Properties

Label 1323.4.a.bn.1.2
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 54x^{6} - 6x^{5} + 555x^{4} + 642x^{3} - 218x^{2} - 54x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{4}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.07765\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.49236 q^{2} +4.19658 q^{4} -7.87531 q^{5} +13.2829 q^{8} +27.5034 q^{10} -54.0035 q^{11} +48.9137 q^{13} -79.9614 q^{16} +96.9775 q^{17} +142.327 q^{19} -33.0494 q^{20} +188.600 q^{22} -103.787 q^{23} -62.9795 q^{25} -170.824 q^{26} -24.5329 q^{29} -187.379 q^{31} +172.991 q^{32} -338.680 q^{34} +146.555 q^{37} -497.058 q^{38} -104.607 q^{40} +314.180 q^{41} +173.165 q^{43} -226.630 q^{44} +362.462 q^{46} -259.235 q^{47} +219.947 q^{50} +205.270 q^{52} -620.858 q^{53} +425.295 q^{55} +85.6778 q^{58} -443.110 q^{59} -113.296 q^{61} +654.396 q^{62} +35.5454 q^{64} -385.210 q^{65} +628.975 q^{67} +406.974 q^{68} -41.3042 q^{71} -447.111 q^{73} -511.822 q^{74} +597.287 q^{76} +434.706 q^{79} +629.720 q^{80} -1097.23 q^{82} -329.158 q^{83} -763.728 q^{85} -604.756 q^{86} -717.324 q^{88} -24.8709 q^{89} -435.551 q^{92} +905.340 q^{94} -1120.87 q^{95} +499.239 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 48 q^{4} - 44 q^{10} + 84 q^{13} + 156 q^{16} - 12 q^{19} + 224 q^{22} + 408 q^{25} - 800 q^{31} + 948 q^{34} + 692 q^{37} - 96 q^{40} + 1456 q^{43} + 1524 q^{46} - 1972 q^{52} + 1280 q^{55} + 2372 q^{58}+ \cdots - 584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.49236 −1.23474 −0.617368 0.786675i \(-0.711801\pi\)
−0.617368 + 0.786675i \(0.711801\pi\)
\(3\) 0 0
\(4\) 4.19658 0.524573
\(5\) −7.87531 −0.704389 −0.352195 0.935927i \(-0.614564\pi\)
−0.352195 + 0.935927i \(0.614564\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 13.2829 0.587027
\(9\) 0 0
\(10\) 27.5034 0.869735
\(11\) −54.0035 −1.48024 −0.740122 0.672473i \(-0.765232\pi\)
−0.740122 + 0.672473i \(0.765232\pi\)
\(12\) 0 0
\(13\) 48.9137 1.04355 0.521777 0.853082i \(-0.325269\pi\)
0.521777 + 0.853082i \(0.325269\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −79.9614 −1.24940
\(17\) 96.9775 1.38356 0.691780 0.722109i \(-0.256827\pi\)
0.691780 + 0.722109i \(0.256827\pi\)
\(18\) 0 0
\(19\) 142.327 1.71853 0.859266 0.511530i \(-0.170921\pi\)
0.859266 + 0.511530i \(0.170921\pi\)
\(20\) −33.0494 −0.369503
\(21\) 0 0
\(22\) 188.600 1.82771
\(23\) −103.787 −0.940918 −0.470459 0.882422i \(-0.655912\pi\)
−0.470459 + 0.882422i \(0.655912\pi\)
\(24\) 0 0
\(25\) −62.9795 −0.503836
\(26\) −170.824 −1.28851
\(27\) 0 0
\(28\) 0 0
\(29\) −24.5329 −0.157091 −0.0785456 0.996911i \(-0.525028\pi\)
−0.0785456 + 0.996911i \(0.525028\pi\)
\(30\) 0 0
\(31\) −187.379 −1.08562 −0.542812 0.839855i \(-0.682640\pi\)
−0.542812 + 0.839855i \(0.682640\pi\)
\(32\) 172.991 0.955647
\(33\) 0 0
\(34\) −338.680 −1.70833
\(35\) 0 0
\(36\) 0 0
\(37\) 146.555 0.651174 0.325587 0.945512i \(-0.394438\pi\)
0.325587 + 0.945512i \(0.394438\pi\)
\(38\) −497.058 −2.12193
\(39\) 0 0
\(40\) −104.607 −0.413496
\(41\) 314.180 1.19675 0.598374 0.801217i \(-0.295814\pi\)
0.598374 + 0.801217i \(0.295814\pi\)
\(42\) 0 0
\(43\) 173.165 0.614127 0.307064 0.951689i \(-0.400654\pi\)
0.307064 + 0.951689i \(0.400654\pi\)
\(44\) −226.630 −0.776495
\(45\) 0 0
\(46\) 362.462 1.16179
\(47\) −259.235 −0.804537 −0.402269 0.915522i \(-0.631778\pi\)
−0.402269 + 0.915522i \(0.631778\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 219.947 0.622104
\(51\) 0 0
\(52\) 205.270 0.547420
\(53\) −620.858 −1.60908 −0.804541 0.593896i \(-0.797589\pi\)
−0.804541 + 0.593896i \(0.797589\pi\)
\(54\) 0 0
\(55\) 425.295 1.04267
\(56\) 0 0
\(57\) 0 0
\(58\) 85.6778 0.193966
\(59\) −443.110 −0.977764 −0.488882 0.872350i \(-0.662595\pi\)
−0.488882 + 0.872350i \(0.662595\pi\)
\(60\) 0 0
\(61\) −113.296 −0.237803 −0.118902 0.992906i \(-0.537937\pi\)
−0.118902 + 0.992906i \(0.537937\pi\)
\(62\) 654.396 1.34046
\(63\) 0 0
\(64\) 35.5454 0.0694245
\(65\) −385.210 −0.735069
\(66\) 0 0
\(67\) 628.975 1.14689 0.573444 0.819245i \(-0.305607\pi\)
0.573444 + 0.819245i \(0.305607\pi\)
\(68\) 406.974 0.725777
\(69\) 0 0
\(70\) 0 0
\(71\) −41.3042 −0.0690410 −0.0345205 0.999404i \(-0.510990\pi\)
−0.0345205 + 0.999404i \(0.510990\pi\)
\(72\) 0 0
\(73\) −447.111 −0.716854 −0.358427 0.933558i \(-0.616687\pi\)
−0.358427 + 0.933558i \(0.616687\pi\)
\(74\) −511.822 −0.804028
\(75\) 0 0
\(76\) 597.287 0.901494
\(77\) 0 0
\(78\) 0 0
\(79\) 434.706 0.619092 0.309546 0.950884i \(-0.399823\pi\)
0.309546 + 0.950884i \(0.399823\pi\)
\(80\) 629.720 0.880061
\(81\) 0 0
\(82\) −1097.23 −1.47767
\(83\) −329.158 −0.435299 −0.217649 0.976027i \(-0.569839\pi\)
−0.217649 + 0.976027i \(0.569839\pi\)
\(84\) 0 0
\(85\) −763.728 −0.974564
\(86\) −604.756 −0.758285
\(87\) 0 0
\(88\) −717.324 −0.868943
\(89\) −24.8709 −0.0296214 −0.0148107 0.999890i \(-0.504715\pi\)
−0.0148107 + 0.999890i \(0.504715\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −435.551 −0.493580
\(93\) 0 0
\(94\) 905.340 0.993391
\(95\) −1120.87 −1.21051
\(96\) 0 0
\(97\) 499.239 0.522578 0.261289 0.965261i \(-0.415852\pi\)
0.261289 + 0.965261i \(0.415852\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −264.299 −0.264299
\(101\) −258.076 −0.254253 −0.127127 0.991887i \(-0.540575\pi\)
−0.127127 + 0.991887i \(0.540575\pi\)
\(102\) 0 0
\(103\) −960.317 −0.918669 −0.459334 0.888263i \(-0.651912\pi\)
−0.459334 + 0.888263i \(0.651912\pi\)
\(104\) 649.716 0.612595
\(105\) 0 0
\(106\) 2168.26 1.98679
\(107\) −2054.26 −1.85601 −0.928004 0.372570i \(-0.878477\pi\)
−0.928004 + 0.372570i \(0.878477\pi\)
\(108\) 0 0
\(109\) 1784.10 1.56776 0.783881 0.620911i \(-0.213237\pi\)
0.783881 + 0.620911i \(0.213237\pi\)
\(110\) −1485.28 −1.28742
\(111\) 0 0
\(112\) 0 0
\(113\) −1296.36 −1.07921 −0.539607 0.841917i \(-0.681427\pi\)
−0.539607 + 0.841917i \(0.681427\pi\)
\(114\) 0 0
\(115\) 817.356 0.662773
\(116\) −102.954 −0.0824058
\(117\) 0 0
\(118\) 1547.50 1.20728
\(119\) 0 0
\(120\) 0 0
\(121\) 1585.38 1.19112
\(122\) 395.669 0.293624
\(123\) 0 0
\(124\) −786.352 −0.569488
\(125\) 1480.40 1.05929
\(126\) 0 0
\(127\) −312.058 −0.218037 −0.109018 0.994040i \(-0.534771\pi\)
−0.109018 + 0.994040i \(0.534771\pi\)
\(128\) −1508.06 −1.04137
\(129\) 0 0
\(130\) 1345.29 0.907616
\(131\) −83.2704 −0.0555372 −0.0277686 0.999614i \(-0.508840\pi\)
−0.0277686 + 0.999614i \(0.508840\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2196.61 −1.41610
\(135\) 0 0
\(136\) 1288.14 0.812187
\(137\) 2909.58 1.81447 0.907233 0.420628i \(-0.138190\pi\)
0.907233 + 0.420628i \(0.138190\pi\)
\(138\) 0 0
\(139\) −1414.91 −0.863392 −0.431696 0.902019i \(-0.642085\pi\)
−0.431696 + 0.902019i \(0.642085\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 144.249 0.0852474
\(143\) −2641.51 −1.54472
\(144\) 0 0
\(145\) 193.204 0.110653
\(146\) 1561.47 0.885125
\(147\) 0 0
\(148\) 615.029 0.341588
\(149\) 2186.63 1.20225 0.601125 0.799155i \(-0.294719\pi\)
0.601125 + 0.799155i \(0.294719\pi\)
\(150\) 0 0
\(151\) 1639.26 0.883450 0.441725 0.897151i \(-0.354367\pi\)
0.441725 + 0.897151i \(0.354367\pi\)
\(152\) 1890.52 1.00882
\(153\) 0 0
\(154\) 0 0
\(155\) 1475.67 0.764701
\(156\) 0 0
\(157\) −1258.98 −0.639986 −0.319993 0.947420i \(-0.603680\pi\)
−0.319993 + 0.947420i \(0.603680\pi\)
\(158\) −1518.15 −0.764415
\(159\) 0 0
\(160\) −1362.35 −0.673147
\(161\) 0 0
\(162\) 0 0
\(163\) −3159.01 −1.51799 −0.758995 0.651096i \(-0.774309\pi\)
−0.758995 + 0.651096i \(0.774309\pi\)
\(164\) 1318.48 0.627782
\(165\) 0 0
\(166\) 1149.54 0.537479
\(167\) 1848.90 0.856718 0.428359 0.903609i \(-0.359092\pi\)
0.428359 + 0.903609i \(0.359092\pi\)
\(168\) 0 0
\(169\) 195.548 0.0890068
\(170\) 2667.21 1.20333
\(171\) 0 0
\(172\) 726.703 0.322154
\(173\) 623.157 0.273860 0.136930 0.990581i \(-0.456277\pi\)
0.136930 + 0.990581i \(0.456277\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4318.20 1.84941
\(177\) 0 0
\(178\) 86.8580 0.0365746
\(179\) −2340.66 −0.977370 −0.488685 0.872460i \(-0.662523\pi\)
−0.488685 + 0.872460i \(0.662523\pi\)
\(180\) 0 0
\(181\) 461.896 0.189682 0.0948411 0.995492i \(-0.469766\pi\)
0.0948411 + 0.995492i \(0.469766\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1378.60 −0.552345
\(185\) −1154.16 −0.458680
\(186\) 0 0
\(187\) −5237.13 −2.04800
\(188\) −1087.90 −0.422038
\(189\) 0 0
\(190\) 3914.48 1.49467
\(191\) −2665.79 −1.00990 −0.504948 0.863150i \(-0.668488\pi\)
−0.504948 + 0.863150i \(0.668488\pi\)
\(192\) 0 0
\(193\) 130.569 0.0486972 0.0243486 0.999704i \(-0.492249\pi\)
0.0243486 + 0.999704i \(0.492249\pi\)
\(194\) −1743.52 −0.645245
\(195\) 0 0
\(196\) 0 0
\(197\) 3729.51 1.34882 0.674408 0.738359i \(-0.264399\pi\)
0.674408 + 0.738359i \(0.264399\pi\)
\(198\) 0 0
\(199\) 3772.75 1.34394 0.671968 0.740580i \(-0.265449\pi\)
0.671968 + 0.740580i \(0.265449\pi\)
\(200\) −836.551 −0.295765
\(201\) 0 0
\(202\) 901.296 0.313935
\(203\) 0 0
\(204\) 0 0
\(205\) −2474.27 −0.842977
\(206\) 3353.77 1.13431
\(207\) 0 0
\(208\) −3911.20 −1.30381
\(209\) −7686.17 −2.54384
\(210\) 0 0
\(211\) 2398.28 0.782484 0.391242 0.920288i \(-0.372046\pi\)
0.391242 + 0.920288i \(0.372046\pi\)
\(212\) −2605.48 −0.844081
\(213\) 0 0
\(214\) 7174.22 2.29168
\(215\) −1363.73 −0.432585
\(216\) 0 0
\(217\) 0 0
\(218\) −6230.73 −1.93577
\(219\) 0 0
\(220\) 1784.78 0.546955
\(221\) 4743.53 1.44382
\(222\) 0 0
\(223\) 3338.23 1.00244 0.501220 0.865320i \(-0.332885\pi\)
0.501220 + 0.865320i \(0.332885\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 4527.35 1.33254
\(227\) −1269.04 −0.371054 −0.185527 0.982639i \(-0.559399\pi\)
−0.185527 + 0.982639i \(0.559399\pi\)
\(228\) 0 0
\(229\) 2051.48 0.591990 0.295995 0.955190i \(-0.404349\pi\)
0.295995 + 0.955190i \(0.404349\pi\)
\(230\) −2854.50 −0.818349
\(231\) 0 0
\(232\) −325.868 −0.0922169
\(233\) 4950.44 1.39191 0.695953 0.718088i \(-0.254982\pi\)
0.695953 + 0.718088i \(0.254982\pi\)
\(234\) 0 0
\(235\) 2041.55 0.566707
\(236\) −1859.55 −0.512908
\(237\) 0 0
\(238\) 0 0
\(239\) 262.671 0.0710910 0.0355455 0.999368i \(-0.488683\pi\)
0.0355455 + 0.999368i \(0.488683\pi\)
\(240\) 0 0
\(241\) −2902.37 −0.775761 −0.387880 0.921710i \(-0.626793\pi\)
−0.387880 + 0.921710i \(0.626793\pi\)
\(242\) −5536.73 −1.47072
\(243\) 0 0
\(244\) −475.454 −0.124745
\(245\) 0 0
\(246\) 0 0
\(247\) 6961.75 1.79338
\(248\) −2488.94 −0.637290
\(249\) 0 0
\(250\) −5170.08 −1.30794
\(251\) 6265.68 1.57564 0.787821 0.615904i \(-0.211209\pi\)
0.787821 + 0.615904i \(0.211209\pi\)
\(252\) 0 0
\(253\) 5604.87 1.39279
\(254\) 1089.82 0.269218
\(255\) 0 0
\(256\) 4982.33 1.21639
\(257\) 3420.96 0.830325 0.415163 0.909747i \(-0.363725\pi\)
0.415163 + 0.909747i \(0.363725\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1616.57 −0.385597
\(261\) 0 0
\(262\) 290.810 0.0685738
\(263\) 8222.52 1.92784 0.963921 0.266188i \(-0.0857642\pi\)
0.963921 + 0.266188i \(0.0857642\pi\)
\(264\) 0 0
\(265\) 4889.45 1.13342
\(266\) 0 0
\(267\) 0 0
\(268\) 2639.54 0.601626
\(269\) 5493.33 1.24511 0.622555 0.782576i \(-0.286095\pi\)
0.622555 + 0.782576i \(0.286095\pi\)
\(270\) 0 0
\(271\) 1096.48 0.245781 0.122891 0.992420i \(-0.460784\pi\)
0.122891 + 0.992420i \(0.460784\pi\)
\(272\) −7754.45 −1.72861
\(273\) 0 0
\(274\) −10161.3 −2.24039
\(275\) 3401.12 0.745800
\(276\) 0 0
\(277\) −1555.47 −0.337398 −0.168699 0.985668i \(-0.553957\pi\)
−0.168699 + 0.985668i \(0.553957\pi\)
\(278\) 4941.39 1.06606
\(279\) 0 0
\(280\) 0 0
\(281\) 995.950 0.211435 0.105718 0.994396i \(-0.466286\pi\)
0.105718 + 0.994396i \(0.466286\pi\)
\(282\) 0 0
\(283\) 8635.47 1.81387 0.906936 0.421269i \(-0.138415\pi\)
0.906936 + 0.421269i \(0.138415\pi\)
\(284\) −173.337 −0.0362170
\(285\) 0 0
\(286\) 9225.11 1.90732
\(287\) 0 0
\(288\) 0 0
\(289\) 4491.64 0.914236
\(290\) −674.739 −0.136628
\(291\) 0 0
\(292\) −1876.34 −0.376042
\(293\) −2180.01 −0.434667 −0.217333 0.976097i \(-0.569736\pi\)
−0.217333 + 0.976097i \(0.569736\pi\)
\(294\) 0 0
\(295\) 3489.63 0.688726
\(296\) 1946.67 0.382257
\(297\) 0 0
\(298\) −7636.49 −1.48446
\(299\) −5076.61 −0.981900
\(300\) 0 0
\(301\) 0 0
\(302\) −5724.88 −1.09083
\(303\) 0 0
\(304\) −11380.7 −2.14713
\(305\) 892.238 0.167506
\(306\) 0 0
\(307\) −5281.18 −0.981800 −0.490900 0.871216i \(-0.663332\pi\)
−0.490900 + 0.871216i \(0.663332\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −5153.57 −0.944204
\(311\) 4297.47 0.783561 0.391780 0.920059i \(-0.371859\pi\)
0.391780 + 0.920059i \(0.371859\pi\)
\(312\) 0 0
\(313\) 2360.96 0.426356 0.213178 0.977013i \(-0.431619\pi\)
0.213178 + 0.977013i \(0.431619\pi\)
\(314\) 4396.82 0.790213
\(315\) 0 0
\(316\) 1824.28 0.324759
\(317\) 9092.66 1.61102 0.805512 0.592580i \(-0.201891\pi\)
0.805512 + 0.592580i \(0.201891\pi\)
\(318\) 0 0
\(319\) 1324.86 0.232533
\(320\) −279.931 −0.0489019
\(321\) 0 0
\(322\) 0 0
\(323\) 13802.5 2.37769
\(324\) 0 0
\(325\) −3080.56 −0.525780
\(326\) 11032.4 1.87432
\(327\) 0 0
\(328\) 4173.23 0.702524
\(329\) 0 0
\(330\) 0 0
\(331\) 4379.01 0.727167 0.363584 0.931562i \(-0.381553\pi\)
0.363584 + 0.931562i \(0.381553\pi\)
\(332\) −1381.34 −0.228346
\(333\) 0 0
\(334\) −6457.02 −1.05782
\(335\) −4953.37 −0.807856
\(336\) 0 0
\(337\) 3314.59 0.535778 0.267889 0.963450i \(-0.413674\pi\)
0.267889 + 0.963450i \(0.413674\pi\)
\(338\) −682.924 −0.109900
\(339\) 0 0
\(340\) −3205.05 −0.511230
\(341\) 10119.1 1.60699
\(342\) 0 0
\(343\) 0 0
\(344\) 2300.14 0.360510
\(345\) 0 0
\(346\) −2176.29 −0.338144
\(347\) −8553.87 −1.32333 −0.661666 0.749799i \(-0.730150\pi\)
−0.661666 + 0.749799i \(0.730150\pi\)
\(348\) 0 0
\(349\) −9832.96 −1.50816 −0.754078 0.656785i \(-0.771916\pi\)
−0.754078 + 0.656785i \(0.771916\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −9342.10 −1.41459
\(353\) −6171.41 −0.930513 −0.465257 0.885176i \(-0.654038\pi\)
−0.465257 + 0.885176i \(0.654038\pi\)
\(354\) 0 0
\(355\) 325.284 0.0486317
\(356\) −104.373 −0.0155386
\(357\) 0 0
\(358\) 8174.43 1.20679
\(359\) 9547.02 1.40354 0.701772 0.712401i \(-0.252392\pi\)
0.701772 + 0.712401i \(0.252392\pi\)
\(360\) 0 0
\(361\) 13398.0 1.95335
\(362\) −1613.11 −0.234207
\(363\) 0 0
\(364\) 0 0
\(365\) 3521.14 0.504944
\(366\) 0 0
\(367\) 4028.68 0.573012 0.286506 0.958078i \(-0.407506\pi\)
0.286506 + 0.958078i \(0.407506\pi\)
\(368\) 8298.96 1.17558
\(369\) 0 0
\(370\) 4030.76 0.566349
\(371\) 0 0
\(372\) 0 0
\(373\) 20.0509 0.00278336 0.00139168 0.999999i \(-0.499557\pi\)
0.00139168 + 0.999999i \(0.499557\pi\)
\(374\) 18289.9 2.52874
\(375\) 0 0
\(376\) −3443.39 −0.472285
\(377\) −1199.99 −0.163933
\(378\) 0 0
\(379\) −3787.79 −0.513366 −0.256683 0.966496i \(-0.582630\pi\)
−0.256683 + 0.966496i \(0.582630\pi\)
\(380\) −4703.82 −0.635003
\(381\) 0 0
\(382\) 9309.92 1.24695
\(383\) 8001.72 1.06754 0.533771 0.845629i \(-0.320774\pi\)
0.533771 + 0.845629i \(0.320774\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −455.994 −0.0601282
\(387\) 0 0
\(388\) 2095.10 0.274130
\(389\) −3484.64 −0.454186 −0.227093 0.973873i \(-0.572922\pi\)
−0.227093 + 0.973873i \(0.572922\pi\)
\(390\) 0 0
\(391\) −10065.0 −1.30182
\(392\) 0 0
\(393\) 0 0
\(394\) −13024.8 −1.66543
\(395\) −3423.45 −0.436082
\(396\) 0 0
\(397\) 7037.76 0.889710 0.444855 0.895603i \(-0.353255\pi\)
0.444855 + 0.895603i \(0.353255\pi\)
\(398\) −13175.8 −1.65941
\(399\) 0 0
\(400\) 5035.93 0.629491
\(401\) 8389.73 1.04480 0.522398 0.852702i \(-0.325038\pi\)
0.522398 + 0.852702i \(0.325038\pi\)
\(402\) 0 0
\(403\) −9165.41 −1.13291
\(404\) −1083.04 −0.133374
\(405\) 0 0
\(406\) 0 0
\(407\) −7914.47 −0.963896
\(408\) 0 0
\(409\) 13545.5 1.63761 0.818804 0.574074i \(-0.194638\pi\)
0.818804 + 0.574074i \(0.194638\pi\)
\(410\) 8641.03 1.04085
\(411\) 0 0
\(412\) −4030.05 −0.481908
\(413\) 0 0
\(414\) 0 0
\(415\) 2592.22 0.306620
\(416\) 8461.61 0.997270
\(417\) 0 0
\(418\) 26842.9 3.14098
\(419\) 1450.22 0.169089 0.0845443 0.996420i \(-0.473057\pi\)
0.0845443 + 0.996420i \(0.473057\pi\)
\(420\) 0 0
\(421\) −923.118 −0.106865 −0.0534324 0.998571i \(-0.517016\pi\)
−0.0534324 + 0.998571i \(0.517016\pi\)
\(422\) −8375.64 −0.966161
\(423\) 0 0
\(424\) −8246.80 −0.944575
\(425\) −6107.60 −0.697087
\(426\) 0 0
\(427\) 0 0
\(428\) −8620.87 −0.973611
\(429\) 0 0
\(430\) 4762.64 0.534128
\(431\) 1238.21 0.138382 0.0691908 0.997603i \(-0.477958\pi\)
0.0691908 + 0.997603i \(0.477958\pi\)
\(432\) 0 0
\(433\) −10786.5 −1.19715 −0.598575 0.801067i \(-0.704266\pi\)
−0.598575 + 0.801067i \(0.704266\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 7487.13 0.822405
\(437\) −14771.7 −1.61700
\(438\) 0 0
\(439\) −3353.49 −0.364586 −0.182293 0.983244i \(-0.558352\pi\)
−0.182293 + 0.983244i \(0.558352\pi\)
\(440\) 5649.15 0.612074
\(441\) 0 0
\(442\) −16566.1 −1.78274
\(443\) −8090.36 −0.867685 −0.433843 0.900989i \(-0.642843\pi\)
−0.433843 + 0.900989i \(0.642843\pi\)
\(444\) 0 0
\(445\) 195.866 0.0208650
\(446\) −11658.3 −1.23775
\(447\) 0 0
\(448\) 0 0
\(449\) −4211.19 −0.442625 −0.221312 0.975203i \(-0.571034\pi\)
−0.221312 + 0.975203i \(0.571034\pi\)
\(450\) 0 0
\(451\) −16966.8 −1.77148
\(452\) −5440.27 −0.566126
\(453\) 0 0
\(454\) 4431.95 0.458154
\(455\) 0 0
\(456\) 0 0
\(457\) −9777.62 −1.00083 −0.500413 0.865787i \(-0.666819\pi\)
−0.500413 + 0.865787i \(0.666819\pi\)
\(458\) −7164.51 −0.730951
\(459\) 0 0
\(460\) 3430.10 0.347672
\(461\) 12360.4 1.24876 0.624381 0.781120i \(-0.285351\pi\)
0.624381 + 0.781120i \(0.285351\pi\)
\(462\) 0 0
\(463\) −16107.0 −1.61675 −0.808377 0.588666i \(-0.799653\pi\)
−0.808377 + 0.588666i \(0.799653\pi\)
\(464\) 1961.68 0.196269
\(465\) 0 0
\(466\) −17288.7 −1.71864
\(467\) 13485.4 1.33625 0.668125 0.744049i \(-0.267097\pi\)
0.668125 + 0.744049i \(0.267097\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −7129.84 −0.699734
\(471\) 0 0
\(472\) −5885.80 −0.573974
\(473\) −9351.55 −0.909058
\(474\) 0 0
\(475\) −8963.69 −0.865858
\(476\) 0 0
\(477\) 0 0
\(478\) −917.340 −0.0877786
\(479\) 390.965 0.0372936 0.0186468 0.999826i \(-0.494064\pi\)
0.0186468 + 0.999826i \(0.494064\pi\)
\(480\) 0 0
\(481\) 7168.53 0.679536
\(482\) 10136.1 0.957860
\(483\) 0 0
\(484\) 6653.18 0.624830
\(485\) −3931.66 −0.368098
\(486\) 0 0
\(487\) −15791.5 −1.46937 −0.734683 0.678410i \(-0.762669\pi\)
−0.734683 + 0.678410i \(0.762669\pi\)
\(488\) −1504.89 −0.139597
\(489\) 0 0
\(490\) 0 0
\(491\) 191.606 0.0176111 0.00880557 0.999961i \(-0.497197\pi\)
0.00880557 + 0.999961i \(0.497197\pi\)
\(492\) 0 0
\(493\) −2379.14 −0.217345
\(494\) −24312.9 −2.21435
\(495\) 0 0
\(496\) 14983.1 1.35637
\(497\) 0 0
\(498\) 0 0
\(499\) 5621.00 0.504270 0.252135 0.967692i \(-0.418867\pi\)
0.252135 + 0.967692i \(0.418867\pi\)
\(500\) 6212.61 0.555672
\(501\) 0 0
\(502\) −21882.0 −1.94550
\(503\) 16936.3 1.50129 0.750647 0.660704i \(-0.229742\pi\)
0.750647 + 0.660704i \(0.229742\pi\)
\(504\) 0 0
\(505\) 2032.43 0.179093
\(506\) −19574.2 −1.71973
\(507\) 0 0
\(508\) −1309.58 −0.114376
\(509\) 4225.77 0.367984 0.183992 0.982928i \(-0.441098\pi\)
0.183992 + 0.982928i \(0.441098\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −5335.61 −0.460552
\(513\) 0 0
\(514\) −11947.2 −1.02523
\(515\) 7562.80 0.647100
\(516\) 0 0
\(517\) 13999.6 1.19091
\(518\) 0 0
\(519\) 0 0
\(520\) −5116.71 −0.431505
\(521\) −4084.11 −0.343432 −0.171716 0.985146i \(-0.554931\pi\)
−0.171716 + 0.985146i \(0.554931\pi\)
\(522\) 0 0
\(523\) −16971.4 −1.41894 −0.709471 0.704734i \(-0.751066\pi\)
−0.709471 + 0.704734i \(0.751066\pi\)
\(524\) −349.451 −0.0291333
\(525\) 0 0
\(526\) −28716.0 −2.38038
\(527\) −18171.6 −1.50202
\(528\) 0 0
\(529\) −1395.22 −0.114673
\(530\) −17075.7 −1.39947
\(531\) 0 0
\(532\) 0 0
\(533\) 15367.7 1.24887
\(534\) 0 0
\(535\) 16177.9 1.30735
\(536\) 8354.62 0.673255
\(537\) 0 0
\(538\) −19184.7 −1.53738
\(539\) 0 0
\(540\) 0 0
\(541\) 630.987 0.0501446 0.0250723 0.999686i \(-0.492018\pi\)
0.0250723 + 0.999686i \(0.492018\pi\)
\(542\) −3829.32 −0.303475
\(543\) 0 0
\(544\) 16776.2 1.32219
\(545\) −14050.4 −1.10431
\(546\) 0 0
\(547\) 14377.3 1.12382 0.561910 0.827198i \(-0.310067\pi\)
0.561910 + 0.827198i \(0.310067\pi\)
\(548\) 12210.3 0.951819
\(549\) 0 0
\(550\) −11877.9 −0.920866
\(551\) −3491.70 −0.269966
\(552\) 0 0
\(553\) 0 0
\(554\) 5432.27 0.416598
\(555\) 0 0
\(556\) −5937.80 −0.452912
\(557\) −12749.6 −0.969867 −0.484934 0.874551i \(-0.661156\pi\)
−0.484934 + 0.874551i \(0.661156\pi\)
\(558\) 0 0
\(559\) 8470.16 0.640876
\(560\) 0 0
\(561\) 0 0
\(562\) −3478.21 −0.261067
\(563\) −14080.0 −1.05400 −0.527001 0.849865i \(-0.676684\pi\)
−0.527001 + 0.849865i \(0.676684\pi\)
\(564\) 0 0
\(565\) 10209.2 0.760187
\(566\) −30158.2 −2.23965
\(567\) 0 0
\(568\) −548.640 −0.0405289
\(569\) −977.908 −0.0720493 −0.0360246 0.999351i \(-0.511469\pi\)
−0.0360246 + 0.999351i \(0.511469\pi\)
\(570\) 0 0
\(571\) −4877.53 −0.357475 −0.178737 0.983897i \(-0.557201\pi\)
−0.178737 + 0.983897i \(0.557201\pi\)
\(572\) −11085.3 −0.810315
\(573\) 0 0
\(574\) 0 0
\(575\) 6536.46 0.474068
\(576\) 0 0
\(577\) −8873.67 −0.640235 −0.320117 0.947378i \(-0.603722\pi\)
−0.320117 + 0.947378i \(0.603722\pi\)
\(578\) −15686.4 −1.12884
\(579\) 0 0
\(580\) 810.797 0.0580457
\(581\) 0 0
\(582\) 0 0
\(583\) 33528.5 2.38183
\(584\) −5938.93 −0.420813
\(585\) 0 0
\(586\) 7613.37 0.536699
\(587\) 17470.2 1.22840 0.614201 0.789150i \(-0.289479\pi\)
0.614201 + 0.789150i \(0.289479\pi\)
\(588\) 0 0
\(589\) −26669.2 −1.86568
\(590\) −12187.1 −0.850395
\(591\) 0 0
\(592\) −11718.7 −0.813575
\(593\) −17570.5 −1.21675 −0.608376 0.793649i \(-0.708179\pi\)
−0.608376 + 0.793649i \(0.708179\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 9176.35 0.630668
\(597\) 0 0
\(598\) 17729.4 1.21239
\(599\) −2470.61 −0.168525 −0.0842623 0.996444i \(-0.526853\pi\)
−0.0842623 + 0.996444i \(0.526853\pi\)
\(600\) 0 0
\(601\) 7760.05 0.526688 0.263344 0.964702i \(-0.415175\pi\)
0.263344 + 0.964702i \(0.415175\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 6879.28 0.463433
\(605\) −12485.4 −0.839013
\(606\) 0 0
\(607\) 23384.1 1.56365 0.781823 0.623500i \(-0.214290\pi\)
0.781823 + 0.623500i \(0.214290\pi\)
\(608\) 24621.3 1.64231
\(609\) 0 0
\(610\) −3116.01 −0.206826
\(611\) −12680.1 −0.839579
\(612\) 0 0
\(613\) 19483.4 1.28373 0.641865 0.766817i \(-0.278161\pi\)
0.641865 + 0.766817i \(0.278161\pi\)
\(614\) 18443.8 1.21226
\(615\) 0 0
\(616\) 0 0
\(617\) 11177.6 0.729327 0.364664 0.931139i \(-0.381184\pi\)
0.364664 + 0.931139i \(0.381184\pi\)
\(618\) 0 0
\(619\) −6253.28 −0.406043 −0.203021 0.979174i \(-0.565076\pi\)
−0.203021 + 0.979174i \(0.565076\pi\)
\(620\) 6192.77 0.401141
\(621\) 0 0
\(622\) −15008.3 −0.967491
\(623\) 0 0
\(624\) 0 0
\(625\) −3786.15 −0.242313
\(626\) −8245.33 −0.526437
\(627\) 0 0
\(628\) −5283.42 −0.335719
\(629\) 14212.5 0.900938
\(630\) 0 0
\(631\) −19733.2 −1.24496 −0.622478 0.782637i \(-0.713874\pi\)
−0.622478 + 0.782637i \(0.713874\pi\)
\(632\) 5774.16 0.363424
\(633\) 0 0
\(634\) −31754.8 −1.98919
\(635\) 2457.55 0.153583
\(636\) 0 0
\(637\) 0 0
\(638\) −4626.90 −0.287117
\(639\) 0 0
\(640\) 11876.5 0.733528
\(641\) 143.768 0.00885882 0.00442941 0.999990i \(-0.498590\pi\)
0.00442941 + 0.999990i \(0.498590\pi\)
\(642\) 0 0
\(643\) −29565.4 −1.81329 −0.906645 0.421894i \(-0.861366\pi\)
−0.906645 + 0.421894i \(0.861366\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −48203.4 −2.93582
\(647\) 23780.7 1.44500 0.722501 0.691370i \(-0.242992\pi\)
0.722501 + 0.691370i \(0.242992\pi\)
\(648\) 0 0
\(649\) 23929.5 1.44733
\(650\) 10758.4 0.649200
\(651\) 0 0
\(652\) −13257.0 −0.796296
\(653\) −1741.59 −0.104370 −0.0521851 0.998637i \(-0.516619\pi\)
−0.0521851 + 0.998637i \(0.516619\pi\)
\(654\) 0 0
\(655\) 655.780 0.0391198
\(656\) −25122.3 −1.49521
\(657\) 0 0
\(658\) 0 0
\(659\) 8493.45 0.502061 0.251030 0.967979i \(-0.419231\pi\)
0.251030 + 0.967979i \(0.419231\pi\)
\(660\) 0 0
\(661\) −25014.7 −1.47195 −0.735976 0.677008i \(-0.763276\pi\)
−0.735976 + 0.677008i \(0.763276\pi\)
\(662\) −15293.1 −0.897860
\(663\) 0 0
\(664\) −4372.18 −0.255532
\(665\) 0 0
\(666\) 0 0
\(667\) 2546.20 0.147810
\(668\) 7759.05 0.449411
\(669\) 0 0
\(670\) 17299.0 0.997489
\(671\) 6118.36 0.352007
\(672\) 0 0
\(673\) 29696.5 1.70091 0.850456 0.526046i \(-0.176326\pi\)
0.850456 + 0.526046i \(0.176326\pi\)
\(674\) −11575.7 −0.661544
\(675\) 0 0
\(676\) 820.632 0.0466905
\(677\) −3713.27 −0.210801 −0.105401 0.994430i \(-0.533612\pi\)
−0.105401 + 0.994430i \(0.533612\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −10144.5 −0.572096
\(681\) 0 0
\(682\) −35339.7 −1.98420
\(683\) 24254.7 1.35883 0.679414 0.733755i \(-0.262234\pi\)
0.679414 + 0.733755i \(0.262234\pi\)
\(684\) 0 0
\(685\) −22913.8 −1.27809
\(686\) 0 0
\(687\) 0 0
\(688\) −13846.5 −0.767289
\(689\) −30368.4 −1.67917
\(690\) 0 0
\(691\) −14298.7 −0.787191 −0.393595 0.919284i \(-0.628769\pi\)
−0.393595 + 0.919284i \(0.628769\pi\)
\(692\) 2615.13 0.143659
\(693\) 0 0
\(694\) 29873.2 1.63396
\(695\) 11142.9 0.608164
\(696\) 0 0
\(697\) 30468.4 1.65577
\(698\) 34340.2 1.86217
\(699\) 0 0
\(700\) 0 0
\(701\) −28913.3 −1.55783 −0.778916 0.627128i \(-0.784230\pi\)
−0.778916 + 0.627128i \(0.784230\pi\)
\(702\) 0 0
\(703\) 20858.7 1.11906
\(704\) −1919.57 −0.102765
\(705\) 0 0
\(706\) 21552.8 1.14894
\(707\) 0 0
\(708\) 0 0
\(709\) 10575.2 0.560169 0.280085 0.959975i \(-0.409637\pi\)
0.280085 + 0.959975i \(0.409637\pi\)
\(710\) −1136.01 −0.0600473
\(711\) 0 0
\(712\) −330.357 −0.0173886
\(713\) 19447.6 1.02148
\(714\) 0 0
\(715\) 20802.7 1.08808
\(716\) −9822.77 −0.512701
\(717\) 0 0
\(718\) −33341.6 −1.73301
\(719\) 5347.27 0.277357 0.138678 0.990337i \(-0.455715\pi\)
0.138678 + 0.990337i \(0.455715\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −46790.7 −2.41187
\(723\) 0 0
\(724\) 1938.39 0.0995021
\(725\) 1545.07 0.0791482
\(726\) 0 0
\(727\) 19629.1 1.00138 0.500689 0.865627i \(-0.333080\pi\)
0.500689 + 0.865627i \(0.333080\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −12297.1 −0.623473
\(731\) 16793.2 0.849682
\(732\) 0 0
\(733\) −2404.87 −0.121181 −0.0605906 0.998163i \(-0.519298\pi\)
−0.0605906 + 0.998163i \(0.519298\pi\)
\(734\) −14069.6 −0.707519
\(735\) 0 0
\(736\) −17954.2 −0.899186
\(737\) −33966.9 −1.69767
\(738\) 0 0
\(739\) −19309.0 −0.961153 −0.480577 0.876953i \(-0.659573\pi\)
−0.480577 + 0.876953i \(0.659573\pi\)
\(740\) −4843.54 −0.240611
\(741\) 0 0
\(742\) 0 0
\(743\) −801.314 −0.0395658 −0.0197829 0.999804i \(-0.506297\pi\)
−0.0197829 + 0.999804i \(0.506297\pi\)
\(744\) 0 0
\(745\) −17220.4 −0.846852
\(746\) −70.0249 −0.00343672
\(747\) 0 0
\(748\) −21978.0 −1.07433
\(749\) 0 0
\(750\) 0 0
\(751\) 14872.7 0.722654 0.361327 0.932439i \(-0.382324\pi\)
0.361327 + 0.932439i \(0.382324\pi\)
\(752\) 20728.7 1.00519
\(753\) 0 0
\(754\) 4190.81 0.202414
\(755\) −12909.7 −0.622292
\(756\) 0 0
\(757\) 9127.52 0.438237 0.219118 0.975698i \(-0.429682\pi\)
0.219118 + 0.975698i \(0.429682\pi\)
\(758\) 13228.3 0.633871
\(759\) 0 0
\(760\) −14888.4 −0.710605
\(761\) −30994.4 −1.47641 −0.738203 0.674578i \(-0.764325\pi\)
−0.738203 + 0.674578i \(0.764325\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −11187.2 −0.529764
\(765\) 0 0
\(766\) −27944.9 −1.31813
\(767\) −21674.2 −1.02035
\(768\) 0 0
\(769\) −12979.5 −0.608653 −0.304326 0.952568i \(-0.598431\pi\)
−0.304326 + 0.952568i \(0.598431\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 547.944 0.0255452
\(773\) 28808.1 1.34043 0.670217 0.742165i \(-0.266201\pi\)
0.670217 + 0.742165i \(0.266201\pi\)
\(774\) 0 0
\(775\) 11801.1 0.546976
\(776\) 6631.35 0.306767
\(777\) 0 0
\(778\) 12169.6 0.560799
\(779\) 44716.4 2.05665
\(780\) 0 0
\(781\) 2230.57 0.102197
\(782\) 35150.7 1.60740
\(783\) 0 0
\(784\) 0 0
\(785\) 9914.88 0.450799
\(786\) 0 0
\(787\) 3658.15 0.165691 0.0828456 0.996562i \(-0.473599\pi\)
0.0828456 + 0.996562i \(0.473599\pi\)
\(788\) 15651.2 0.707552
\(789\) 0 0
\(790\) 11955.9 0.538446
\(791\) 0 0
\(792\) 0 0
\(793\) −5541.70 −0.248161
\(794\) −24578.4 −1.09856
\(795\) 0 0
\(796\) 15832.7 0.704992
\(797\) −20171.4 −0.896497 −0.448249 0.893909i \(-0.647952\pi\)
−0.448249 + 0.893909i \(0.647952\pi\)
\(798\) 0 0
\(799\) −25139.9 −1.11312
\(800\) −10894.9 −0.481489
\(801\) 0 0
\(802\) −29300.0 −1.29005
\(803\) 24145.6 1.06112
\(804\) 0 0
\(805\) 0 0
\(806\) 32008.9 1.39884
\(807\) 0 0
\(808\) −3428.01 −0.149253
\(809\) 30508.2 1.32585 0.662924 0.748686i \(-0.269315\pi\)
0.662924 + 0.748686i \(0.269315\pi\)
\(810\) 0 0
\(811\) −2550.91 −0.110449 −0.0552247 0.998474i \(-0.517588\pi\)
−0.0552247 + 0.998474i \(0.517588\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 27640.2 1.19016
\(815\) 24878.1 1.06926
\(816\) 0 0
\(817\) 24646.1 1.05540
\(818\) −47305.7 −2.02201
\(819\) 0 0
\(820\) −10383.5 −0.442202
\(821\) 32657.1 1.38824 0.694118 0.719861i \(-0.255794\pi\)
0.694118 + 0.719861i \(0.255794\pi\)
\(822\) 0 0
\(823\) 30390.4 1.28717 0.643587 0.765373i \(-0.277446\pi\)
0.643587 + 0.765373i \(0.277446\pi\)
\(824\) −12755.8 −0.539284
\(825\) 0 0
\(826\) 0 0
\(827\) 13100.8 0.550859 0.275430 0.961321i \(-0.411180\pi\)
0.275430 + 0.961321i \(0.411180\pi\)
\(828\) 0 0
\(829\) 24522.6 1.02739 0.513694 0.857974i \(-0.328277\pi\)
0.513694 + 0.857974i \(0.328277\pi\)
\(830\) −9052.97 −0.378594
\(831\) 0 0
\(832\) 1738.65 0.0724483
\(833\) 0 0
\(834\) 0 0
\(835\) −14560.6 −0.603463
\(836\) −32255.6 −1.33443
\(837\) 0 0
\(838\) −5064.71 −0.208780
\(839\) −38095.2 −1.56757 −0.783785 0.621032i \(-0.786714\pi\)
−0.783785 + 0.621032i \(0.786714\pi\)
\(840\) 0 0
\(841\) −23787.1 −0.975322
\(842\) 3223.86 0.131950
\(843\) 0 0
\(844\) 10064.6 0.410470
\(845\) −1540.00 −0.0626954
\(846\) 0 0
\(847\) 0 0
\(848\) 49644.6 2.01038
\(849\) 0 0
\(850\) 21329.9 0.860718
\(851\) −15210.5 −0.612702
\(852\) 0 0
\(853\) −27500.3 −1.10386 −0.551929 0.833891i \(-0.686108\pi\)
−0.551929 + 0.833891i \(0.686108\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −27286.6 −1.08953
\(857\) 13903.0 0.554163 0.277082 0.960846i \(-0.410633\pi\)
0.277082 + 0.960846i \(0.410633\pi\)
\(858\) 0 0
\(859\) 41524.3 1.64935 0.824674 0.565608i \(-0.191359\pi\)
0.824674 + 0.565608i \(0.191359\pi\)
\(860\) −5723.01 −0.226922
\(861\) 0 0
\(862\) −4324.28 −0.170865
\(863\) 1744.09 0.0687942 0.0343971 0.999408i \(-0.489049\pi\)
0.0343971 + 0.999408i \(0.489049\pi\)
\(864\) 0 0
\(865\) −4907.55 −0.192904
\(866\) 37670.3 1.47816
\(867\) 0 0
\(868\) 0 0
\(869\) −23475.7 −0.916407
\(870\) 0 0
\(871\) 30765.5 1.19684
\(872\) 23698.1 0.920319
\(873\) 0 0
\(874\) 51588.2 1.99656
\(875\) 0 0
\(876\) 0 0
\(877\) 46717.4 1.79879 0.899393 0.437140i \(-0.144009\pi\)
0.899393 + 0.437140i \(0.144009\pi\)
\(878\) 11711.6 0.450168
\(879\) 0 0
\(880\) −34007.1 −1.30270
\(881\) −17214.0 −0.658291 −0.329145 0.944279i \(-0.606761\pi\)
−0.329145 + 0.944279i \(0.606761\pi\)
\(882\) 0 0
\(883\) 20487.2 0.780804 0.390402 0.920645i \(-0.372336\pi\)
0.390402 + 0.920645i \(0.372336\pi\)
\(884\) 19906.6 0.757388
\(885\) 0 0
\(886\) 28254.5 1.07136
\(887\) −18307.5 −0.693016 −0.346508 0.938047i \(-0.612633\pi\)
−0.346508 + 0.938047i \(0.612633\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −684.034 −0.0257628
\(891\) 0 0
\(892\) 14009.1 0.525853
\(893\) −36896.1 −1.38262
\(894\) 0 0
\(895\) 18433.4 0.688449
\(896\) 0 0
\(897\) 0 0
\(898\) 14707.0 0.546524
\(899\) 4596.96 0.170542
\(900\) 0 0
\(901\) −60209.3 −2.22626
\(902\) 59254.3 2.18731
\(903\) 0 0
\(904\) −17219.4 −0.633528
\(905\) −3637.58 −0.133610
\(906\) 0 0
\(907\) 38336.3 1.40346 0.701730 0.712443i \(-0.252411\pi\)
0.701730 + 0.712443i \(0.252411\pi\)
\(908\) −5325.63 −0.194645
\(909\) 0 0
\(910\) 0 0
\(911\) −30148.4 −1.09644 −0.548222 0.836333i \(-0.684695\pi\)
−0.548222 + 0.836333i \(0.684695\pi\)
\(912\) 0 0
\(913\) 17775.7 0.644348
\(914\) 34147.0 1.23576
\(915\) 0 0
\(916\) 8609.21 0.310542
\(917\) 0 0
\(918\) 0 0
\(919\) −13799.4 −0.495323 −0.247661 0.968847i \(-0.579662\pi\)
−0.247661 + 0.968847i \(0.579662\pi\)
\(920\) 10856.9 0.389066
\(921\) 0 0
\(922\) −43166.8 −1.54189
\(923\) −2020.34 −0.0720480
\(924\) 0 0
\(925\) −9229.94 −0.328085
\(926\) 56251.5 1.99626
\(927\) 0 0
\(928\) −4243.96 −0.150124
\(929\) 42953.7 1.51697 0.758485 0.651691i \(-0.225940\pi\)
0.758485 + 0.651691i \(0.225940\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 20774.9 0.730155
\(933\) 0 0
\(934\) −47095.8 −1.64991
\(935\) 41244.0 1.44259
\(936\) 0 0
\(937\) 6369.72 0.222081 0.111040 0.993816i \(-0.464582\pi\)
0.111040 + 0.993816i \(0.464582\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 8567.54 0.297279
\(941\) −6002.48 −0.207944 −0.103972 0.994580i \(-0.533155\pi\)
−0.103972 + 0.994580i \(0.533155\pi\)
\(942\) 0 0
\(943\) −32607.9 −1.12604
\(944\) 35431.7 1.22161
\(945\) 0 0
\(946\) 32659.0 1.12245
\(947\) 12113.1 0.415652 0.207826 0.978166i \(-0.433361\pi\)
0.207826 + 0.978166i \(0.433361\pi\)
\(948\) 0 0
\(949\) −21869.8 −0.748077
\(950\) 31304.4 1.06911
\(951\) 0 0
\(952\) 0 0
\(953\) 10130.6 0.344346 0.172173 0.985067i \(-0.444921\pi\)
0.172173 + 0.985067i \(0.444921\pi\)
\(954\) 0 0
\(955\) 20994.0 0.711360
\(956\) 1102.32 0.0372924
\(957\) 0 0
\(958\) −1365.39 −0.0460478
\(959\) 0 0
\(960\) 0 0
\(961\) 5320.00 0.178578
\(962\) −25035.1 −0.839047
\(963\) 0 0
\(964\) −12180.0 −0.406943
\(965\) −1028.27 −0.0343018
\(966\) 0 0
\(967\) −17651.7 −0.587013 −0.293506 0.955957i \(-0.594822\pi\)
−0.293506 + 0.955957i \(0.594822\pi\)
\(968\) 21058.5 0.699221
\(969\) 0 0
\(970\) 13730.8 0.454504
\(971\) −32208.7 −1.06450 −0.532248 0.846588i \(-0.678653\pi\)
−0.532248 + 0.846588i \(0.678653\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 55149.6 1.81428
\(975\) 0 0
\(976\) 9059.27 0.297111
\(977\) 24098.8 0.789138 0.394569 0.918866i \(-0.370894\pi\)
0.394569 + 0.918866i \(0.370894\pi\)
\(978\) 0 0
\(979\) 1343.11 0.0438469
\(980\) 0 0
\(981\) 0 0
\(982\) −669.158 −0.0217451
\(983\) −15156.9 −0.491790 −0.245895 0.969296i \(-0.579082\pi\)
−0.245895 + 0.969296i \(0.579082\pi\)
\(984\) 0 0
\(985\) −29371.1 −0.950092
\(986\) 8308.82 0.268364
\(987\) 0 0
\(988\) 29215.5 0.940759
\(989\) −17972.4 −0.577844
\(990\) 0 0
\(991\) 18357.4 0.588437 0.294219 0.955738i \(-0.404941\pi\)
0.294219 + 0.955738i \(0.404941\pi\)
\(992\) −32414.9 −1.03747
\(993\) 0 0
\(994\) 0 0
\(995\) −29711.6 −0.946654
\(996\) 0 0
\(997\) −18552.6 −0.589335 −0.294668 0.955600i \(-0.595209\pi\)
−0.294668 + 0.955600i \(0.595209\pi\)
\(998\) −19630.6 −0.622640
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bn.1.2 8
3.2 odd 2 inner 1323.4.a.bn.1.7 8
7.3 odd 6 189.4.e.h.163.7 yes 16
7.5 odd 6 189.4.e.h.109.7 yes 16
7.6 odd 2 1323.4.a.bo.1.2 8
21.5 even 6 189.4.e.h.109.2 16
21.17 even 6 189.4.e.h.163.2 yes 16
21.20 even 2 1323.4.a.bo.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.h.109.2 16 21.5 even 6
189.4.e.h.109.7 yes 16 7.5 odd 6
189.4.e.h.163.2 yes 16 21.17 even 6
189.4.e.h.163.7 yes 16 7.3 odd 6
1323.4.a.bn.1.2 8 1.1 even 1 trivial
1323.4.a.bn.1.7 8 3.2 odd 2 inner
1323.4.a.bo.1.2 8 7.6 odd 2
1323.4.a.bo.1.7 8 21.20 even 2