Properties

Label 1323.4.a.bn.1.8
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 54x^{6} - 6x^{5} + 555x^{4} + 642x^{3} - 218x^{2} - 54x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{4}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-2.12000\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.46178 q^{2} +21.8311 q^{4} -0.199136 q^{5} +75.5424 q^{8} -1.08764 q^{10} +28.4233 q^{11} -32.5809 q^{13} +237.948 q^{16} +115.488 q^{17} -21.1500 q^{19} -4.34736 q^{20} +155.242 q^{22} +93.7656 q^{23} -124.960 q^{25} -177.950 q^{26} +231.571 q^{29} -281.742 q^{31} +695.280 q^{32} +630.770 q^{34} -146.554 q^{37} -115.517 q^{38} -15.0432 q^{40} +111.001 q^{41} +392.361 q^{43} +620.513 q^{44} +512.128 q^{46} -273.168 q^{47} -682.506 q^{50} -711.277 q^{52} -340.403 q^{53} -5.66011 q^{55} +1264.79 q^{58} +696.817 q^{59} +370.002 q^{61} -1538.81 q^{62} +1893.89 q^{64} +6.48804 q^{65} +87.1362 q^{67} +2521.23 q^{68} -88.3772 q^{71} +803.036 q^{73} -800.446 q^{74} -461.727 q^{76} +364.616 q^{79} -47.3840 q^{80} +606.264 q^{82} -921.684 q^{83} -22.9978 q^{85} +2142.99 q^{86} +2147.17 q^{88} +211.396 q^{89} +2047.01 q^{92} -1491.99 q^{94} +4.21172 q^{95} -845.718 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 48 q^{4} - 44 q^{10} + 84 q^{13} + 156 q^{16} - 12 q^{19} + 224 q^{22} + 408 q^{25} - 800 q^{31} + 948 q^{34} + 692 q^{37} - 96 q^{40} + 1456 q^{43} + 1524 q^{46} - 1972 q^{52} + 1280 q^{55} + 2372 q^{58}+ \cdots - 584 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.46178 1.93103 0.965516 0.260343i \(-0.0838356\pi\)
0.965516 + 0.260343i \(0.0838356\pi\)
\(3\) 0 0
\(4\) 21.8311 2.72889
\(5\) −0.199136 −0.0178113 −0.00890564 0.999960i \(-0.502835\pi\)
−0.00890564 + 0.999960i \(0.502835\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 75.5424 3.33854
\(9\) 0 0
\(10\) −1.08764 −0.0343941
\(11\) 28.4233 0.779087 0.389544 0.921008i \(-0.372633\pi\)
0.389544 + 0.921008i \(0.372633\pi\)
\(12\) 0 0
\(13\) −32.5809 −0.695101 −0.347551 0.937661i \(-0.612987\pi\)
−0.347551 + 0.937661i \(0.612987\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 237.948 3.71793
\(17\) 115.488 1.64764 0.823821 0.566849i \(-0.191838\pi\)
0.823821 + 0.566849i \(0.191838\pi\)
\(18\) 0 0
\(19\) −21.1500 −0.255376 −0.127688 0.991814i \(-0.540756\pi\)
−0.127688 + 0.991814i \(0.540756\pi\)
\(20\) −4.34736 −0.0486049
\(21\) 0 0
\(22\) 155.242 1.50444
\(23\) 93.7656 0.850065 0.425032 0.905178i \(-0.360263\pi\)
0.425032 + 0.905178i \(0.360263\pi\)
\(24\) 0 0
\(25\) −124.960 −0.999683
\(26\) −177.950 −1.34226
\(27\) 0 0
\(28\) 0 0
\(29\) 231.571 1.48282 0.741408 0.671055i \(-0.234159\pi\)
0.741408 + 0.671055i \(0.234159\pi\)
\(30\) 0 0
\(31\) −281.742 −1.63233 −0.816167 0.577817i \(-0.803905\pi\)
−0.816167 + 0.577817i \(0.803905\pi\)
\(32\) 695.280 3.84092
\(33\) 0 0
\(34\) 630.770 3.18165
\(35\) 0 0
\(36\) 0 0
\(37\) −146.554 −0.651171 −0.325585 0.945513i \(-0.605561\pi\)
−0.325585 + 0.945513i \(0.605561\pi\)
\(38\) −115.517 −0.493138
\(39\) 0 0
\(40\) −15.0432 −0.0594636
\(41\) 111.001 0.422816 0.211408 0.977398i \(-0.432195\pi\)
0.211408 + 0.977398i \(0.432195\pi\)
\(42\) 0 0
\(43\) 392.361 1.39150 0.695750 0.718284i \(-0.255072\pi\)
0.695750 + 0.718284i \(0.255072\pi\)
\(44\) 620.513 2.12604
\(45\) 0 0
\(46\) 512.128 1.64150
\(47\) −273.168 −0.847780 −0.423890 0.905714i \(-0.639336\pi\)
−0.423890 + 0.905714i \(0.639336\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −682.506 −1.93042
\(51\) 0 0
\(52\) −711.277 −1.89685
\(53\) −340.403 −0.882225 −0.441113 0.897452i \(-0.645416\pi\)
−0.441113 + 0.897452i \(0.645416\pi\)
\(54\) 0 0
\(55\) −5.66011 −0.0138765
\(56\) 0 0
\(57\) 0 0
\(58\) 1264.79 2.86336
\(59\) 696.817 1.53759 0.768795 0.639495i \(-0.220857\pi\)
0.768795 + 0.639495i \(0.220857\pi\)
\(60\) 0 0
\(61\) 370.002 0.776622 0.388311 0.921528i \(-0.373059\pi\)
0.388311 + 0.921528i \(0.373059\pi\)
\(62\) −1538.81 −3.15209
\(63\) 0 0
\(64\) 1893.89 3.69900
\(65\) 6.48804 0.0123806
\(66\) 0 0
\(67\) 87.1362 0.158886 0.0794431 0.996839i \(-0.474686\pi\)
0.0794431 + 0.996839i \(0.474686\pi\)
\(68\) 2521.23 4.49623
\(69\) 0 0
\(70\) 0 0
\(71\) −88.3772 −0.147725 −0.0738623 0.997268i \(-0.523533\pi\)
−0.0738623 + 0.997268i \(0.523533\pi\)
\(72\) 0 0
\(73\) 803.036 1.28751 0.643755 0.765231i \(-0.277375\pi\)
0.643755 + 0.765231i \(0.277375\pi\)
\(74\) −800.446 −1.25743
\(75\) 0 0
\(76\) −461.727 −0.696891
\(77\) 0 0
\(78\) 0 0
\(79\) 364.616 0.519272 0.259636 0.965707i \(-0.416397\pi\)
0.259636 + 0.965707i \(0.416397\pi\)
\(80\) −47.3840 −0.0662211
\(81\) 0 0
\(82\) 606.264 0.816472
\(83\) −921.684 −1.21889 −0.609446 0.792828i \(-0.708608\pi\)
−0.609446 + 0.792828i \(0.708608\pi\)
\(84\) 0 0
\(85\) −22.9978 −0.0293466
\(86\) 2142.99 2.68703
\(87\) 0 0
\(88\) 2147.17 2.60101
\(89\) 211.396 0.251774 0.125887 0.992045i \(-0.459822\pi\)
0.125887 + 0.992045i \(0.459822\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2047.01 2.31973
\(93\) 0 0
\(94\) −1491.99 −1.63709
\(95\) 4.21172 0.00454856
\(96\) 0 0
\(97\) −845.718 −0.885254 −0.442627 0.896706i \(-0.645953\pi\)
−0.442627 + 0.896706i \(0.645953\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −2728.02 −2.72802
\(101\) 156.952 0.154626 0.0773132 0.997007i \(-0.475366\pi\)
0.0773132 + 0.997007i \(0.475366\pi\)
\(102\) 0 0
\(103\) 139.325 0.133283 0.0666414 0.997777i \(-0.478772\pi\)
0.0666414 + 0.997777i \(0.478772\pi\)
\(104\) −2461.24 −2.32062
\(105\) 0 0
\(106\) −1859.21 −1.70361
\(107\) −415.476 −0.375379 −0.187690 0.982228i \(-0.560100\pi\)
−0.187690 + 0.982228i \(0.560100\pi\)
\(108\) 0 0
\(109\) −844.080 −0.741727 −0.370863 0.928687i \(-0.620938\pi\)
−0.370863 + 0.928687i \(0.620938\pi\)
\(110\) −30.9143 −0.0267961
\(111\) 0 0
\(112\) 0 0
\(113\) −1342.21 −1.11738 −0.558692 0.829375i \(-0.688697\pi\)
−0.558692 + 0.829375i \(0.688697\pi\)
\(114\) 0 0
\(115\) −18.6721 −0.0151407
\(116\) 5055.45 4.04643
\(117\) 0 0
\(118\) 3805.86 2.96914
\(119\) 0 0
\(120\) 0 0
\(121\) −523.113 −0.393023
\(122\) 2020.87 1.49968
\(123\) 0 0
\(124\) −6150.73 −4.45445
\(125\) 49.7761 0.0356169
\(126\) 0 0
\(127\) 978.750 0.683858 0.341929 0.939726i \(-0.388920\pi\)
0.341929 + 0.939726i \(0.388920\pi\)
\(128\) 4781.76 3.30197
\(129\) 0 0
\(130\) 35.4362 0.0239074
\(131\) −2372.81 −1.58254 −0.791271 0.611465i \(-0.790580\pi\)
−0.791271 + 0.611465i \(0.790580\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 475.919 0.306815
\(135\) 0 0
\(136\) 8724.24 5.50071
\(137\) 1602.67 0.999458 0.499729 0.866182i \(-0.333433\pi\)
0.499729 + 0.866182i \(0.333433\pi\)
\(138\) 0 0
\(139\) −2101.78 −1.28252 −0.641262 0.767322i \(-0.721589\pi\)
−0.641262 + 0.767322i \(0.721589\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −482.697 −0.285261
\(143\) −926.059 −0.541545
\(144\) 0 0
\(145\) −46.1141 −0.0264108
\(146\) 4386.01 2.48623
\(147\) 0 0
\(148\) −3199.43 −1.77697
\(149\) 524.400 0.288326 0.144163 0.989554i \(-0.453951\pi\)
0.144163 + 0.989554i \(0.453951\pi\)
\(150\) 0 0
\(151\) −867.666 −0.467613 −0.233807 0.972283i \(-0.575118\pi\)
−0.233807 + 0.972283i \(0.575118\pi\)
\(152\) −1597.72 −0.852580
\(153\) 0 0
\(154\) 0 0
\(155\) 56.1050 0.0290739
\(156\) 0 0
\(157\) 5.91999 0.00300934 0.00150467 0.999999i \(-0.499521\pi\)
0.00150467 + 0.999999i \(0.499521\pi\)
\(158\) 1991.45 1.00273
\(159\) 0 0
\(160\) −138.455 −0.0684116
\(161\) 0 0
\(162\) 0 0
\(163\) −832.959 −0.400260 −0.200130 0.979769i \(-0.564136\pi\)
−0.200130 + 0.979769i \(0.564136\pi\)
\(164\) 2423.28 1.15382
\(165\) 0 0
\(166\) −5034.04 −2.35372
\(167\) 566.798 0.262636 0.131318 0.991340i \(-0.458079\pi\)
0.131318 + 0.991340i \(0.458079\pi\)
\(168\) 0 0
\(169\) −1135.48 −0.516834
\(170\) −125.609 −0.0566693
\(171\) 0 0
\(172\) 8565.66 3.79724
\(173\) 4125.77 1.81316 0.906579 0.422036i \(-0.138684\pi\)
0.906579 + 0.422036i \(0.138684\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 6763.27 2.89660
\(177\) 0 0
\(178\) 1154.60 0.486184
\(179\) 927.646 0.387349 0.193675 0.981066i \(-0.437959\pi\)
0.193675 + 0.981066i \(0.437959\pi\)
\(180\) 0 0
\(181\) −1211.67 −0.497585 −0.248792 0.968557i \(-0.580034\pi\)
−0.248792 + 0.968557i \(0.580034\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 7083.28 2.83797
\(185\) 29.1842 0.0115982
\(186\) 0 0
\(187\) 3282.55 1.28366
\(188\) −5963.56 −2.31350
\(189\) 0 0
\(190\) 23.0035 0.00878342
\(191\) −1827.49 −0.692318 −0.346159 0.938176i \(-0.612514\pi\)
−0.346159 + 0.938176i \(0.612514\pi\)
\(192\) 0 0
\(193\) −822.230 −0.306660 −0.153330 0.988175i \(-0.549000\pi\)
−0.153330 + 0.988175i \(0.549000\pi\)
\(194\) −4619.13 −1.70945
\(195\) 0 0
\(196\) 0 0
\(197\) −4873.12 −1.76241 −0.881207 0.472731i \(-0.843268\pi\)
−0.881207 + 0.472731i \(0.843268\pi\)
\(198\) 0 0
\(199\) 1482.23 0.528001 0.264001 0.964523i \(-0.414958\pi\)
0.264001 + 0.964523i \(0.414958\pi\)
\(200\) −9439.81 −3.33748
\(201\) 0 0
\(202\) 857.236 0.298589
\(203\) 0 0
\(204\) 0 0
\(205\) −22.1043 −0.00753090
\(206\) 760.965 0.257373
\(207\) 0 0
\(208\) −7752.55 −2.58434
\(209\) −601.153 −0.198960
\(210\) 0 0
\(211\) −4359.21 −1.42228 −0.711138 0.703053i \(-0.751820\pi\)
−0.711138 + 0.703053i \(0.751820\pi\)
\(212\) −7431.37 −2.40749
\(213\) 0 0
\(214\) −2269.24 −0.724869
\(215\) −78.1332 −0.0247844
\(216\) 0 0
\(217\) 0 0
\(218\) −4610.18 −1.43230
\(219\) 0 0
\(220\) −123.566 −0.0378675
\(221\) −3762.70 −1.14528
\(222\) 0 0
\(223\) 3312.73 0.994784 0.497392 0.867526i \(-0.334291\pi\)
0.497392 + 0.867526i \(0.334291\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −7330.85 −2.15770
\(227\) 798.321 0.233420 0.116710 0.993166i \(-0.462765\pi\)
0.116710 + 0.993166i \(0.462765\pi\)
\(228\) 0 0
\(229\) 354.914 0.102417 0.0512083 0.998688i \(-0.483693\pi\)
0.0512083 + 0.998688i \(0.483693\pi\)
\(230\) −101.983 −0.0292372
\(231\) 0 0
\(232\) 17493.4 4.95043
\(233\) −4473.91 −1.25792 −0.628960 0.777438i \(-0.716519\pi\)
−0.628960 + 0.777438i \(0.716519\pi\)
\(234\) 0 0
\(235\) 54.3976 0.0151000
\(236\) 15212.3 4.19591
\(237\) 0 0
\(238\) 0 0
\(239\) −1494.65 −0.404523 −0.202262 0.979332i \(-0.564829\pi\)
−0.202262 + 0.979332i \(0.564829\pi\)
\(240\) 0 0
\(241\) 156.885 0.0419329 0.0209665 0.999780i \(-0.493326\pi\)
0.0209665 + 0.999780i \(0.493326\pi\)
\(242\) −2857.13 −0.758940
\(243\) 0 0
\(244\) 8077.55 2.11931
\(245\) 0 0
\(246\) 0 0
\(247\) 689.085 0.177512
\(248\) −21283.5 −5.44960
\(249\) 0 0
\(250\) 271.866 0.0687774
\(251\) −3498.68 −0.879819 −0.439909 0.898042i \(-0.644989\pi\)
−0.439909 + 0.898042i \(0.644989\pi\)
\(252\) 0 0
\(253\) 2665.13 0.662275
\(254\) 5345.72 1.32055
\(255\) 0 0
\(256\) 10965.9 2.67721
\(257\) −4739.10 −1.15026 −0.575130 0.818062i \(-0.695049\pi\)
−0.575130 + 0.818062i \(0.695049\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 141.641 0.0337854
\(261\) 0 0
\(262\) −12959.8 −3.05594
\(263\) −3364.44 −0.788823 −0.394411 0.918934i \(-0.629052\pi\)
−0.394411 + 0.918934i \(0.629052\pi\)
\(264\) 0 0
\(265\) 67.7865 0.0157136
\(266\) 0 0
\(267\) 0 0
\(268\) 1902.28 0.433583
\(269\) 5207.27 1.18027 0.590136 0.807304i \(-0.299074\pi\)
0.590136 + 0.807304i \(0.299074\pi\)
\(270\) 0 0
\(271\) 2312.00 0.518244 0.259122 0.965845i \(-0.416567\pi\)
0.259122 + 0.965845i \(0.416567\pi\)
\(272\) 27480.1 6.12583
\(273\) 0 0
\(274\) 8753.46 1.92999
\(275\) −3551.79 −0.778840
\(276\) 0 0
\(277\) 2606.72 0.565425 0.282713 0.959205i \(-0.408766\pi\)
0.282713 + 0.959205i \(0.408766\pi\)
\(278\) −11479.5 −2.47659
\(279\) 0 0
\(280\) 0 0
\(281\) −5271.62 −1.11914 −0.559570 0.828783i \(-0.689034\pi\)
−0.559570 + 0.828783i \(0.689034\pi\)
\(282\) 0 0
\(283\) −5808.21 −1.22001 −0.610004 0.792398i \(-0.708832\pi\)
−0.610004 + 0.792398i \(0.708832\pi\)
\(284\) −1929.37 −0.403124
\(285\) 0 0
\(286\) −5057.93 −1.04574
\(287\) 0 0
\(288\) 0 0
\(289\) 8424.45 1.71473
\(290\) −251.865 −0.0510002
\(291\) 0 0
\(292\) 17531.2 3.51347
\(293\) 1979.70 0.394729 0.197364 0.980330i \(-0.436762\pi\)
0.197364 + 0.980330i \(0.436762\pi\)
\(294\) 0 0
\(295\) −138.761 −0.0273864
\(296\) −11071.0 −2.17396
\(297\) 0 0
\(298\) 2864.16 0.556766
\(299\) −3054.97 −0.590881
\(300\) 0 0
\(301\) 0 0
\(302\) −4739.00 −0.902977
\(303\) 0 0
\(304\) −5032.59 −0.949469
\(305\) −73.6808 −0.0138326
\(306\) 0 0
\(307\) −924.005 −0.171778 −0.0858888 0.996305i \(-0.527373\pi\)
−0.0858888 + 0.996305i \(0.527373\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 306.433 0.0561427
\(311\) 10108.6 1.84311 0.921554 0.388251i \(-0.126920\pi\)
0.921554 + 0.388251i \(0.126920\pi\)
\(312\) 0 0
\(313\) −6830.52 −1.23349 −0.616747 0.787161i \(-0.711550\pi\)
−0.616747 + 0.787161i \(0.711550\pi\)
\(314\) 32.3337 0.00581114
\(315\) 0 0
\(316\) 7959.96 1.41703
\(317\) −7623.62 −1.35074 −0.675371 0.737478i \(-0.736016\pi\)
−0.675371 + 0.737478i \(0.736016\pi\)
\(318\) 0 0
\(319\) 6582.02 1.15524
\(320\) −377.141 −0.0658839
\(321\) 0 0
\(322\) 0 0
\(323\) −2442.56 −0.420768
\(324\) 0 0
\(325\) 4071.32 0.694881
\(326\) −4549.45 −0.772916
\(327\) 0 0
\(328\) 8385.30 1.41159
\(329\) 0 0
\(330\) 0 0
\(331\) 2483.21 0.412355 0.206177 0.978515i \(-0.433898\pi\)
0.206177 + 0.978515i \(0.433898\pi\)
\(332\) −20121.4 −3.32622
\(333\) 0 0
\(334\) 3095.73 0.507158
\(335\) −17.3520 −0.00282997
\(336\) 0 0
\(337\) 7895.47 1.27624 0.638121 0.769936i \(-0.279712\pi\)
0.638121 + 0.769936i \(0.279712\pi\)
\(338\) −6201.77 −0.998023
\(339\) 0 0
\(340\) −502.067 −0.0800836
\(341\) −8008.05 −1.27173
\(342\) 0 0
\(343\) 0 0
\(344\) 29639.9 4.64557
\(345\) 0 0
\(346\) 22534.1 3.50127
\(347\) 889.423 0.137599 0.0687994 0.997631i \(-0.478083\pi\)
0.0687994 + 0.997631i \(0.478083\pi\)
\(348\) 0 0
\(349\) −6962.20 −1.06785 −0.533923 0.845533i \(-0.679283\pi\)
−0.533923 + 0.845533i \(0.679283\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 19762.2 2.99241
\(353\) 11560.6 1.74308 0.871542 0.490320i \(-0.163120\pi\)
0.871542 + 0.490320i \(0.163120\pi\)
\(354\) 0 0
\(355\) 17.5991 0.00263116
\(356\) 4615.00 0.687064
\(357\) 0 0
\(358\) 5066.60 0.747984
\(359\) 8457.02 1.24330 0.621649 0.783296i \(-0.286463\pi\)
0.621649 + 0.783296i \(0.286463\pi\)
\(360\) 0 0
\(361\) −6411.68 −0.934783
\(362\) −6617.89 −0.960853
\(363\) 0 0
\(364\) 0 0
\(365\) −159.914 −0.0229322
\(366\) 0 0
\(367\) −6912.92 −0.983247 −0.491623 0.870808i \(-0.663596\pi\)
−0.491623 + 0.870808i \(0.663596\pi\)
\(368\) 22311.3 3.16048
\(369\) 0 0
\(370\) 159.398 0.0223965
\(371\) 0 0
\(372\) 0 0
\(373\) 423.911 0.0588453 0.0294226 0.999567i \(-0.490633\pi\)
0.0294226 + 0.999567i \(0.490633\pi\)
\(374\) 17928.6 2.47879
\(375\) 0 0
\(376\) −20635.8 −2.83034
\(377\) −7544.79 −1.03071
\(378\) 0 0
\(379\) −9714.33 −1.31660 −0.658300 0.752756i \(-0.728724\pi\)
−0.658300 + 0.752756i \(0.728724\pi\)
\(380\) 91.9465 0.0124125
\(381\) 0 0
\(382\) −9981.37 −1.33689
\(383\) 2214.15 0.295399 0.147699 0.989032i \(-0.452813\pi\)
0.147699 + 0.989032i \(0.452813\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4490.84 −0.592171
\(387\) 0 0
\(388\) −18462.9 −2.41576
\(389\) −7665.46 −0.999111 −0.499556 0.866282i \(-0.666503\pi\)
−0.499556 + 0.866282i \(0.666503\pi\)
\(390\) 0 0
\(391\) 10828.8 1.40060
\(392\) 0 0
\(393\) 0 0
\(394\) −26615.9 −3.40328
\(395\) −72.6081 −0.00924889
\(396\) 0 0
\(397\) −4978.20 −0.629341 −0.314671 0.949201i \(-0.601894\pi\)
−0.314671 + 0.949201i \(0.601894\pi\)
\(398\) 8095.60 1.01959
\(399\) 0 0
\(400\) −29734.0 −3.71675
\(401\) −4770.21 −0.594047 −0.297023 0.954870i \(-0.595994\pi\)
−0.297023 + 0.954870i \(0.595994\pi\)
\(402\) 0 0
\(403\) 9179.41 1.13464
\(404\) 3426.43 0.421958
\(405\) 0 0
\(406\) 0 0
\(407\) −4165.56 −0.507319
\(408\) 0 0
\(409\) 597.257 0.0722065 0.0361033 0.999348i \(-0.488505\pi\)
0.0361033 + 0.999348i \(0.488505\pi\)
\(410\) −120.729 −0.0145424
\(411\) 0 0
\(412\) 3041.62 0.363714
\(413\) 0 0
\(414\) 0 0
\(415\) 183.541 0.0217100
\(416\) −22652.9 −2.66983
\(417\) 0 0
\(418\) −3283.37 −0.384198
\(419\) −9571.90 −1.11603 −0.558016 0.829830i \(-0.688437\pi\)
−0.558016 + 0.829830i \(0.688437\pi\)
\(420\) 0 0
\(421\) −5954.33 −0.689303 −0.344651 0.938731i \(-0.612003\pi\)
−0.344651 + 0.938731i \(0.612003\pi\)
\(422\) −23809.0 −2.74646
\(423\) 0 0
\(424\) −25714.9 −2.94534
\(425\) −14431.4 −1.64712
\(426\) 0 0
\(427\) 0 0
\(428\) −9070.29 −1.02437
\(429\) 0 0
\(430\) −426.747 −0.0478594
\(431\) −2543.44 −0.284254 −0.142127 0.989848i \(-0.545394\pi\)
−0.142127 + 0.989848i \(0.545394\pi\)
\(432\) 0 0
\(433\) −9781.07 −1.08556 −0.542781 0.839874i \(-0.682629\pi\)
−0.542781 + 0.839874i \(0.682629\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −18427.2 −2.02409
\(437\) −1983.14 −0.217086
\(438\) 0 0
\(439\) 16820.3 1.82867 0.914336 0.404957i \(-0.132713\pi\)
0.914336 + 0.404957i \(0.132713\pi\)
\(440\) −427.579 −0.0463273
\(441\) 0 0
\(442\) −20551.1 −2.21157
\(443\) 3726.75 0.399691 0.199846 0.979827i \(-0.435956\pi\)
0.199846 + 0.979827i \(0.435956\pi\)
\(444\) 0 0
\(445\) −42.0965 −0.00448442
\(446\) 18093.4 1.92096
\(447\) 0 0
\(448\) 0 0
\(449\) −9287.05 −0.976131 −0.488065 0.872807i \(-0.662297\pi\)
−0.488065 + 0.872807i \(0.662297\pi\)
\(450\) 0 0
\(451\) 3155.02 0.329411
\(452\) −29301.9 −3.04921
\(453\) 0 0
\(454\) 4360.26 0.450742
\(455\) 0 0
\(456\) 0 0
\(457\) 12019.4 1.23029 0.615147 0.788413i \(-0.289097\pi\)
0.615147 + 0.788413i \(0.289097\pi\)
\(458\) 1938.47 0.197770
\(459\) 0 0
\(460\) −407.633 −0.0413173
\(461\) 9571.71 0.967026 0.483513 0.875337i \(-0.339361\pi\)
0.483513 + 0.875337i \(0.339361\pi\)
\(462\) 0 0
\(463\) 2265.15 0.227366 0.113683 0.993517i \(-0.463735\pi\)
0.113683 + 0.993517i \(0.463735\pi\)
\(464\) 55101.8 5.51301
\(465\) 0 0
\(466\) −24435.5 −2.42908
\(467\) 5320.94 0.527246 0.263623 0.964626i \(-0.415082\pi\)
0.263623 + 0.964626i \(0.415082\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 297.108 0.0291587
\(471\) 0 0
\(472\) 52639.2 5.13330
\(473\) 11152.2 1.08410
\(474\) 0 0
\(475\) 2642.91 0.255294
\(476\) 0 0
\(477\) 0 0
\(478\) −8163.48 −0.781148
\(479\) −3766.98 −0.359327 −0.179663 0.983728i \(-0.557501\pi\)
−0.179663 + 0.983728i \(0.557501\pi\)
\(480\) 0 0
\(481\) 4774.86 0.452630
\(482\) 856.871 0.0809739
\(483\) 0 0
\(484\) −11420.1 −1.07251
\(485\) 168.413 0.0157675
\(486\) 0 0
\(487\) 8857.92 0.824211 0.412105 0.911136i \(-0.364794\pi\)
0.412105 + 0.911136i \(0.364794\pi\)
\(488\) 27950.9 2.59278
\(489\) 0 0
\(490\) 0 0
\(491\) −17311.1 −1.59112 −0.795560 0.605874i \(-0.792823\pi\)
−0.795560 + 0.605874i \(0.792823\pi\)
\(492\) 0 0
\(493\) 26743.6 2.44315
\(494\) 3763.63 0.342781
\(495\) 0 0
\(496\) −67039.8 −6.06891
\(497\) 0 0
\(498\) 0 0
\(499\) −7030.45 −0.630714 −0.315357 0.948973i \(-0.602124\pi\)
−0.315357 + 0.948973i \(0.602124\pi\)
\(500\) 1086.67 0.0971945
\(501\) 0 0
\(502\) −19109.0 −1.69896
\(503\) −1519.74 −0.134716 −0.0673578 0.997729i \(-0.521457\pi\)
−0.0673578 + 0.997729i \(0.521457\pi\)
\(504\) 0 0
\(505\) −31.2547 −0.00275409
\(506\) 14556.4 1.27887
\(507\) 0 0
\(508\) 21367.2 1.86617
\(509\) 19455.4 1.69419 0.847096 0.531440i \(-0.178349\pi\)
0.847096 + 0.531440i \(0.178349\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 21639.1 1.86782
\(513\) 0 0
\(514\) −25883.9 −2.22119
\(515\) −27.7447 −0.00237394
\(516\) 0 0
\(517\) −7764.35 −0.660495
\(518\) 0 0
\(519\) 0 0
\(520\) 490.122 0.0413332
\(521\) −10224.0 −0.859731 −0.429866 0.902893i \(-0.641439\pi\)
−0.429866 + 0.902893i \(0.641439\pi\)
\(522\) 0 0
\(523\) −16607.0 −1.38847 −0.694237 0.719746i \(-0.744258\pi\)
−0.694237 + 0.719746i \(0.744258\pi\)
\(524\) −51801.0 −4.31858
\(525\) 0 0
\(526\) −18375.9 −1.52324
\(527\) −32537.8 −2.68950
\(528\) 0 0
\(529\) −3375.01 −0.277390
\(530\) 370.235 0.0303434
\(531\) 0 0
\(532\) 0 0
\(533\) −3616.52 −0.293900
\(534\) 0 0
\(535\) 82.7363 0.00668598
\(536\) 6582.48 0.530447
\(537\) 0 0
\(538\) 28441.0 2.27914
\(539\) 0 0
\(540\) 0 0
\(541\) 6582.54 0.523116 0.261558 0.965188i \(-0.415764\pi\)
0.261558 + 0.965188i \(0.415764\pi\)
\(542\) 12627.7 1.00075
\(543\) 0 0
\(544\) 80296.4 6.32846
\(545\) 168.087 0.0132111
\(546\) 0 0
\(547\) 3407.73 0.266369 0.133185 0.991091i \(-0.457480\pi\)
0.133185 + 0.991091i \(0.457480\pi\)
\(548\) 34988.1 2.72741
\(549\) 0 0
\(550\) −19399.1 −1.50397
\(551\) −4897.72 −0.378675
\(552\) 0 0
\(553\) 0 0
\(554\) 14237.4 1.09185
\(555\) 0 0
\(556\) −45884.2 −3.49986
\(557\) −9480.11 −0.721158 −0.360579 0.932729i \(-0.617421\pi\)
−0.360579 + 0.932729i \(0.617421\pi\)
\(558\) 0 0
\(559\) −12783.5 −0.967233
\(560\) 0 0
\(561\) 0 0
\(562\) −28792.5 −2.16110
\(563\) 21864.4 1.63673 0.818363 0.574702i \(-0.194882\pi\)
0.818363 + 0.574702i \(0.194882\pi\)
\(564\) 0 0
\(565\) 267.282 0.0199020
\(566\) −31723.2 −2.35588
\(567\) 0 0
\(568\) −6676.23 −0.493184
\(569\) −1143.39 −0.0842414 −0.0421207 0.999113i \(-0.513411\pi\)
−0.0421207 + 0.999113i \(0.513411\pi\)
\(570\) 0 0
\(571\) 10471.1 0.767429 0.383715 0.923452i \(-0.374645\pi\)
0.383715 + 0.923452i \(0.374645\pi\)
\(572\) −20216.9 −1.47781
\(573\) 0 0
\(574\) 0 0
\(575\) −11717.0 −0.849795
\(576\) 0 0
\(577\) −4759.60 −0.343405 −0.171703 0.985149i \(-0.554927\pi\)
−0.171703 + 0.985149i \(0.554927\pi\)
\(578\) 46012.6 3.31119
\(579\) 0 0
\(580\) −1006.72 −0.0720721
\(581\) 0 0
\(582\) 0 0
\(583\) −9675.39 −0.687331
\(584\) 60663.3 4.29840
\(585\) 0 0
\(586\) 10812.7 0.762234
\(587\) 6307.45 0.443503 0.221751 0.975103i \(-0.428823\pi\)
0.221751 + 0.975103i \(0.428823\pi\)
\(588\) 0 0
\(589\) 5958.83 0.416858
\(590\) −757.885 −0.0528841
\(591\) 0 0
\(592\) −34872.2 −2.42101
\(593\) −17731.9 −1.22793 −0.613963 0.789335i \(-0.710426\pi\)
−0.613963 + 0.789335i \(0.710426\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 11448.2 0.786808
\(597\) 0 0
\(598\) −16685.6 −1.14101
\(599\) 19110.1 1.30353 0.651766 0.758420i \(-0.274028\pi\)
0.651766 + 0.758420i \(0.274028\pi\)
\(600\) 0 0
\(601\) 13118.3 0.890357 0.445179 0.895442i \(-0.353140\pi\)
0.445179 + 0.895442i \(0.353140\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −18942.1 −1.27606
\(605\) 104.171 0.00700024
\(606\) 0 0
\(607\) −17473.4 −1.16841 −0.584204 0.811607i \(-0.698593\pi\)
−0.584204 + 0.811607i \(0.698593\pi\)
\(608\) −14705.1 −0.980876
\(609\) 0 0
\(610\) −402.429 −0.0267112
\(611\) 8900.06 0.589293
\(612\) 0 0
\(613\) 3095.39 0.203951 0.101975 0.994787i \(-0.467484\pi\)
0.101975 + 0.994787i \(0.467484\pi\)
\(614\) −5046.71 −0.331708
\(615\) 0 0
\(616\) 0 0
\(617\) 26334.8 1.71831 0.859157 0.511712i \(-0.170989\pi\)
0.859157 + 0.511712i \(0.170989\pi\)
\(618\) 0 0
\(619\) 2686.04 0.174412 0.0872061 0.996190i \(-0.472206\pi\)
0.0872061 + 0.996190i \(0.472206\pi\)
\(620\) 1224.83 0.0793395
\(621\) 0 0
\(622\) 55211.0 3.55910
\(623\) 0 0
\(624\) 0 0
\(625\) 15610.1 0.999048
\(626\) −37306.8 −2.38192
\(627\) 0 0
\(628\) 129.240 0.00821216
\(629\) −16925.2 −1.07290
\(630\) 0 0
\(631\) 22414.2 1.41409 0.707047 0.707167i \(-0.250027\pi\)
0.707047 + 0.707167i \(0.250027\pi\)
\(632\) 27543.9 1.73361
\(633\) 0 0
\(634\) −41638.6 −2.60833
\(635\) −194.904 −0.0121804
\(636\) 0 0
\(637\) 0 0
\(638\) 35949.6 2.23081
\(639\) 0 0
\(640\) −952.222 −0.0588123
\(641\) 22139.1 1.36418 0.682092 0.731266i \(-0.261070\pi\)
0.682092 + 0.731266i \(0.261070\pi\)
\(642\) 0 0
\(643\) −22523.7 −1.38141 −0.690707 0.723134i \(-0.742701\pi\)
−0.690707 + 0.723134i \(0.742701\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −13340.8 −0.812516
\(647\) −11523.5 −0.700209 −0.350105 0.936711i \(-0.613854\pi\)
−0.350105 + 0.936711i \(0.613854\pi\)
\(648\) 0 0
\(649\) 19805.9 1.19792
\(650\) 22236.7 1.34184
\(651\) 0 0
\(652\) −18184.4 −1.09226
\(653\) 461.937 0.0276830 0.0138415 0.999904i \(-0.495594\pi\)
0.0138415 + 0.999904i \(0.495594\pi\)
\(654\) 0 0
\(655\) 472.511 0.0281871
\(656\) 26412.5 1.57200
\(657\) 0 0
\(658\) 0 0
\(659\) −14373.3 −0.849627 −0.424813 0.905281i \(-0.639660\pi\)
−0.424813 + 0.905281i \(0.639660\pi\)
\(660\) 0 0
\(661\) −67.8490 −0.00399246 −0.00199623 0.999998i \(-0.500635\pi\)
−0.00199623 + 0.999998i \(0.500635\pi\)
\(662\) 13562.8 0.796271
\(663\) 0 0
\(664\) −69626.3 −4.06931
\(665\) 0 0
\(666\) 0 0
\(667\) 21713.4 1.26049
\(668\) 12373.8 0.716702
\(669\) 0 0
\(670\) −94.7727 −0.00546476
\(671\) 10516.7 0.605056
\(672\) 0 0
\(673\) 21970.2 1.25838 0.629190 0.777252i \(-0.283387\pi\)
0.629190 + 0.777252i \(0.283387\pi\)
\(674\) 43123.4 2.46447
\(675\) 0 0
\(676\) −24788.9 −1.41038
\(677\) 2993.29 0.169928 0.0849642 0.996384i \(-0.472922\pi\)
0.0849642 + 0.996384i \(0.472922\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1737.31 −0.0979747
\(681\) 0 0
\(682\) −43738.2 −2.45575
\(683\) −5461.90 −0.305994 −0.152997 0.988227i \(-0.548892\pi\)
−0.152997 + 0.988227i \(0.548892\pi\)
\(684\) 0 0
\(685\) −319.150 −0.0178016
\(686\) 0 0
\(687\) 0 0
\(688\) 93361.4 5.17350
\(689\) 11090.6 0.613236
\(690\) 0 0
\(691\) 15779.0 0.868685 0.434342 0.900748i \(-0.356981\pi\)
0.434342 + 0.900748i \(0.356981\pi\)
\(692\) 90070.0 4.94790
\(693\) 0 0
\(694\) 4857.84 0.265708
\(695\) 418.540 0.0228434
\(696\) 0 0
\(697\) 12819.3 0.696650
\(698\) −38026.0 −2.06204
\(699\) 0 0
\(700\) 0 0
\(701\) −8058.91 −0.434209 −0.217105 0.976148i \(-0.569661\pi\)
−0.217105 + 0.976148i \(0.569661\pi\)
\(702\) 0 0
\(703\) 3099.61 0.166293
\(704\) 53830.6 2.88184
\(705\) 0 0
\(706\) 63141.5 3.36595
\(707\) 0 0
\(708\) 0 0
\(709\) 26018.9 1.37823 0.689113 0.724654i \(-0.258001\pi\)
0.689113 + 0.724654i \(0.258001\pi\)
\(710\) 96.1225 0.00508086
\(711\) 0 0
\(712\) 15969.4 0.840558
\(713\) −26417.7 −1.38759
\(714\) 0 0
\(715\) 184.412 0.00964560
\(716\) 20251.5 1.05703
\(717\) 0 0
\(718\) 46190.4 2.40085
\(719\) 4663.46 0.241889 0.120944 0.992659i \(-0.461408\pi\)
0.120944 + 0.992659i \(0.461408\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −35019.2 −1.80510
\(723\) 0 0
\(724\) −26452.1 −1.35785
\(725\) −28937.2 −1.48234
\(726\) 0 0
\(727\) −35484.5 −1.81024 −0.905121 0.425154i \(-0.860220\pi\)
−0.905121 + 0.425154i \(0.860220\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −873.413 −0.0442828
\(731\) 45312.9 2.29269
\(732\) 0 0
\(733\) 15257.1 0.768805 0.384402 0.923166i \(-0.374408\pi\)
0.384402 + 0.923166i \(0.374408\pi\)
\(734\) −37756.9 −1.89868
\(735\) 0 0
\(736\) 65193.4 3.26503
\(737\) 2476.70 0.123786
\(738\) 0 0
\(739\) 25753.7 1.28196 0.640978 0.767559i \(-0.278529\pi\)
0.640978 + 0.767559i \(0.278529\pi\)
\(740\) 637.123 0.0316501
\(741\) 0 0
\(742\) 0 0
\(743\) 5703.55 0.281619 0.140809 0.990037i \(-0.455029\pi\)
0.140809 + 0.990037i \(0.455029\pi\)
\(744\) 0 0
\(745\) −104.427 −0.00513545
\(746\) 2315.31 0.113632
\(747\) 0 0
\(748\) 71661.7 3.50296
\(749\) 0 0
\(750\) 0 0
\(751\) 15450.9 0.750747 0.375373 0.926874i \(-0.377515\pi\)
0.375373 + 0.926874i \(0.377515\pi\)
\(752\) −64999.7 −3.15199
\(753\) 0 0
\(754\) −41208.0 −1.99033
\(755\) 172.784 0.00832879
\(756\) 0 0
\(757\) 12434.7 0.597025 0.298513 0.954406i \(-0.403509\pi\)
0.298513 + 0.954406i \(0.403509\pi\)
\(758\) −53057.6 −2.54240
\(759\) 0 0
\(760\) 318.164 0.0151855
\(761\) −2318.62 −0.110447 −0.0552234 0.998474i \(-0.517587\pi\)
−0.0552234 + 0.998474i \(0.517587\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −39896.1 −1.88926
\(765\) 0 0
\(766\) 12093.2 0.570425
\(767\) −22702.9 −1.06878
\(768\) 0 0
\(769\) −23104.3 −1.08344 −0.541718 0.840560i \(-0.682226\pi\)
−0.541718 + 0.840560i \(0.682226\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −17950.2 −0.836841
\(773\) −12433.6 −0.578532 −0.289266 0.957249i \(-0.593411\pi\)
−0.289266 + 0.957249i \(0.593411\pi\)
\(774\) 0 0
\(775\) 35206.6 1.63182
\(776\) −63887.6 −2.95545
\(777\) 0 0
\(778\) −41867.1 −1.92932
\(779\) −2347.67 −0.107977
\(780\) 0 0
\(781\) −2511.98 −0.115090
\(782\) 59144.5 2.70461
\(783\) 0 0
\(784\) 0 0
\(785\) −1.17888 −5.36002e−5 0
\(786\) 0 0
\(787\) 24085.4 1.09092 0.545458 0.838138i \(-0.316356\pi\)
0.545458 + 0.838138i \(0.316356\pi\)
\(788\) −106386. −4.80943
\(789\) 0 0
\(790\) −396.570 −0.0178599
\(791\) 0 0
\(792\) 0 0
\(793\) −12055.0 −0.539831
\(794\) −27189.8 −1.21528
\(795\) 0 0
\(796\) 32358.6 1.44085
\(797\) 36596.8 1.62651 0.813253 0.581910i \(-0.197694\pi\)
0.813253 + 0.581910i \(0.197694\pi\)
\(798\) 0 0
\(799\) −31547.6 −1.39684
\(800\) −86882.4 −3.83970
\(801\) 0 0
\(802\) −26053.8 −1.14712
\(803\) 22825.0 1.00308
\(804\) 0 0
\(805\) 0 0
\(806\) 50135.9 2.19102
\(807\) 0 0
\(808\) 11856.5 0.516226
\(809\) −20746.3 −0.901610 −0.450805 0.892622i \(-0.648863\pi\)
−0.450805 + 0.892622i \(0.648863\pi\)
\(810\) 0 0
\(811\) 8538.03 0.369680 0.184840 0.982769i \(-0.440823\pi\)
0.184840 + 0.982769i \(0.440823\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −22751.4 −0.979650
\(815\) 165.872 0.00712915
\(816\) 0 0
\(817\) −8298.42 −0.355355
\(818\) 3262.09 0.139433
\(819\) 0 0
\(820\) −482.562 −0.0205510
\(821\) 20949.8 0.890564 0.445282 0.895390i \(-0.353103\pi\)
0.445282 + 0.895390i \(0.353103\pi\)
\(822\) 0 0
\(823\) −10130.5 −0.429073 −0.214536 0.976716i \(-0.568824\pi\)
−0.214536 + 0.976716i \(0.568824\pi\)
\(824\) 10525.0 0.444969
\(825\) 0 0
\(826\) 0 0
\(827\) 25327.3 1.06495 0.532476 0.846445i \(-0.321262\pi\)
0.532476 + 0.846445i \(0.321262\pi\)
\(828\) 0 0
\(829\) 19975.9 0.836901 0.418451 0.908240i \(-0.362573\pi\)
0.418451 + 0.908240i \(0.362573\pi\)
\(830\) 1002.46 0.0419227
\(831\) 0 0
\(832\) −61704.6 −2.57118
\(833\) 0 0
\(834\) 0 0
\(835\) −112.870 −0.00467787
\(836\) −13123.8 −0.542939
\(837\) 0 0
\(838\) −52279.6 −2.15510
\(839\) −3888.98 −0.160027 −0.0800134 0.996794i \(-0.525496\pi\)
−0.0800134 + 0.996794i \(0.525496\pi\)
\(840\) 0 0
\(841\) 29236.1 1.19874
\(842\) −32521.3 −1.33107
\(843\) 0 0
\(844\) −95166.2 −3.88123
\(845\) 226.116 0.00920547
\(846\) 0 0
\(847\) 0 0
\(848\) −80998.1 −3.28006
\(849\) 0 0
\(850\) −78821.2 −3.18064
\(851\) −13741.7 −0.553537
\(852\) 0 0
\(853\) 32093.5 1.28823 0.644116 0.764928i \(-0.277225\pi\)
0.644116 + 0.764928i \(0.277225\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −31386.1 −1.25322
\(857\) −29879.8 −1.19098 −0.595492 0.803361i \(-0.703043\pi\)
−0.595492 + 0.803361i \(0.703043\pi\)
\(858\) 0 0
\(859\) −32988.3 −1.31030 −0.655150 0.755499i \(-0.727394\pi\)
−0.655150 + 0.755499i \(0.727394\pi\)
\(860\) −1705.73 −0.0676337
\(861\) 0 0
\(862\) −13891.7 −0.548903
\(863\) 26716.8 1.05382 0.526912 0.849920i \(-0.323350\pi\)
0.526912 + 0.849920i \(0.323350\pi\)
\(864\) 0 0
\(865\) −821.590 −0.0322947
\(866\) −53422.1 −2.09626
\(867\) 0 0
\(868\) 0 0
\(869\) 10363.6 0.404558
\(870\) 0 0
\(871\) −2838.98 −0.110442
\(872\) −63763.9 −2.47628
\(873\) 0 0
\(874\) −10831.5 −0.419199
\(875\) 0 0
\(876\) 0 0
\(877\) −17965.7 −0.691742 −0.345871 0.938282i \(-0.612417\pi\)
−0.345871 + 0.938282i \(0.612417\pi\)
\(878\) 91868.6 3.53122
\(879\) 0 0
\(880\) −1346.81 −0.0515921
\(881\) −15852.9 −0.606239 −0.303119 0.952953i \(-0.598028\pi\)
−0.303119 + 0.952953i \(0.598028\pi\)
\(882\) 0 0
\(883\) −22050.7 −0.840392 −0.420196 0.907433i \(-0.638039\pi\)
−0.420196 + 0.907433i \(0.638039\pi\)
\(884\) −82143.9 −3.12534
\(885\) 0 0
\(886\) 20354.7 0.771817
\(887\) −27772.8 −1.05132 −0.525658 0.850696i \(-0.676181\pi\)
−0.525658 + 0.850696i \(0.676181\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −229.922 −0.00865956
\(891\) 0 0
\(892\) 72320.5 2.71465
\(893\) 5777.50 0.216502
\(894\) 0 0
\(895\) −184.728 −0.00689918
\(896\) 0 0
\(897\) 0 0
\(898\) −50723.8 −1.88494
\(899\) −65243.2 −2.42045
\(900\) 0 0
\(901\) −39312.4 −1.45359
\(902\) 17232.1 0.636103
\(903\) 0 0
\(904\) −101394. −3.73043
\(905\) 241.288 0.00886262
\(906\) 0 0
\(907\) −5896.03 −0.215848 −0.107924 0.994159i \(-0.534420\pi\)
−0.107924 + 0.994159i \(0.534420\pi\)
\(908\) 17428.2 0.636978
\(909\) 0 0
\(910\) 0 0
\(911\) 42197.8 1.53466 0.767331 0.641251i \(-0.221584\pi\)
0.767331 + 0.641251i \(0.221584\pi\)
\(912\) 0 0
\(913\) −26197.4 −0.949623
\(914\) 65647.4 2.37574
\(915\) 0 0
\(916\) 7748.17 0.279483
\(917\) 0 0
\(918\) 0 0
\(919\) −40928.7 −1.46911 −0.734555 0.678549i \(-0.762609\pi\)
−0.734555 + 0.678549i \(0.762609\pi\)
\(920\) −1410.54 −0.0505479
\(921\) 0 0
\(922\) 52278.6 1.86736
\(923\) 2879.41 0.102684
\(924\) 0 0
\(925\) 18313.4 0.650964
\(926\) 12371.7 0.439050
\(927\) 0 0
\(928\) 161007. 5.69537
\(929\) 21478.9 0.758558 0.379279 0.925282i \(-0.376172\pi\)
0.379279 + 0.925282i \(0.376172\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −97670.3 −3.43272
\(933\) 0 0
\(934\) 29061.9 1.01813
\(935\) −653.675 −0.0228636
\(936\) 0 0
\(937\) −19560.1 −0.681964 −0.340982 0.940070i \(-0.610759\pi\)
−0.340982 + 0.940070i \(0.610759\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1187.56 0.0412063
\(941\) 48602.4 1.68373 0.841867 0.539685i \(-0.181457\pi\)
0.841867 + 0.539685i \(0.181457\pi\)
\(942\) 0 0
\(943\) 10408.1 0.359421
\(944\) 165806. 5.71666
\(945\) 0 0
\(946\) 60911.0 2.09343
\(947\) −28778.0 −0.987496 −0.493748 0.869605i \(-0.664373\pi\)
−0.493748 + 0.869605i \(0.664373\pi\)
\(948\) 0 0
\(949\) −26163.7 −0.894951
\(950\) 14435.0 0.492982
\(951\) 0 0
\(952\) 0 0
\(953\) −26009.2 −0.884072 −0.442036 0.896997i \(-0.645744\pi\)
−0.442036 + 0.896997i \(0.645744\pi\)
\(954\) 0 0
\(955\) 363.920 0.0123311
\(956\) −32629.9 −1.10390
\(957\) 0 0
\(958\) −20574.4 −0.693872
\(959\) 0 0
\(960\) 0 0
\(961\) 49587.5 1.66451
\(962\) 26079.3 0.874043
\(963\) 0 0
\(964\) 3424.97 0.114430
\(965\) 163.736 0.00546201
\(966\) 0 0
\(967\) −13284.5 −0.441779 −0.220889 0.975299i \(-0.570896\pi\)
−0.220889 + 0.975299i \(0.570896\pi\)
\(968\) −39517.2 −1.31212
\(969\) 0 0
\(970\) 919.836 0.0304476
\(971\) −44248.6 −1.46242 −0.731208 0.682155i \(-0.761043\pi\)
−0.731208 + 0.682155i \(0.761043\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 48380.0 1.59158
\(975\) 0 0
\(976\) 88041.2 2.88743
\(977\) 48967.4 1.60349 0.801744 0.597668i \(-0.203906\pi\)
0.801744 + 0.597668i \(0.203906\pi\)
\(978\) 0 0
\(979\) 6008.58 0.196154
\(980\) 0 0
\(981\) 0 0
\(982\) −94549.7 −3.07251
\(983\) −49856.3 −1.61767 −0.808835 0.588035i \(-0.799902\pi\)
−0.808835 + 0.588035i \(0.799902\pi\)
\(984\) 0 0
\(985\) 970.414 0.0313908
\(986\) 146068. 4.71780
\(987\) 0 0
\(988\) 15043.5 0.484410
\(989\) 36790.0 1.18286
\(990\) 0 0
\(991\) 48648.1 1.55939 0.779696 0.626158i \(-0.215373\pi\)
0.779696 + 0.626158i \(0.215373\pi\)
\(992\) −195889. −6.26965
\(993\) 0 0
\(994\) 0 0
\(995\) −295.165 −0.00940437
\(996\) 0 0
\(997\) −9709.15 −0.308417 −0.154209 0.988038i \(-0.549283\pi\)
−0.154209 + 0.988038i \(0.549283\pi\)
\(998\) −38398.8 −1.21793
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bn.1.8 8
3.2 odd 2 inner 1323.4.a.bn.1.1 8
7.3 odd 6 189.4.e.h.163.1 yes 16
7.5 odd 6 189.4.e.h.109.1 16
7.6 odd 2 1323.4.a.bo.1.8 8
21.5 even 6 189.4.e.h.109.8 yes 16
21.17 even 6 189.4.e.h.163.8 yes 16
21.20 even 2 1323.4.a.bo.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.h.109.1 16 7.5 odd 6
189.4.e.h.109.8 yes 16 21.5 even 6
189.4.e.h.163.1 yes 16 7.3 odd 6
189.4.e.h.163.8 yes 16 21.17 even 6
1323.4.a.bn.1.1 8 3.2 odd 2 inner
1323.4.a.bn.1.8 8 1.1 even 1 trivial
1323.4.a.bo.1.1 8 21.20 even 2
1323.4.a.bo.1.8 8 7.6 odd 2