Properties

Label 1323.4.a.bp.1.4
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $1$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 72x^{10} + 1809x^{8} - 19062x^{6} + 78324x^{4} - 73368x^{2} + 19600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4}\cdot 7^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.82234\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.82234 q^{2} -0.0343991 q^{4} +15.1035 q^{5} +22.6758 q^{8} -42.6273 q^{10} +32.1724 q^{11} -33.5373 q^{13} -63.7236 q^{16} -41.0684 q^{17} +35.9540 q^{19} -0.519549 q^{20} -90.8015 q^{22} +92.4825 q^{23} +103.117 q^{25} +94.6535 q^{26} +12.3752 q^{29} -250.230 q^{31} -1.55672 q^{32} +115.909 q^{34} -345.832 q^{37} -101.474 q^{38} +342.485 q^{40} -318.201 q^{41} -363.945 q^{43} -1.10670 q^{44} -261.017 q^{46} -405.225 q^{47} -291.030 q^{50} +1.15365 q^{52} -258.677 q^{53} +485.917 q^{55} -34.9269 q^{58} +258.265 q^{59} +578.762 q^{61} +706.233 q^{62} +514.183 q^{64} -506.531 q^{65} +726.896 q^{67} +1.41272 q^{68} -1074.68 q^{71} +942.519 q^{73} +976.054 q^{74} -1.23679 q^{76} -708.532 q^{79} -962.452 q^{80} +898.072 q^{82} -957.080 q^{83} -620.278 q^{85} +1027.18 q^{86} +729.535 q^{88} +485.451 q^{89} -3.18132 q^{92} +1143.68 q^{94} +543.032 q^{95} -313.998 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 48 q^{4} - 40 q^{5} + 444 q^{16} - 292 q^{17} - 524 q^{20} - 600 q^{22} + 324 q^{25} - 144 q^{26} + 216 q^{37} - 808 q^{38} - 1768 q^{41} + 180 q^{43} - 984 q^{47} + 1164 q^{58} - 1324 q^{59} - 3640 q^{62}+ \cdots - 1036 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.82234 −0.997848 −0.498924 0.866646i \(-0.666271\pi\)
−0.498924 + 0.866646i \(0.666271\pi\)
\(3\) 0 0
\(4\) −0.0343991 −0.00429989
\(5\) 15.1035 1.35090 0.675450 0.737405i \(-0.263949\pi\)
0.675450 + 0.737405i \(0.263949\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 22.6758 1.00214
\(9\) 0 0
\(10\) −42.6273 −1.34799
\(11\) 32.1724 0.881850 0.440925 0.897544i \(-0.354650\pi\)
0.440925 + 0.897544i \(0.354650\pi\)
\(12\) 0 0
\(13\) −33.5373 −0.715505 −0.357752 0.933817i \(-0.616457\pi\)
−0.357752 + 0.933817i \(0.616457\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −63.7236 −0.995682
\(17\) −41.0684 −0.585915 −0.292958 0.956125i \(-0.594639\pi\)
−0.292958 + 0.956125i \(0.594639\pi\)
\(18\) 0 0
\(19\) 35.9540 0.434127 0.217063 0.976158i \(-0.430352\pi\)
0.217063 + 0.976158i \(0.430352\pi\)
\(20\) −0.519549 −0.00580873
\(21\) 0 0
\(22\) −90.8015 −0.879952
\(23\) 92.4825 0.838432 0.419216 0.907887i \(-0.362305\pi\)
0.419216 + 0.907887i \(0.362305\pi\)
\(24\) 0 0
\(25\) 103.117 0.824933
\(26\) 94.6535 0.713965
\(27\) 0 0
\(28\) 0 0
\(29\) 12.3752 0.0792417 0.0396209 0.999215i \(-0.487385\pi\)
0.0396209 + 0.999215i \(0.487385\pi\)
\(30\) 0 0
\(31\) −250.230 −1.44976 −0.724880 0.688875i \(-0.758105\pi\)
−0.724880 + 0.688875i \(0.758105\pi\)
\(32\) −1.55672 −0.00859973
\(33\) 0 0
\(34\) 115.909 0.584654
\(35\) 0 0
\(36\) 0 0
\(37\) −345.832 −1.53660 −0.768302 0.640087i \(-0.778898\pi\)
−0.768302 + 0.640087i \(0.778898\pi\)
\(38\) −101.474 −0.433192
\(39\) 0 0
\(40\) 342.485 1.35379
\(41\) −318.201 −1.21207 −0.606033 0.795440i \(-0.707240\pi\)
−0.606033 + 0.795440i \(0.707240\pi\)
\(42\) 0 0
\(43\) −363.945 −1.29072 −0.645362 0.763877i \(-0.723294\pi\)
−0.645362 + 0.763877i \(0.723294\pi\)
\(44\) −1.10670 −0.00379186
\(45\) 0 0
\(46\) −261.017 −0.836628
\(47\) −405.225 −1.25762 −0.628809 0.777560i \(-0.716457\pi\)
−0.628809 + 0.777560i \(0.716457\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −291.030 −0.823158
\(51\) 0 0
\(52\) 1.15365 0.00307659
\(53\) −258.677 −0.670414 −0.335207 0.942144i \(-0.608806\pi\)
−0.335207 + 0.942144i \(0.608806\pi\)
\(54\) 0 0
\(55\) 485.917 1.19129
\(56\) 0 0
\(57\) 0 0
\(58\) −34.9269 −0.0790712
\(59\) 258.265 0.569886 0.284943 0.958544i \(-0.408025\pi\)
0.284943 + 0.958544i \(0.408025\pi\)
\(60\) 0 0
\(61\) 578.762 1.21480 0.607400 0.794396i \(-0.292212\pi\)
0.607400 + 0.794396i \(0.292212\pi\)
\(62\) 706.233 1.44664
\(63\) 0 0
\(64\) 514.183 1.00426
\(65\) −506.531 −0.966576
\(66\) 0 0
\(67\) 726.896 1.32544 0.662720 0.748867i \(-0.269402\pi\)
0.662720 + 0.748867i \(0.269402\pi\)
\(68\) 1.41272 0.00251937
\(69\) 0 0
\(70\) 0 0
\(71\) −1074.68 −1.79635 −0.898174 0.439639i \(-0.855106\pi\)
−0.898174 + 0.439639i \(0.855106\pi\)
\(72\) 0 0
\(73\) 942.519 1.51114 0.755572 0.655065i \(-0.227359\pi\)
0.755572 + 0.655065i \(0.227359\pi\)
\(74\) 976.054 1.53330
\(75\) 0 0
\(76\) −1.23679 −0.00186670
\(77\) 0 0
\(78\) 0 0
\(79\) −708.532 −1.00906 −0.504532 0.863393i \(-0.668335\pi\)
−0.504532 + 0.863393i \(0.668335\pi\)
\(80\) −962.452 −1.34507
\(81\) 0 0
\(82\) 898.072 1.20946
\(83\) −957.080 −1.26570 −0.632851 0.774274i \(-0.718115\pi\)
−0.632851 + 0.774274i \(0.718115\pi\)
\(84\) 0 0
\(85\) −620.278 −0.791513
\(86\) 1027.18 1.28795
\(87\) 0 0
\(88\) 729.535 0.883736
\(89\) 485.451 0.578177 0.289088 0.957302i \(-0.406648\pi\)
0.289088 + 0.957302i \(0.406648\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −3.18132 −0.00360517
\(93\) 0 0
\(94\) 1143.68 1.25491
\(95\) 543.032 0.586462
\(96\) 0 0
\(97\) −313.998 −0.328677 −0.164338 0.986404i \(-0.552549\pi\)
−0.164338 + 0.986404i \(0.552549\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −3.54713 −0.00354713
\(101\) −854.698 −0.842035 −0.421018 0.907052i \(-0.638327\pi\)
−0.421018 + 0.907052i \(0.638327\pi\)
\(102\) 0 0
\(103\) −846.014 −0.809323 −0.404662 0.914467i \(-0.632611\pi\)
−0.404662 + 0.914467i \(0.632611\pi\)
\(104\) −760.484 −0.717035
\(105\) 0 0
\(106\) 730.073 0.668972
\(107\) 1493.04 1.34895 0.674473 0.738299i \(-0.264371\pi\)
0.674473 + 0.738299i \(0.264371\pi\)
\(108\) 0 0
\(109\) 1825.31 1.60397 0.801984 0.597345i \(-0.203778\pi\)
0.801984 + 0.597345i \(0.203778\pi\)
\(110\) −1371.42 −1.18873
\(111\) 0 0
\(112\) 0 0
\(113\) 545.012 0.453720 0.226860 0.973927i \(-0.427154\pi\)
0.226860 + 0.973927i \(0.427154\pi\)
\(114\) 0 0
\(115\) 1396.81 1.13264
\(116\) −0.425695 −0.000340731 0
\(117\) 0 0
\(118\) −728.912 −0.568659
\(119\) 0 0
\(120\) 0 0
\(121\) −295.935 −0.222341
\(122\) −1633.46 −1.21219
\(123\) 0 0
\(124\) 8.60768 0.00623381
\(125\) −330.515 −0.236498
\(126\) 0 0
\(127\) −1993.09 −1.39259 −0.696293 0.717758i \(-0.745169\pi\)
−0.696293 + 0.717758i \(0.745169\pi\)
\(128\) −1438.74 −0.993502
\(129\) 0 0
\(130\) 1429.60 0.964496
\(131\) 1668.82 1.11302 0.556510 0.830841i \(-0.312140\pi\)
0.556510 + 0.830841i \(0.312140\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2051.55 −1.32259
\(135\) 0 0
\(136\) −931.260 −0.587168
\(137\) −18.8810 −0.0117746 −0.00588728 0.999983i \(-0.501874\pi\)
−0.00588728 + 0.999983i \(0.501874\pi\)
\(138\) 0 0
\(139\) −662.600 −0.404324 −0.202162 0.979352i \(-0.564797\pi\)
−0.202162 + 0.979352i \(0.564797\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3033.10 1.79248
\(143\) −1078.97 −0.630968
\(144\) 0 0
\(145\) 186.909 0.107048
\(146\) −2660.11 −1.50789
\(147\) 0 0
\(148\) 11.8963 0.00660723
\(149\) 2344.27 1.28892 0.644462 0.764636i \(-0.277081\pi\)
0.644462 + 0.764636i \(0.277081\pi\)
\(150\) 0 0
\(151\) 1248.19 0.672693 0.336347 0.941738i \(-0.390809\pi\)
0.336347 + 0.941738i \(0.390809\pi\)
\(152\) 815.285 0.435055
\(153\) 0 0
\(154\) 0 0
\(155\) −3779.35 −1.95848
\(156\) 0 0
\(157\) 2441.08 1.24089 0.620443 0.784252i \(-0.286953\pi\)
0.620443 + 0.784252i \(0.286953\pi\)
\(158\) 1999.72 1.00689
\(159\) 0 0
\(160\) −23.5119 −0.0116174
\(161\) 0 0
\(162\) 0 0
\(163\) −1496.26 −0.718993 −0.359496 0.933147i \(-0.617051\pi\)
−0.359496 + 0.933147i \(0.617051\pi\)
\(164\) 10.9459 0.00521175
\(165\) 0 0
\(166\) 2701.21 1.26298
\(167\) −183.542 −0.0850472 −0.0425236 0.999095i \(-0.513540\pi\)
−0.0425236 + 0.999095i \(0.513540\pi\)
\(168\) 0 0
\(169\) −1072.25 −0.488053
\(170\) 1750.64 0.789810
\(171\) 0 0
\(172\) 12.5194 0.00554998
\(173\) −3807.75 −1.67340 −0.836700 0.547662i \(-0.815518\pi\)
−0.836700 + 0.547662i \(0.815518\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2050.14 −0.878042
\(177\) 0 0
\(178\) −1370.11 −0.576932
\(179\) 1467.27 0.612678 0.306339 0.951923i \(-0.400896\pi\)
0.306339 + 0.951923i \(0.400896\pi\)
\(180\) 0 0
\(181\) 1127.05 0.462833 0.231417 0.972855i \(-0.425664\pi\)
0.231417 + 0.972855i \(0.425664\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2097.12 0.840225
\(185\) −5223.28 −2.07580
\(186\) 0 0
\(187\) −1321.27 −0.516689
\(188\) 13.9394 0.00540763
\(189\) 0 0
\(190\) −1532.62 −0.585200
\(191\) −2930.52 −1.11018 −0.555092 0.831789i \(-0.687317\pi\)
−0.555092 + 0.831789i \(0.687317\pi\)
\(192\) 0 0
\(193\) −2250.48 −0.839343 −0.419671 0.907676i \(-0.637855\pi\)
−0.419671 + 0.907676i \(0.637855\pi\)
\(194\) 886.208 0.327969
\(195\) 0 0
\(196\) 0 0
\(197\) −3349.31 −1.21131 −0.605655 0.795727i \(-0.707089\pi\)
−0.605655 + 0.795727i \(0.707089\pi\)
\(198\) 0 0
\(199\) −5149.60 −1.83440 −0.917200 0.398427i \(-0.869556\pi\)
−0.917200 + 0.398427i \(0.869556\pi\)
\(200\) 2338.25 0.826697
\(201\) 0 0
\(202\) 2412.25 0.840223
\(203\) 0 0
\(204\) 0 0
\(205\) −4805.96 −1.63738
\(206\) 2387.74 0.807581
\(207\) 0 0
\(208\) 2137.12 0.712415
\(209\) 1156.73 0.382835
\(210\) 0 0
\(211\) 4907.47 1.60116 0.800579 0.599228i \(-0.204526\pi\)
0.800579 + 0.599228i \(0.204526\pi\)
\(212\) 8.89826 0.00288271
\(213\) 0 0
\(214\) −4213.86 −1.34604
\(215\) −5496.86 −1.74364
\(216\) 0 0
\(217\) 0 0
\(218\) −5151.63 −1.60052
\(219\) 0 0
\(220\) −16.7151 −0.00512243
\(221\) 1377.32 0.419225
\(222\) 0 0
\(223\) 592.442 0.177905 0.0889526 0.996036i \(-0.471648\pi\)
0.0889526 + 0.996036i \(0.471648\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −1538.21 −0.452744
\(227\) −2883.54 −0.843117 −0.421558 0.906801i \(-0.638517\pi\)
−0.421558 + 0.906801i \(0.638517\pi\)
\(228\) 0 0
\(229\) −5150.21 −1.48618 −0.743090 0.669192i \(-0.766641\pi\)
−0.743090 + 0.669192i \(0.766641\pi\)
\(230\) −3942.28 −1.13020
\(231\) 0 0
\(232\) 280.617 0.0794112
\(233\) 3799.78 1.06838 0.534188 0.845366i \(-0.320617\pi\)
0.534188 + 0.845366i \(0.320617\pi\)
\(234\) 0 0
\(235\) −6120.32 −1.69892
\(236\) −8.88411 −0.00245045
\(237\) 0 0
\(238\) 0 0
\(239\) 4159.65 1.12580 0.562899 0.826526i \(-0.309686\pi\)
0.562899 + 0.826526i \(0.309686\pi\)
\(240\) 0 0
\(241\) 1235.40 0.330203 0.165102 0.986277i \(-0.447205\pi\)
0.165102 + 0.986277i \(0.447205\pi\)
\(242\) 835.230 0.221862
\(243\) 0 0
\(244\) −19.9089 −0.00522351
\(245\) 0 0
\(246\) 0 0
\(247\) −1205.80 −0.310620
\(248\) −5674.16 −1.45286
\(249\) 0 0
\(250\) 932.827 0.235989
\(251\) −2831.44 −0.712027 −0.356013 0.934481i \(-0.615864\pi\)
−0.356013 + 0.934481i \(0.615864\pi\)
\(252\) 0 0
\(253\) 2975.39 0.739371
\(254\) 5625.19 1.38959
\(255\) 0 0
\(256\) −52.8361 −0.0128994
\(257\) 6641.20 1.61193 0.805966 0.591962i \(-0.201646\pi\)
0.805966 + 0.591962i \(0.201646\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 17.4242 0.00415617
\(261\) 0 0
\(262\) −4709.98 −1.11062
\(263\) −3206.48 −0.751788 −0.375894 0.926663i \(-0.622664\pi\)
−0.375894 + 0.926663i \(0.622664\pi\)
\(264\) 0 0
\(265\) −3906.93 −0.905664
\(266\) 0 0
\(267\) 0 0
\(268\) −25.0046 −0.00569925
\(269\) −3786.52 −0.858245 −0.429123 0.903246i \(-0.641177\pi\)
−0.429123 + 0.903246i \(0.641177\pi\)
\(270\) 0 0
\(271\) −3624.05 −0.812345 −0.406173 0.913796i \(-0.633137\pi\)
−0.406173 + 0.913796i \(0.633137\pi\)
\(272\) 2617.03 0.583385
\(273\) 0 0
\(274\) 53.2886 0.0117492
\(275\) 3317.51 0.727468
\(276\) 0 0
\(277\) 123.201 0.0267235 0.0133618 0.999911i \(-0.495747\pi\)
0.0133618 + 0.999911i \(0.495747\pi\)
\(278\) 1870.08 0.403453
\(279\) 0 0
\(280\) 0 0
\(281\) −3441.06 −0.730522 −0.365261 0.930905i \(-0.619020\pi\)
−0.365261 + 0.930905i \(0.619020\pi\)
\(282\) 0 0
\(283\) −3475.98 −0.730125 −0.365063 0.930983i \(-0.618952\pi\)
−0.365063 + 0.930983i \(0.618952\pi\)
\(284\) 36.9680 0.00772411
\(285\) 0 0
\(286\) 3045.23 0.629610
\(287\) 0 0
\(288\) 0 0
\(289\) −3226.38 −0.656703
\(290\) −527.520 −0.106817
\(291\) 0 0
\(292\) −32.4219 −0.00649776
\(293\) −8075.93 −1.61024 −0.805121 0.593111i \(-0.797900\pi\)
−0.805121 + 0.593111i \(0.797900\pi\)
\(294\) 0 0
\(295\) 3900.72 0.769860
\(296\) −7842.01 −1.53989
\(297\) 0 0
\(298\) −6616.31 −1.28615
\(299\) −3101.61 −0.599902
\(300\) 0 0
\(301\) 0 0
\(302\) −3522.83 −0.671245
\(303\) 0 0
\(304\) −2291.12 −0.432252
\(305\) 8741.35 1.64108
\(306\) 0 0
\(307\) 2140.32 0.397898 0.198949 0.980010i \(-0.436247\pi\)
0.198949 + 0.980010i \(0.436247\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 10666.6 1.95427
\(311\) 154.865 0.0282367 0.0141184 0.999900i \(-0.495506\pi\)
0.0141184 + 0.999900i \(0.495506\pi\)
\(312\) 0 0
\(313\) −2025.62 −0.365799 −0.182899 0.983132i \(-0.558548\pi\)
−0.182899 + 0.983132i \(0.558548\pi\)
\(314\) −6889.54 −1.23821
\(315\) 0 0
\(316\) 24.3729 0.00433887
\(317\) 838.305 0.148530 0.0742648 0.997239i \(-0.476339\pi\)
0.0742648 + 0.997239i \(0.476339\pi\)
\(318\) 0 0
\(319\) 398.139 0.0698793
\(320\) 7765.97 1.35666
\(321\) 0 0
\(322\) 0 0
\(323\) −1476.57 −0.254361
\(324\) 0 0
\(325\) −3458.25 −0.590244
\(326\) 4222.94 0.717445
\(327\) 0 0
\(328\) −7215.47 −1.21466
\(329\) 0 0
\(330\) 0 0
\(331\) 10516.3 1.74631 0.873157 0.487439i \(-0.162069\pi\)
0.873157 + 0.487439i \(0.162069\pi\)
\(332\) 32.9227 0.00544238
\(333\) 0 0
\(334\) 518.017 0.0848642
\(335\) 10978.7 1.79054
\(336\) 0 0
\(337\) −5791.21 −0.936104 −0.468052 0.883701i \(-0.655044\pi\)
−0.468052 + 0.883701i \(0.655044\pi\)
\(338\) 3026.26 0.487003
\(339\) 0 0
\(340\) 21.3370 0.00340342
\(341\) −8050.49 −1.27847
\(342\) 0 0
\(343\) 0 0
\(344\) −8252.75 −1.29348
\(345\) 0 0
\(346\) 10746.8 1.66980
\(347\) −4407.82 −0.681913 −0.340957 0.940079i \(-0.610751\pi\)
−0.340957 + 0.940079i \(0.610751\pi\)
\(348\) 0 0
\(349\) −11551.9 −1.77181 −0.885905 0.463867i \(-0.846462\pi\)
−0.885905 + 0.463867i \(0.846462\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −50.0833 −0.00758367
\(353\) 8304.23 1.25210 0.626048 0.779785i \(-0.284671\pi\)
0.626048 + 0.779785i \(0.284671\pi\)
\(354\) 0 0
\(355\) −16231.4 −2.42669
\(356\) −16.6991 −0.00248610
\(357\) 0 0
\(358\) −4141.15 −0.611359
\(359\) −2188.61 −0.321756 −0.160878 0.986974i \(-0.551433\pi\)
−0.160878 + 0.986974i \(0.551433\pi\)
\(360\) 0 0
\(361\) −5566.31 −0.811534
\(362\) −3180.91 −0.461837
\(363\) 0 0
\(364\) 0 0
\(365\) 14235.4 2.04141
\(366\) 0 0
\(367\) −3866.97 −0.550011 −0.275005 0.961443i \(-0.588680\pi\)
−0.275005 + 0.961443i \(0.588680\pi\)
\(368\) −5893.32 −0.834811
\(369\) 0 0
\(370\) 14741.9 2.07133
\(371\) 0 0
\(372\) 0 0
\(373\) 11154.2 1.54837 0.774183 0.632962i \(-0.218161\pi\)
0.774183 + 0.632962i \(0.218161\pi\)
\(374\) 3729.07 0.515577
\(375\) 0 0
\(376\) −9188.79 −1.26031
\(377\) −415.029 −0.0566978
\(378\) 0 0
\(379\) 7752.17 1.05067 0.525333 0.850897i \(-0.323941\pi\)
0.525333 + 0.850897i \(0.323941\pi\)
\(380\) −18.6798 −0.00252172
\(381\) 0 0
\(382\) 8270.93 1.10780
\(383\) −3591.50 −0.479157 −0.239578 0.970877i \(-0.577009\pi\)
−0.239578 + 0.970877i \(0.577009\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6351.62 0.837536
\(387\) 0 0
\(388\) 10.8013 0.00141327
\(389\) −10233.3 −1.33380 −0.666902 0.745145i \(-0.732380\pi\)
−0.666902 + 0.745145i \(0.732380\pi\)
\(390\) 0 0
\(391\) −3798.11 −0.491250
\(392\) 0 0
\(393\) 0 0
\(394\) 9452.88 1.20870
\(395\) −10701.3 −1.36315
\(396\) 0 0
\(397\) 13763.8 1.74001 0.870007 0.493039i \(-0.164114\pi\)
0.870007 + 0.493039i \(0.164114\pi\)
\(398\) 14533.9 1.83045
\(399\) 0 0
\(400\) −6570.97 −0.821371
\(401\) 1357.25 0.169022 0.0845108 0.996423i \(-0.473067\pi\)
0.0845108 + 0.996423i \(0.473067\pi\)
\(402\) 0 0
\(403\) 8392.01 1.03731
\(404\) 29.4009 0.00362066
\(405\) 0 0
\(406\) 0 0
\(407\) −11126.2 −1.35505
\(408\) 0 0
\(409\) 6114.11 0.739176 0.369588 0.929196i \(-0.379499\pi\)
0.369588 + 0.929196i \(0.379499\pi\)
\(410\) 13564.1 1.63386
\(411\) 0 0
\(412\) 29.1022 0.00348000
\(413\) 0 0
\(414\) 0 0
\(415\) −14455.3 −1.70984
\(416\) 52.2080 0.00615314
\(417\) 0 0
\(418\) −3264.67 −0.382011
\(419\) −4387.27 −0.511533 −0.255766 0.966739i \(-0.582328\pi\)
−0.255766 + 0.966739i \(0.582328\pi\)
\(420\) 0 0
\(421\) 6052.81 0.700703 0.350352 0.936618i \(-0.386062\pi\)
0.350352 + 0.936618i \(0.386062\pi\)
\(422\) −13850.5 −1.59771
\(423\) 0 0
\(424\) −5865.70 −0.671848
\(425\) −4234.84 −0.483341
\(426\) 0 0
\(427\) 0 0
\(428\) −51.3592 −0.00580033
\(429\) 0 0
\(430\) 15514.0 1.73989
\(431\) −5590.63 −0.624806 −0.312403 0.949950i \(-0.601134\pi\)
−0.312403 + 0.949950i \(0.601134\pi\)
\(432\) 0 0
\(433\) −16225.8 −1.80084 −0.900419 0.435023i \(-0.856740\pi\)
−0.900419 + 0.435023i \(0.856740\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −62.7890 −0.00689689
\(437\) 3325.11 0.363986
\(438\) 0 0
\(439\) 437.018 0.0475119 0.0237560 0.999718i \(-0.492438\pi\)
0.0237560 + 0.999718i \(0.492438\pi\)
\(440\) 11018.6 1.19384
\(441\) 0 0
\(442\) −3887.27 −0.418323
\(443\) 7169.02 0.768872 0.384436 0.923152i \(-0.374396\pi\)
0.384436 + 0.923152i \(0.374396\pi\)
\(444\) 0 0
\(445\) 7332.03 0.781059
\(446\) −1672.07 −0.177522
\(447\) 0 0
\(448\) 0 0
\(449\) −1150.18 −0.120892 −0.0604459 0.998171i \(-0.519252\pi\)
−0.0604459 + 0.998171i \(0.519252\pi\)
\(450\) 0 0
\(451\) −10237.3 −1.06886
\(452\) −18.7479 −0.00195095
\(453\) 0 0
\(454\) 8138.34 0.841302
\(455\) 0 0
\(456\) 0 0
\(457\) −8788.54 −0.899586 −0.449793 0.893133i \(-0.648502\pi\)
−0.449793 + 0.893133i \(0.648502\pi\)
\(458\) 14535.6 1.48298
\(459\) 0 0
\(460\) −48.0492 −0.00487023
\(461\) −12093.8 −1.22183 −0.610916 0.791695i \(-0.709199\pi\)
−0.610916 + 0.791695i \(0.709199\pi\)
\(462\) 0 0
\(463\) 17846.6 1.79137 0.895684 0.444690i \(-0.146686\pi\)
0.895684 + 0.444690i \(0.146686\pi\)
\(464\) −788.590 −0.0788995
\(465\) 0 0
\(466\) −10724.3 −1.06608
\(467\) 7435.85 0.736809 0.368405 0.929666i \(-0.379904\pi\)
0.368405 + 0.929666i \(0.379904\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 17273.6 1.69526
\(471\) 0 0
\(472\) 5856.37 0.571105
\(473\) −11709.0 −1.13823
\(474\) 0 0
\(475\) 3707.45 0.358126
\(476\) 0 0
\(477\) 0 0
\(478\) −11739.9 −1.12337
\(479\) 10630.3 1.01401 0.507006 0.861942i \(-0.330752\pi\)
0.507006 + 0.861942i \(0.330752\pi\)
\(480\) 0 0
\(481\) 11598.2 1.09945
\(482\) −3486.71 −0.329493
\(483\) 0 0
\(484\) 10.1799 0.000956041 0
\(485\) −4742.47 −0.444010
\(486\) 0 0
\(487\) 13619.0 1.26722 0.633610 0.773653i \(-0.281572\pi\)
0.633610 + 0.773653i \(0.281572\pi\)
\(488\) 13123.9 1.21740
\(489\) 0 0
\(490\) 0 0
\(491\) 17456.7 1.60450 0.802251 0.596987i \(-0.203636\pi\)
0.802251 + 0.596987i \(0.203636\pi\)
\(492\) 0 0
\(493\) −508.229 −0.0464289
\(494\) 3403.17 0.309951
\(495\) 0 0
\(496\) 15945.5 1.44350
\(497\) 0 0
\(498\) 0 0
\(499\) 4099.09 0.367736 0.183868 0.982951i \(-0.441138\pi\)
0.183868 + 0.982951i \(0.441138\pi\)
\(500\) 11.3694 0.00101691
\(501\) 0 0
\(502\) 7991.28 0.710494
\(503\) −3326.13 −0.294841 −0.147420 0.989074i \(-0.547097\pi\)
−0.147420 + 0.989074i \(0.547097\pi\)
\(504\) 0 0
\(505\) −12909.0 −1.13751
\(506\) −8397.55 −0.737780
\(507\) 0 0
\(508\) 68.5607 0.00598797
\(509\) 10155.2 0.884322 0.442161 0.896936i \(-0.354212\pi\)
0.442161 + 0.896936i \(0.354212\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 11659.1 1.00637
\(513\) 0 0
\(514\) −18743.7 −1.60846
\(515\) −12777.8 −1.09332
\(516\) 0 0
\(517\) −13037.1 −1.10903
\(518\) 0 0
\(519\) 0 0
\(520\) −11486.0 −0.968643
\(521\) −1425.90 −0.119903 −0.0599517 0.998201i \(-0.519095\pi\)
−0.0599517 + 0.998201i \(0.519095\pi\)
\(522\) 0 0
\(523\) 9431.47 0.788545 0.394273 0.918993i \(-0.370997\pi\)
0.394273 + 0.918993i \(0.370997\pi\)
\(524\) −57.4060 −0.00478586
\(525\) 0 0
\(526\) 9049.79 0.750170
\(527\) 10276.5 0.849436
\(528\) 0 0
\(529\) −3613.98 −0.297032
\(530\) 11026.7 0.903714
\(531\) 0 0
\(532\) 0 0
\(533\) 10671.6 0.867239
\(534\) 0 0
\(535\) 22550.1 1.82229
\(536\) 16483.0 1.32827
\(537\) 0 0
\(538\) 10686.8 0.856398
\(539\) 0 0
\(540\) 0 0
\(541\) −20808.6 −1.65366 −0.826831 0.562451i \(-0.809858\pi\)
−0.826831 + 0.562451i \(0.809858\pi\)
\(542\) 10228.3 0.810597
\(543\) 0 0
\(544\) 63.9319 0.00503871
\(545\) 27568.6 2.16680
\(546\) 0 0
\(547\) −2854.36 −0.223114 −0.111557 0.993758i \(-0.535584\pi\)
−0.111557 + 0.993758i \(0.535584\pi\)
\(548\) 0.649491 5.06293e−5 0
\(549\) 0 0
\(550\) −9363.15 −0.725902
\(551\) 444.936 0.0344009
\(552\) 0 0
\(553\) 0 0
\(554\) −347.715 −0.0266660
\(555\) 0 0
\(556\) 22.7929 0.00173855
\(557\) −23816.4 −1.81173 −0.905863 0.423571i \(-0.860777\pi\)
−0.905863 + 0.423571i \(0.860777\pi\)
\(558\) 0 0
\(559\) 12205.7 0.923519
\(560\) 0 0
\(561\) 0 0
\(562\) 9711.85 0.728950
\(563\) 10225.7 0.765477 0.382739 0.923857i \(-0.374981\pi\)
0.382739 + 0.923857i \(0.374981\pi\)
\(564\) 0 0
\(565\) 8231.60 0.612931
\(566\) 9810.39 0.728554
\(567\) 0 0
\(568\) −24369.2 −1.80019
\(569\) −11486.3 −0.846278 −0.423139 0.906065i \(-0.639072\pi\)
−0.423139 + 0.906065i \(0.639072\pi\)
\(570\) 0 0
\(571\) 17536.4 1.28525 0.642624 0.766182i \(-0.277846\pi\)
0.642624 + 0.766182i \(0.277846\pi\)
\(572\) 37.1158 0.00271309
\(573\) 0 0
\(574\) 0 0
\(575\) 9536.49 0.691651
\(576\) 0 0
\(577\) −19543.8 −1.41009 −0.705044 0.709163i \(-0.749073\pi\)
−0.705044 + 0.709163i \(0.749073\pi\)
\(578\) 9105.95 0.655290
\(579\) 0 0
\(580\) −6.42950 −0.000460294 0
\(581\) 0 0
\(582\) 0 0
\(583\) −8322.25 −0.591205
\(584\) 21372.4 1.51438
\(585\) 0 0
\(586\) 22793.0 1.60678
\(587\) −5132.74 −0.360904 −0.180452 0.983584i \(-0.557756\pi\)
−0.180452 + 0.983584i \(0.557756\pi\)
\(588\) 0 0
\(589\) −8996.74 −0.629379
\(590\) −11009.2 −0.768203
\(591\) 0 0
\(592\) 22037.6 1.52997
\(593\) −20882.4 −1.44610 −0.723049 0.690796i \(-0.757260\pi\)
−0.723049 + 0.690796i \(0.757260\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −80.6407 −0.00554224
\(597\) 0 0
\(598\) 8753.80 0.598611
\(599\) −18584.0 −1.26765 −0.633823 0.773478i \(-0.718515\pi\)
−0.633823 + 0.773478i \(0.718515\pi\)
\(600\) 0 0
\(601\) 6118.34 0.415262 0.207631 0.978207i \(-0.433425\pi\)
0.207631 + 0.978207i \(0.433425\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −42.9368 −0.00289251
\(605\) −4469.67 −0.300360
\(606\) 0 0
\(607\) 16078.1 1.07511 0.537555 0.843229i \(-0.319348\pi\)
0.537555 + 0.843229i \(0.319348\pi\)
\(608\) −55.9701 −0.00373337
\(609\) 0 0
\(610\) −24671.0 −1.63754
\(611\) 13590.1 0.899832
\(612\) 0 0
\(613\) −11377.2 −0.749624 −0.374812 0.927101i \(-0.622293\pi\)
−0.374812 + 0.927101i \(0.622293\pi\)
\(614\) −6040.72 −0.397042
\(615\) 0 0
\(616\) 0 0
\(617\) 8554.73 0.558185 0.279093 0.960264i \(-0.409966\pi\)
0.279093 + 0.960264i \(0.409966\pi\)
\(618\) 0 0
\(619\) −10517.5 −0.682928 −0.341464 0.939895i \(-0.610923\pi\)
−0.341464 + 0.939895i \(0.610923\pi\)
\(620\) 130.006 0.00842126
\(621\) 0 0
\(622\) −437.083 −0.0281759
\(623\) 0 0
\(624\) 0 0
\(625\) −17881.5 −1.14442
\(626\) 5716.99 0.365011
\(627\) 0 0
\(628\) −83.9709 −0.00533568
\(629\) 14202.8 0.900320
\(630\) 0 0
\(631\) −1077.85 −0.0680010 −0.0340005 0.999422i \(-0.510825\pi\)
−0.0340005 + 0.999422i \(0.510825\pi\)
\(632\) −16066.5 −1.01122
\(633\) 0 0
\(634\) −2365.98 −0.148210
\(635\) −30102.7 −1.88125
\(636\) 0 0
\(637\) 0 0
\(638\) −1123.68 −0.0697289
\(639\) 0 0
\(640\) −21730.1 −1.34212
\(641\) −8552.43 −0.526990 −0.263495 0.964661i \(-0.584875\pi\)
−0.263495 + 0.964661i \(0.584875\pi\)
\(642\) 0 0
\(643\) 11371.5 0.697429 0.348714 0.937229i \(-0.386618\pi\)
0.348714 + 0.937229i \(0.386618\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 4167.39 0.253814
\(647\) −9268.32 −0.563176 −0.281588 0.959535i \(-0.590861\pi\)
−0.281588 + 0.959535i \(0.590861\pi\)
\(648\) 0 0
\(649\) 8309.02 0.502554
\(650\) 9760.36 0.588973
\(651\) 0 0
\(652\) 51.4699 0.00309159
\(653\) −29751.5 −1.78295 −0.891476 0.453068i \(-0.850329\pi\)
−0.891476 + 0.453068i \(0.850329\pi\)
\(654\) 0 0
\(655\) 25205.1 1.50358
\(656\) 20276.9 1.20683
\(657\) 0 0
\(658\) 0 0
\(659\) 32496.7 1.92093 0.960465 0.278402i \(-0.0898048\pi\)
0.960465 + 0.278402i \(0.0898048\pi\)
\(660\) 0 0
\(661\) 21778.6 1.28153 0.640764 0.767738i \(-0.278618\pi\)
0.640764 + 0.767738i \(0.278618\pi\)
\(662\) −29680.7 −1.74256
\(663\) 0 0
\(664\) −21702.6 −1.26841
\(665\) 0 0
\(666\) 0 0
\(667\) 1144.49 0.0664388
\(668\) 6.31368 0.000365694 0
\(669\) 0 0
\(670\) −30985.6 −1.78668
\(671\) 18620.2 1.07127
\(672\) 0 0
\(673\) 20220.5 1.15816 0.579081 0.815270i \(-0.303412\pi\)
0.579081 + 0.815270i \(0.303412\pi\)
\(674\) 16344.7 0.934089
\(675\) 0 0
\(676\) 36.8846 0.00209858
\(677\) −9696.26 −0.550454 −0.275227 0.961379i \(-0.588753\pi\)
−0.275227 + 0.961379i \(0.588753\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −14065.3 −0.793206
\(681\) 0 0
\(682\) 22721.2 1.27572
\(683\) 26698.2 1.49572 0.747860 0.663856i \(-0.231081\pi\)
0.747860 + 0.663856i \(0.231081\pi\)
\(684\) 0 0
\(685\) −285.170 −0.0159063
\(686\) 0 0
\(687\) 0 0
\(688\) 23191.9 1.28515
\(689\) 8675.30 0.479685
\(690\) 0 0
\(691\) 5236.43 0.288282 0.144141 0.989557i \(-0.453958\pi\)
0.144141 + 0.989557i \(0.453958\pi\)
\(692\) 130.983 0.00719544
\(693\) 0 0
\(694\) 12440.4 0.680446
\(695\) −10007.6 −0.546201
\(696\) 0 0
\(697\) 13068.0 0.710168
\(698\) 32603.5 1.76800
\(699\) 0 0
\(700\) 0 0
\(701\) −4272.04 −0.230175 −0.115088 0.993355i \(-0.536715\pi\)
−0.115088 + 0.993355i \(0.536715\pi\)
\(702\) 0 0
\(703\) −12434.0 −0.667081
\(704\) 16542.5 0.885609
\(705\) 0 0
\(706\) −23437.4 −1.24940
\(707\) 0 0
\(708\) 0 0
\(709\) 29484.1 1.56178 0.780888 0.624671i \(-0.214767\pi\)
0.780888 + 0.624671i \(0.214767\pi\)
\(710\) 45810.6 2.42147
\(711\) 0 0
\(712\) 11008.0 0.579413
\(713\) −23141.9 −1.21553
\(714\) 0 0
\(715\) −16296.3 −0.852375
\(716\) −50.4730 −0.00263445
\(717\) 0 0
\(718\) 6177.00 0.321063
\(719\) 9780.80 0.507319 0.253659 0.967294i \(-0.418366\pi\)
0.253659 + 0.967294i \(0.418366\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 15710.0 0.809787
\(723\) 0 0
\(724\) −38.7695 −0.00199013
\(725\) 1276.09 0.0653692
\(726\) 0 0
\(727\) −16135.6 −0.823157 −0.411578 0.911374i \(-0.635022\pi\)
−0.411578 + 0.911374i \(0.635022\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −40177.1 −2.03701
\(731\) 14946.7 0.756255
\(732\) 0 0
\(733\) −25327.5 −1.27625 −0.638126 0.769932i \(-0.720290\pi\)
−0.638126 + 0.769932i \(0.720290\pi\)
\(734\) 10913.9 0.548827
\(735\) 0 0
\(736\) −143.969 −0.00721029
\(737\) 23386.0 1.16884
\(738\) 0 0
\(739\) −3069.76 −0.152805 −0.0764024 0.997077i \(-0.524343\pi\)
−0.0764024 + 0.997077i \(0.524343\pi\)
\(740\) 179.676 0.00892572
\(741\) 0 0
\(742\) 0 0
\(743\) −5480.22 −0.270592 −0.135296 0.990805i \(-0.543198\pi\)
−0.135296 + 0.990805i \(0.543198\pi\)
\(744\) 0 0
\(745\) 35406.7 1.74121
\(746\) −31480.8 −1.54503
\(747\) 0 0
\(748\) 45.4506 0.00222171
\(749\) 0 0
\(750\) 0 0
\(751\) 19052.2 0.925730 0.462865 0.886429i \(-0.346821\pi\)
0.462865 + 0.886429i \(0.346821\pi\)
\(752\) 25822.4 1.25219
\(753\) 0 0
\(754\) 1171.35 0.0565758
\(755\) 18852.2 0.908742
\(756\) 0 0
\(757\) 9417.77 0.452173 0.226086 0.974107i \(-0.427407\pi\)
0.226086 + 0.974107i \(0.427407\pi\)
\(758\) −21879.3 −1.04840
\(759\) 0 0
\(760\) 12313.7 0.587716
\(761\) −11853.8 −0.564651 −0.282326 0.959319i \(-0.591106\pi\)
−0.282326 + 0.959319i \(0.591106\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 100.808 0.00477367
\(765\) 0 0
\(766\) 10136.4 0.478126
\(767\) −8661.51 −0.407756
\(768\) 0 0
\(769\) −4643.71 −0.217759 −0.108879 0.994055i \(-0.534726\pi\)
−0.108879 + 0.994055i \(0.534726\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 77.4146 0.00360908
\(773\) −16703.5 −0.777211 −0.388606 0.921404i \(-0.627043\pi\)
−0.388606 + 0.921404i \(0.627043\pi\)
\(774\) 0 0
\(775\) −25802.8 −1.19596
\(776\) −7120.15 −0.329379
\(777\) 0 0
\(778\) 28881.9 1.33093
\(779\) −11440.6 −0.526190
\(780\) 0 0
\(781\) −34575.0 −1.58411
\(782\) 10719.6 0.490193
\(783\) 0 0
\(784\) 0 0
\(785\) 36868.9 1.67631
\(786\) 0 0
\(787\) 21278.9 0.963799 0.481899 0.876227i \(-0.339947\pi\)
0.481899 + 0.876227i \(0.339947\pi\)
\(788\) 115.213 0.00520851
\(789\) 0 0
\(790\) 30202.8 1.36021
\(791\) 0 0
\(792\) 0 0
\(793\) −19410.1 −0.869195
\(794\) −38846.1 −1.73627
\(795\) 0 0
\(796\) 177.142 0.00788772
\(797\) −15624.4 −0.694410 −0.347205 0.937789i \(-0.612869\pi\)
−0.347205 + 0.937789i \(0.612869\pi\)
\(798\) 0 0
\(799\) 16641.9 0.736858
\(800\) −160.523 −0.00709420
\(801\) 0 0
\(802\) −3830.61 −0.168658
\(803\) 30323.1 1.33260
\(804\) 0 0
\(805\) 0 0
\(806\) −23685.1 −1.03508
\(807\) 0 0
\(808\) −19381.0 −0.843836
\(809\) −11337.0 −0.492692 −0.246346 0.969182i \(-0.579230\pi\)
−0.246346 + 0.969182i \(0.579230\pi\)
\(810\) 0 0
\(811\) 29136.4 1.26155 0.630776 0.775965i \(-0.282737\pi\)
0.630776 + 0.775965i \(0.282737\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 31402.0 1.35214
\(815\) −22598.7 −0.971288
\(816\) 0 0
\(817\) −13085.3 −0.560338
\(818\) −17256.1 −0.737585
\(819\) 0 0
\(820\) 165.321 0.00704056
\(821\) 40165.6 1.70742 0.853709 0.520750i \(-0.174348\pi\)
0.853709 + 0.520750i \(0.174348\pi\)
\(822\) 0 0
\(823\) 24736.2 1.04769 0.523846 0.851813i \(-0.324497\pi\)
0.523846 + 0.851813i \(0.324497\pi\)
\(824\) −19184.1 −0.811054
\(825\) 0 0
\(826\) 0 0
\(827\) 25802.8 1.08495 0.542473 0.840073i \(-0.317488\pi\)
0.542473 + 0.840073i \(0.317488\pi\)
\(828\) 0 0
\(829\) 19715.1 0.825976 0.412988 0.910736i \(-0.364485\pi\)
0.412988 + 0.910736i \(0.364485\pi\)
\(830\) 40797.7 1.70616
\(831\) 0 0
\(832\) −17244.3 −0.718555
\(833\) 0 0
\(834\) 0 0
\(835\) −2772.13 −0.114890
\(836\) −39.7904 −0.00164615
\(837\) 0 0
\(838\) 12382.4 0.510432
\(839\) −27462.9 −1.13007 −0.565033 0.825068i \(-0.691137\pi\)
−0.565033 + 0.825068i \(0.691137\pi\)
\(840\) 0 0
\(841\) −24235.9 −0.993721
\(842\) −17083.1 −0.699195
\(843\) 0 0
\(844\) −168.813 −0.00688480
\(845\) −16194.8 −0.659311
\(846\) 0 0
\(847\) 0 0
\(848\) 16483.8 0.667519
\(849\) 0 0
\(850\) 11952.2 0.482301
\(851\) −31983.4 −1.28834
\(852\) 0 0
\(853\) −26182.1 −1.05095 −0.525474 0.850810i \(-0.676112\pi\)
−0.525474 + 0.850810i \(0.676112\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 33855.8 1.35183
\(857\) −28940.2 −1.15353 −0.576767 0.816909i \(-0.695686\pi\)
−0.576767 + 0.816909i \(0.695686\pi\)
\(858\) 0 0
\(859\) −20356.6 −0.808567 −0.404284 0.914634i \(-0.632479\pi\)
−0.404284 + 0.914634i \(0.632479\pi\)
\(860\) 189.087 0.00749747
\(861\) 0 0
\(862\) 15778.7 0.623461
\(863\) 25157.3 0.992313 0.496156 0.868233i \(-0.334744\pi\)
0.496156 + 0.868233i \(0.334744\pi\)
\(864\) 0 0
\(865\) −57510.5 −2.26060
\(866\) 45794.8 1.79696
\(867\) 0 0
\(868\) 0 0
\(869\) −22795.2 −0.889844
\(870\) 0 0
\(871\) −24378.1 −0.948359
\(872\) 41390.3 1.60740
\(873\) 0 0
\(874\) −9384.60 −0.363202
\(875\) 0 0
\(876\) 0 0
\(877\) 20273.6 0.780606 0.390303 0.920686i \(-0.372370\pi\)
0.390303 + 0.920686i \(0.372370\pi\)
\(878\) −1233.41 −0.0474097
\(879\) 0 0
\(880\) −30964.4 −1.18615
\(881\) 14440.1 0.552213 0.276106 0.961127i \(-0.410956\pi\)
0.276106 + 0.961127i \(0.410956\pi\)
\(882\) 0 0
\(883\) 17201.5 0.655581 0.327790 0.944751i \(-0.393696\pi\)
0.327790 + 0.944751i \(0.393696\pi\)
\(884\) −47.3787 −0.00180262
\(885\) 0 0
\(886\) −20233.4 −0.767217
\(887\) −37287.0 −1.41147 −0.705736 0.708475i \(-0.749384\pi\)
−0.705736 + 0.708475i \(0.749384\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −20693.5 −0.779378
\(891\) 0 0
\(892\) −20.3795 −0.000764974 0
\(893\) −14569.4 −0.545966
\(894\) 0 0
\(895\) 22161.0 0.827667
\(896\) 0 0
\(897\) 0 0
\(898\) 3246.20 0.120632
\(899\) −3096.63 −0.114881
\(900\) 0 0
\(901\) 10623.4 0.392806
\(902\) 28893.2 1.06656
\(903\) 0 0
\(904\) 12358.6 0.454691
\(905\) 17022.4 0.625242
\(906\) 0 0
\(907\) −33447.8 −1.22450 −0.612248 0.790666i \(-0.709734\pi\)
−0.612248 + 0.790666i \(0.709734\pi\)
\(908\) 99.1914 0.00362531
\(909\) 0 0
\(910\) 0 0
\(911\) −14250.2 −0.518254 −0.259127 0.965843i \(-0.583435\pi\)
−0.259127 + 0.965843i \(0.583435\pi\)
\(912\) 0 0
\(913\) −30791.6 −1.11616
\(914\) 24804.3 0.897650
\(915\) 0 0
\(916\) 177.163 0.00639042
\(917\) 0 0
\(918\) 0 0
\(919\) −1515.14 −0.0543850 −0.0271925 0.999630i \(-0.508657\pi\)
−0.0271925 + 0.999630i \(0.508657\pi\)
\(920\) 31673.8 1.13506
\(921\) 0 0
\(922\) 34132.8 1.21920
\(923\) 36041.7 1.28530
\(924\) 0 0
\(925\) −35661.0 −1.26760
\(926\) −50369.3 −1.78751
\(927\) 0 0
\(928\) −19.2646 −0.000681457 0
\(929\) −33779.4 −1.19297 −0.596483 0.802626i \(-0.703436\pi\)
−0.596483 + 0.802626i \(0.703436\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −130.709 −0.00459390
\(933\) 0 0
\(934\) −20986.5 −0.735223
\(935\) −19955.9 −0.697996
\(936\) 0 0
\(937\) 25335.2 0.883312 0.441656 0.897184i \(-0.354391\pi\)
0.441656 + 0.897184i \(0.354391\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 210.534 0.00730517
\(941\) 27536.8 0.953956 0.476978 0.878915i \(-0.341732\pi\)
0.476978 + 0.878915i \(0.341732\pi\)
\(942\) 0 0
\(943\) −29428.1 −1.01623
\(944\) −16457.6 −0.567425
\(945\) 0 0
\(946\) 33046.8 1.13578
\(947\) 29425.4 1.00971 0.504856 0.863203i \(-0.331545\pi\)
0.504856 + 0.863203i \(0.331545\pi\)
\(948\) 0 0
\(949\) −31609.5 −1.08123
\(950\) −10463.7 −0.357355
\(951\) 0 0
\(952\) 0 0
\(953\) 10346.9 0.351700 0.175850 0.984417i \(-0.443733\pi\)
0.175850 + 0.984417i \(0.443733\pi\)
\(954\) 0 0
\(955\) −44261.3 −1.49975
\(956\) −143.088 −0.00484081
\(957\) 0 0
\(958\) −30002.4 −1.01183
\(959\) 0 0
\(960\) 0 0
\(961\) 32823.8 1.10180
\(962\) −32734.2 −1.09708
\(963\) 0 0
\(964\) −42.4966 −0.00141984
\(965\) −33990.2 −1.13387
\(966\) 0 0
\(967\) −17872.3 −0.594348 −0.297174 0.954823i \(-0.596044\pi\)
−0.297174 + 0.954823i \(0.596044\pi\)
\(968\) −6710.57 −0.222816
\(969\) 0 0
\(970\) 13384.9 0.443054
\(971\) −5739.41 −0.189687 −0.0948437 0.995492i \(-0.530235\pi\)
−0.0948437 + 0.995492i \(0.530235\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −38437.5 −1.26449
\(975\) 0 0
\(976\) −36880.8 −1.20955
\(977\) 39025.6 1.27793 0.638965 0.769236i \(-0.279363\pi\)
0.638965 + 0.769236i \(0.279363\pi\)
\(978\) 0 0
\(979\) 15618.1 0.509865
\(980\) 0 0
\(981\) 0 0
\(982\) −49268.8 −1.60105
\(983\) −8168.04 −0.265025 −0.132513 0.991181i \(-0.542305\pi\)
−0.132513 + 0.991181i \(0.542305\pi\)
\(984\) 0 0
\(985\) −50586.3 −1.63636
\(986\) 1434.39 0.0463290
\(987\) 0 0
\(988\) 41.4784 0.00133563
\(989\) −33658.6 −1.08218
\(990\) 0 0
\(991\) 9879.16 0.316672 0.158336 0.987385i \(-0.449387\pi\)
0.158336 + 0.987385i \(0.449387\pi\)
\(992\) 389.537 0.0124675
\(993\) 0 0
\(994\) 0 0
\(995\) −77777.2 −2.47809
\(996\) 0 0
\(997\) −23600.4 −0.749680 −0.374840 0.927090i \(-0.622302\pi\)
−0.374840 + 0.927090i \(0.622302\pi\)
\(998\) −11569.0 −0.366945
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bp.1.4 12
3.2 odd 2 1323.4.a.bq.1.9 yes 12
7.6 odd 2 1323.4.a.bq.1.4 yes 12
21.20 even 2 inner 1323.4.a.bp.1.9 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1323.4.a.bp.1.4 12 1.1 even 1 trivial
1323.4.a.bp.1.9 yes 12 21.20 even 2 inner
1323.4.a.bq.1.4 yes 12 7.6 odd 2
1323.4.a.bq.1.9 yes 12 3.2 odd 2