(458\) −9572.33 −0.976606
\(459\) 0 0
\(460\) −1155.07 −0.117077
\(461\) −3569.04 −0.360578 −0.180289 0.983614i \(-0.557703\pi\)
−0.180289 + 0.983614i \(0.557703\pi\)
\(462\) 0 0
\(463\) 18634.5 1.87045 0.935227 0.354048i \(-0.115195\pi\)
0.935227 + 0.354048i \(0.115195\pi\)
\(464\) −4124.90 −0.412702
\(465\) 0 0
\(466\) −95.8743 −0.00953067
\(467\) 11292.2 1.11893 0.559467 0.828853i \(-0.311006\pi\)
0.559467 + 0.828853i \(0.311006\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 3420.82 0.335725
\(471\) 0 0
\(472\) −14900.0 −1.45303
\(473\) −163.615 −0.0159049
\(474\) 0 0
\(475\) 279.277 0.0269770
\(476\) 0 0
\(477\) 0 0
\(478\) 8848.27 0.846674
\(479\) 3271.94 0.312106 0.156053 0.987749i \(-0.450123\pi\)
0.156053 + 0.987749i \(0.450123\pi\)
\(480\) 0 0
\(481\) −587.493 −0.0556910
\(482\) −8729.86 −0.824968
\(483\) 0 0
\(484\) 2844.51 0.267140
\(485\) 4565.84 0.427472
\(486\) 0 0
\(487\) 19777.7 1.84028 0.920139 0.391592i \(-0.128076\pi\)
0.920139 + 0.391592i \(0.128076\pi\)
\(488\) 13224.1 1.22670
\(489\) 0 0
\(490\) 0 0
\(491\) 4477.06 0.411501 0.205751 0.978604i \(-0.434036\pi\)
0.205751 + 0.978604i \(0.434036\pi\)
\(492\) 0 0
\(493\) 10548.4 0.963644
\(494\) 83.1008 0.00756859
\(495\) 0 0
\(496\) −2224.90 −0.201414
\(497\) 0 0
\(498\) 0 0
\(499\) −9095.77 −0.815997 −0.407999 0.912983i \(-0.633773\pi\)
−0.407999 + 0.912983i \(0.633773\pi\)
\(500\) −8069.60 −0.721767
\(501\) 0 0
\(502\) −6119.81 −0.544104
\(503\) −20102.5 −1.78196 −0.890981 0.454041i \(-0.849982\pi\)
−0.890981 + 0.454041i \(0.849982\pi\)
\(504\) 0 0
\(505\) −8930.11 −0.786901
\(506\) −1242.39 −0.109152
\(507\) 0 0
\(508\) 3090.45 0.269914
\(509\) 1431.90 0.124692 0.0623458 0.998055i \(-0.480142\pi\)
0.0623458 + 0.998055i \(0.480142\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 6405.61 0.552912
\(513\) 0 0
\(514\) −4648.55 −0.398908
\(515\) −6092.85 −0.521326
\(516\) 0 0
\(517\) −10477.2 −0.891274
\(518\) 0 0
\(519\) 0 0
\(520\) −2226.37 −0.187756
\(521\) 11682.9 0.982415 0.491207 0.871043i \(-0.336556\pi\)
0.491207 + 0.871043i \(0.336556\pi\)
\(522\) 0 0
\(523\) 14402.3 1.20414 0.602071 0.798442i \(-0.294342\pi\)
0.602071 + 0.798442i \(0.294342\pi\)
\(524\) 5637.09 0.469957
\(525\) 0 0
\(526\) 6128.16 0.507986
\(527\) 5689.64 0.470293
\(528\) 0 0
\(529\) −11294.2 −0.928268
\(530\) 317.086 0.0259875
\(531\) 0 0
\(532\) 0 0
\(533\) −3241.42 −0.263418
\(534\) 0 0
\(535\) −6643.22 −0.536844
\(536\) −18899.9 −1.52304
\(537\) 0 0
\(538\) 6396.20 0.512565
\(539\) 0 0
\(540\) 0 0
\(541\) 13866.3 1.10196 0.550978 0.834519i \(-0.314255\pi\)
0.550978 + 0.834519i \(0.314255\pi\)
\(542\) 8391.65 0.665041
\(543\) 0 0
\(544\) −8816.02 −0.694823
\(545\) −6024.46 −0.473504
\(546\) 0 0
\(547\) 8793.92 0.687387 0.343694 0.939082i \(-0.388322\pi\)
0.343694 + 0.939082i \(0.388322\pi\)
\(548\) −17271.9 −1.34638
\(549\) 0 0
\(550\) −3422.88 −0.265367
\(551\) 768.339 0.0594053
\(552\) 0 0
\(553\) 0 0
\(554\) 223.348 0.0171284
\(555\) 0 0
\(556\) 7245.26 0.552639
\(557\) −20085.0 −1.52788 −0.763941 0.645286i \(-0.776738\pi\)
−0.763941 + 0.645286i \(0.776738\pi\)
\(558\) 0 0
\(559\) 94.2249 0.00712932
\(560\) 0 0
\(561\) 0 0
\(562\) −542.371 −0.0407092
\(563\) −3172.18 −0.237463 −0.118731 0.992926i \(-0.537883\pi\)
−0.118731 + 0.992926i \(0.537883\pi\)
\(564\) 0 0
\(565\) −8501.20 −0.633006
\(566\) 34.3808 0.00255324
\(567\) 0 0
\(568\) −17487.6 −1.29183
\(569\) 18767.7 1.38274 0.691372 0.722499i \(-0.257007\pi\)
0.691372 + 0.722499i \(0.257007\pi\)
\(570\) 0 0
\(571\) −18650.3 −1.36688 −0.683442 0.730005i \(-0.739518\pi\)
−0.683442 + 0.730005i \(0.739518\pi\)
\(572\) 2900.20 0.211999
\(573\) 0 0
\(574\) 0 0
\(575\) 2404.53 0.174393
\(576\) 0 0
\(577\) 21527.6 1.55322 0.776610 0.629982i \(-0.216938\pi\)
0.776610 + 0.629982i \(0.216938\pi\)
\(578\) −3884.53 −0.279542
\(579\) 0 0
\(580\) −8755.05 −0.626782
\(581\) 0 0
\(582\) 0 0
\(583\) −971.168 −0.0689909
\(584\) −14704.7 −1.04193
\(585\) 0 0
\(586\) 2598.13 0.183153
\(587\) −17142.7 −1.20537 −0.602686 0.797978i \(-0.705903\pi\)
−0.602686 + 0.797978i \(0.705903\pi\)
\(588\) 0 0
\(589\) 414.429 0.0289920
\(590\) −7068.20 −0.493209
\(591\) 0 0
\(592\) 644.346 0.0447338
\(593\) 23471.7 1.62541 0.812704 0.582677i \(-0.197995\pi\)
0.812704 + 0.582677i \(0.197995\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −14817.4 −1.01836
\(597\) 0 0
\(598\) 715.485 0.0489270
\(599\) −9698.12 −0.661527 −0.330763 0.943714i \(-0.607306\pi\)
−0.330763 + 0.943714i \(0.607306\pi\)
\(600\) 0 0
\(601\) −18513.2 −1.25652 −0.628261 0.778002i \(-0.716233\pi\)
−0.628261 + 0.778002i \(0.716233\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1564.12 0.105370
\(605\) 3172.59 0.213197
\(606\) 0 0
\(607\) −5168.65 −0.345616 −0.172808 0.984956i \(-0.555284\pi\)
−0.172808 + 0.984956i \(0.555284\pi\)
\(608\) −642.153 −0.0428335
\(609\) 0 0
\(610\) 6273.18 0.416383
\(611\) 6033.79 0.399510
\(612\) 0 0
\(613\) 3359.81 0.221372 0.110686 0.993855i \(-0.464695\pi\)
0.110686 + 0.993855i \(0.464695\pi\)
\(614\) −1615.42 −0.106178
\(615\) 0 0
\(616\) 0 0
\(617\) −10966.7 −0.715561 −0.357780 0.933806i \(-0.616466\pi\)
−0.357780 + 0.933806i \(0.616466\pi\)
\(618\) 0 0
\(619\) −8466.21 −0.549734 −0.274867 0.961482i \(-0.588634\pi\)
−0.274867 + 0.961482i \(0.588634\pi\)
\(620\) −4722.33 −0.305893
\(621\) 0 0
\(622\) 7623.93 0.491466
\(623\) 0 0
\(624\) 0 0
\(625\) 1173.65 0.0751139
\(626\) −3537.72 −0.225872
\(627\) 0 0
\(628\) 1133.88 0.0720488
\(629\) −1647.75 −0.104452
\(630\) 0 0
\(631\) −6200.95 −0.391214 −0.195607 0.980682i \(-0.562668\pi\)
−0.195607 + 0.980682i \(0.562668\pi\)
\(632\) −26951.4 −1.69631
\(633\) 0 0
\(634\) 5491.58 0.344004
\(635\) 3446.90 0.215411
\(636\) 0 0
\(637\) 0 0
\(638\) −9416.93 −0.584357
\(639\) 0 0
\(640\) 8720.46 0.538604
\(641\) −27467.7 −1.69252 −0.846262 0.532766i \(-0.821153\pi\)
−0.846262 + 0.532766i \(0.821153\pi\)
\(642\) 0 0
\(643\) 927.437 0.0568811 0.0284405 0.999595i \(-0.490946\pi\)
0.0284405 + 0.999595i \(0.490946\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 233.075 0.0141953
\(647\) 16172.3 0.982689 0.491344 0.870965i \(-0.336506\pi\)
0.491344 + 0.870965i \(0.336506\pi\)
\(648\) 0 0
\(649\) 21648.4 1.30936
\(650\) 1971.22 0.118950
\(651\) 0 0
\(652\) 10165.7 0.610611
\(653\) −4251.10 −0.254760 −0.127380 0.991854i \(-0.540657\pi\)
−0.127380 + 0.991854i \(0.540657\pi\)
\(654\) 0 0
\(655\) 6287.27 0.375060
\(656\) 3555.10 0.211590
\(657\) 0 0
\(658\) 0 0
\(659\) −16537.0 −0.977524 −0.488762 0.872417i \(-0.662551\pi\)
−0.488762 + 0.872417i \(0.662551\pi\)
\(660\) 0 0
\(661\) −22520.3 −1.32517 −0.662585 0.748987i \(-0.730541\pi\)
−0.662585 + 0.748987i \(0.730541\pi\)
\(662\) −4886.84 −0.286907
\(663\) 0 0
\(664\) 11811.2 0.690304
\(665\) 0 0
\(666\) 0 0
\(667\) 6615.28 0.384025
\(668\) −17335.5 −1.00409
\(669\) 0 0
\(670\) −8965.60 −0.516972
\(671\) −19213.4 −1.10540
\(672\) 0 0
\(673\) −14730.1 −0.843690 −0.421845 0.906668i \(-0.638617\pi\)
−0.421845 + 0.906668i \(0.638617\pi\)
\(674\) 109.374 0.00625066
\(675\) 0 0
\(676\) 11337.6 0.645064
\(677\) −2930.78 −0.166380 −0.0831898 0.996534i \(-0.526511\pi\)
−0.0831898 + 0.996534i \(0.526511\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −6244.35 −0.352147
\(681\) 0 0
\(682\) −5079.34 −0.285188
\(683\) 17706.6 0.991983 0.495992 0.868327i \(-0.334805\pi\)
0.495992 + 0.868327i \(0.334805\pi\)
\(684\) 0 0
\(685\) −19264.0 −1.07451
\(686\) 0 0
\(687\) 0 0
\(688\) −103.343 −0.00572663
\(689\) 559.290 0.0309249
\(690\) 0 0
\(691\) 14313.6 0.788010 0.394005 0.919108i \(-0.371089\pi\)
0.394005 + 0.919108i \(0.371089\pi\)
\(692\) 16390.5 0.900393
\(693\) 0 0
\(694\) 4788.13 0.261895
\(695\) 8080.93 0.441046
\(696\) 0 0
\(697\) −9091.28 −0.494056
\(698\) 12748.1 0.691296
\(699\) 0 0
\(700\) 0 0
\(701\) −18506.7 −0.997131 −0.498565 0.866852i \(-0.666140\pi\)
−0.498565 + 0.866852i \(0.666140\pi\)
\(702\) 0 0
\(703\) −120.021 −0.00643910
\(704\) 3572.45 0.191252
\(705\) 0 0
\(706\) −15812.6 −0.842940
\(707\) 0 0
\(708\) 0 0
\(709\) −6306.66 −0.334064 −0.167032 0.985951i \(-0.553418\pi\)
−0.167032 + 0.985951i \(0.553418\pi\)
\(710\) −8295.65 −0.438493
\(711\) 0 0
\(712\) 25047.0 1.31837
\(713\) 3568.17 0.187418
\(714\) 0 0
\(715\) 3234.71 0.169191
\(716\) −21192.5 −1.10614
\(717\) 0 0
\(718\) −6629.02 −0.344558
\(719\) 4391.44 0.227779 0.113889 0.993493i \(-0.463669\pi\)
0.113889 + 0.993493i \(0.463669\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −9873.46 −0.508937
\(723\) 0 0
\(724\) 4274.47 0.219419
\(725\) 18225.6 0.933630
\(726\) 0 0
\(727\) 3740.47 0.190820 0.0954102 0.995438i \(-0.469584\pi\)
0.0954102 + 0.995438i \(0.469584\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −6975.53 −0.353666
\(731\) 264.274 0.0133715
\(732\) 0 0
\(733\) −26104.4 −1.31540 −0.657699 0.753281i \(-0.728470\pi\)
−0.657699 + 0.753281i \(0.728470\pi\)
\(734\) 13083.3 0.657922
\(735\) 0 0
\(736\) −5528.84 −0.276896
\(737\) 27459.7 1.37245
\(738\) 0 0
\(739\) 4656.46 0.231787 0.115894 0.993262i \(-0.463027\pi\)
0.115894 + 0.993262i \(0.463027\pi\)
\(740\) 1367.62 0.0679386
\(741\) 0 0
\(742\) 0 0
\(743\) −14101.5 −0.696276 −0.348138 0.937443i \(-0.613186\pi\)
−0.348138 + 0.937443i \(0.613186\pi\)
\(744\) 0 0
\(745\) −16526.4 −0.812727
\(746\) −7661.59 −0.376020
\(747\) 0 0
\(748\) 8134.25 0.397617
\(749\) 0 0
\(750\) 0 0
\(751\) 5235.30 0.254379 0.127190 0.991878i \(-0.459404\pi\)
0.127190 + 0.991878i \(0.459404\pi\)
\(752\) −6617.68 −0.320907
\(753\) 0 0
\(754\) 5423.16 0.261936
\(755\) 1744.53 0.0840925
\(756\) 0 0
\(757\) −17983.1 −0.863417 −0.431709 0.902013i \(-0.642089\pi\)
−0.431709 + 0.902013i \(0.642089\pi\)
\(758\) −15843.5 −0.759182
\(759\) 0 0
\(760\) −454.834 −0.0217086
\(761\) −19710.8 −0.938919 −0.469459 0.882954i \(-0.655551\pi\)
−0.469459 + 0.882954i \(0.655551\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −4828.51 −0.228651
\(765\) 0 0
\(766\) 20990.6 0.990108
\(767\) −12467.2 −0.586915
\(768\) 0 0
\(769\) 32441.6 1.52129 0.760647 0.649165i \(-0.224882\pi\)
0.760647 + 0.649165i \(0.224882\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 16962.7 0.790805
\(773\) −16807.1 −0.782029 −0.391014 0.920385i \(-0.627876\pi\)
−0.391014 + 0.920385i \(0.627876\pi\)
\(774\) 0 0
\(775\) 9830.58 0.455645
\(776\) 13878.9 0.642039
\(777\) 0 0
\(778\) 12186.7 0.561588
\(779\) −662.203 −0.0304568
\(780\) 0 0
\(781\) 25407.8 1.16410
\(782\) 2006.74 0.0917656
\(783\) 0 0
\(784\) 0 0
\(785\) 1264.66 0.0575001
\(786\) 0 0
\(787\) 38870.7 1.76060 0.880299 0.474420i \(-0.157342\pi\)
0.880299 + 0.474420i \(0.157342\pi\)
\(788\) −151.430 −0.00684580
\(789\) 0 0
\(790\) −12785.0 −0.575786
\(791\) 0 0
\(792\) 0 0
\(793\) 11064.9 0.495494
\(794\) 16655.7 0.744445
\(795\) 0 0
\(796\) −16857.4 −0.750622
\(797\) −15248.8 −0.677717 −0.338858 0.940837i \(-0.610041\pi\)
−0.338858 + 0.940837i \(0.610041\pi\)
\(798\) 0 0
\(799\) 16923.1 0.749306
\(800\) −15232.4 −0.673182
\(801\) 0 0
\(802\) 17210.8 0.757772
\(803\) 21364.6 0.938903
\(804\) 0 0
\(805\) 0 0
\(806\) 2925.16 0.127834
\(807\) 0 0
\(808\) −27145.1 −1.18188
\(809\) 3463.54 0.150521 0.0752605 0.997164i \(-0.476021\pi\)
0.0752605 + 0.997164i \(0.476021\pi\)
\(810\) 0 0
\(811\) 45402.7 1.96585 0.982925 0.184006i \(-0.0589066\pi\)
0.982925 + 0.184006i \(0.0589066\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1471.01 0.0633400
\(815\) 11338.2 0.487312
\(816\) 0 0
\(817\) 19.2496 0.000824305 0
\(818\) −10527.6 −0.449988
\(819\) 0 0
\(820\) 7545.66 0.321349
\(821\) 12650.8 0.537778 0.268889 0.963171i \(-0.413344\pi\)
0.268889 + 0.963171i \(0.413344\pi\)
\(822\) 0 0
\(823\) −26294.4 −1.11369 −0.556845 0.830617i \(-0.687988\pi\)
−0.556845 + 0.830617i \(0.687988\pi\)
\(824\) −18520.6 −0.783003
\(825\) 0 0
\(826\) 0 0
\(827\) −3948.55 −0.166027 −0.0830136 0.996548i \(-0.526454\pi\)
−0.0830136 + 0.996548i \(0.526454\pi\)
\(828\) 0 0
\(829\) 18967.4 0.794652 0.397326 0.917678i \(-0.369938\pi\)
0.397326 + 0.917678i \(0.369938\pi\)
\(830\) 5602.91 0.234313
\(831\) 0 0
\(832\) −2057.35 −0.0857282
\(833\) 0 0
\(834\) 0 0
\(835\) −19335.0 −0.801336
\(836\) 592.493 0.0245117
\(837\) 0 0
\(838\) 2653.32 0.109376
\(839\) −21494.7 −0.884481 −0.442241 0.896896i \(-0.645816\pi\)
−0.442241 + 0.896896i \(0.645816\pi\)
\(840\) 0 0
\(841\) 25752.8 1.05592
\(842\) 1921.16 0.0786314
\(843\) 0 0
\(844\) −12195.8 −0.497388
\(845\) 12645.3 0.514808
\(846\) 0 0
\(847\) 0 0
\(848\) −613.414 −0.0248405
\(849\) 0 0
\(850\) 5528.71 0.223098
\(851\) −1033.36 −0.0416255
\(852\) 0 0
\(853\) −25163.6 −1.01006 −0.505032 0.863100i \(-0.668519\pi\)
−0.505032 + 0.863100i \(0.668519\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −20193.5 −0.806309
\(857\) −2324.30 −0.0926449 −0.0463224 0.998927i \(-0.514750\pi\)
−0.0463224 + 0.998927i \(0.514750\pi\)
\(858\) 0 0
\(859\) −28144.9 −1.11792 −0.558959 0.829195i \(-0.688799\pi\)
−0.558959 + 0.829195i \(0.688799\pi\)
\(860\) −219.345 −0.00869720
\(861\) 0 0
\(862\) −13452.7 −0.531555
\(863\) −11512.8 −0.454115 −0.227058 0.973881i \(-0.572911\pi\)
−0.227058 + 0.973881i \(0.572911\pi\)
\(864\) 0 0
\(865\) 18280.9 0.718579
\(866\) 1867.71 0.0732880
\(867\) 0 0
\(868\) 0 0
\(869\) 39157.8 1.52858
\(870\) 0 0
\(871\) −15813.9 −0.615194
\(872\) −18312.7 −0.711177
\(873\) 0 0
\(874\) 146.169 0.00565704
\(875\) 0 0
\(876\) 0 0
\(877\) 14143.0 0.544557 0.272278 0.962219i \(-0.412223\pi\)
0.272278 + 0.962219i \(0.412223\pi\)
\(878\) −17104.9 −0.657474
\(879\) 0 0
\(880\) −3547.74 −0.135903
\(881\) 1038.97 0.0397318 0.0198659 0.999803i \(-0.493676\pi\)
0.0198659 + 0.999803i \(0.493676\pi\)
\(882\) 0 0
\(883\) −48786.6 −1.85934 −0.929671 0.368391i \(-0.879909\pi\)
−0.929671 + 0.368391i \(0.879909\pi\)
\(884\) −4684.47 −0.178231
\(885\) 0 0
\(886\) −11999.0 −0.454984
\(887\) −13831.7 −0.523589 −0.261794 0.965124i \(-0.584314\pi\)
−0.261794 + 0.965124i \(0.584314\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 11881.7 0.447499
\(891\) 0 0
\(892\) −4893.40 −0.183681
\(893\) 1232.67 0.0461921
\(894\) 0 0
\(895\) −23636.8 −0.882783
\(896\) 0 0
\(897\) 0 0
\(898\) −3908.37 −0.145238
\(899\) 27045.7 1.00336
\(900\) 0 0
\(901\) 1568.65 0.0580016
\(902\) 8116.11 0.299597
\(903\) 0 0
\(904\) −25841.3 −0.950739
\(905\) 4767.49 0.175112
\(906\) 0 0
\(907\) −2677.25 −0.0980118 −0.0490059 0.998798i \(-0.515605\pi\)
−0.0490059 + 0.998798i \(0.515605\pi\)
\(908\) −13685.4 −0.500184
\(909\) 0 0
\(910\) 0 0
\(911\) 35842.4 1.30352 0.651762 0.758424i \(-0.274030\pi\)
0.651762 + 0.758424i \(0.274030\pi\)
\(912\) 0 0
\(913\) −17160.5 −0.622049
\(914\) 12823.5 0.464075
\(915\) 0 0
\(916\) 39304.2 1.41774
\(917\) 0 0
\(918\) 0 0
\(919\) −33473.5 −1.20151 −0.600756 0.799433i \(-0.705133\pi\)
−0.600756 + 0.799433i \(0.705133\pi\)
\(920\) −3916.05 −0.140335
\(921\) 0 0
\(922\) −5146.43 −0.183827
\(923\) −14632.2 −0.521804
\(924\) 0 0
\(925\) −2847.00 −0.101199
\(926\) 26870.4 0.953579
\(927\) 0 0
\(928\) −41906.9 −1.48239
\(929\) 8801.66 0.310843 0.155421 0.987848i \(-0.450326\pi\)
0.155421 + 0.987848i \(0.450326\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 393.662 0.0138356
\(933\) 0 0
\(934\) 16283.0 0.570446
\(935\) 9072.46 0.317327
\(936\) 0 0
\(937\) −1144.38 −0.0398991 −0.0199495 0.999801i \(-0.506351\pi\)
−0.0199495 + 0.999801i \(0.506351\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −14045.9 −0.487371
\(941\) 11014.1 0.381563 0.190782 0.981633i \(-0.438898\pi\)
0.190782 + 0.981633i \(0.438898\pi\)
\(942\) 0 0
\(943\) −5701.47 −0.196888
\(944\) 13673.6 0.471440
\(945\) 0 0
\(946\) −235.927 −0.00810851
\(947\) 47646.5 1.63496 0.817478 0.575960i \(-0.195371\pi\)
0.817478 + 0.575960i \(0.195371\pi\)
\(948\) 0 0
\(949\) −12303.7 −0.420860
\(950\) 402.707 0.0137532
\(951\) 0 0
\(952\) 0 0
\(953\) 46771.5 1.58980 0.794898 0.606743i \(-0.207524\pi\)
0.794898 + 0.606743i \(0.207524\pi\)
\(954\) 0 0
\(955\) −5385.43 −0.182480
\(956\) −36331.2 −1.22911
\(957\) 0 0
\(958\) 4718.02 0.159115
\(959\) 0 0
\(960\) 0 0
\(961\) −15203.0 −0.510323
\(962\) −847.145 −0.0283919
\(963\) 0 0
\(964\) 35845.0 1.19760
\(965\) 18919.2 0.631120
\(966\) 0 0
\(967\) 22111.6 0.735326 0.367663 0.929959i \(-0.380158\pi\)
0.367663 + 0.929959i \(0.380158\pi\)
\(968\) 9643.79 0.320210
\(969\) 0 0
\(970\) 6583.78 0.217930
\(971\) −24420.8 −0.807108 −0.403554 0.914956i \(-0.632225\pi\)
−0.403554 + 0.914956i \(0.632225\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 28518.8 0.938195
\(975\) 0 0
\(976\) −12135.7 −0.398005
\(977\) 41638.6 1.36350 0.681748 0.731587i \(-0.261220\pi\)
0.681748 + 0.731587i \(0.261220\pi\)
\(978\) 0 0
\(979\) −36391.0 −1.18801
\(980\) 0 0
\(981\) 0 0
\(982\) 6455.77 0.209788
\(983\) 2225.94 0.0722243 0.0361122 0.999348i \(-0.488503\pi\)
0.0361122 + 0.999348i \(0.488503\pi\)
\(984\) 0 0
\(985\) −168.896 −0.00546344
\(986\) 15210.4 0.491277
\(987\) 0 0
\(988\) −341.214 −0.0109873
\(989\) 165.736 0.00532871
\(990\) 0 0
\(991\) 10975.3 0.351808 0.175904 0.984407i \(-0.443715\pi\)
0.175904 + 0.984407i \(0.443715\pi\)
\(992\) −22603.9 −0.723462
\(993\) 0 0
\(994\) 0 0
\(995\) −18801.7 −0.599051
\(996\) 0 0
\(997\) −38123.0 −1.21100 −0.605500 0.795846i \(-0.707027\pi\)
−0.605500 + 0.795846i \(0.707027\pi\)
\(998\) −13115.8 −0.416005
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bk.1.5 7
3.2 odd 2 1323.4.a.bh.1.3 7
7.3 odd 6 189.4.e.f.163.3 yes 14
7.5 odd 6 189.4.e.f.109.3 14
7.6 odd 2 1323.4.a.bj.1.5 7
21.5 even 6 189.4.e.g.109.5 yes 14
21.17 even 6 189.4.e.g.163.5 yes 14
21.20 even 2 1323.4.a.bi.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.f.109.3 14 7.5 odd 6
189.4.e.f.163.3 yes 14 7.3 odd 6
189.4.e.g.109.5 yes 14 21.5 even 6
189.4.e.g.163.5 yes 14 21.17 even 6
1323.4.a.bh.1.3 7 3.2 odd 2
1323.4.a.bi.1.3 7 21.20 even 2
1323.4.a.bj.1.5 7 7.6 odd 2
1323.4.a.bk.1.5 7 1.1 even 1 trivial