Properties

Label 1323.4.a.m.1.1
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{2} +1.00000 q^{4} +6.00000 q^{5} -21.0000 q^{8} +18.0000 q^{10} -57.0000 q^{11} -62.0000 q^{13} -71.0000 q^{16} +12.0000 q^{17} +124.000 q^{19} +6.00000 q^{20} -171.000 q^{22} +156.000 q^{23} -89.0000 q^{25} -186.000 q^{26} +261.000 q^{29} +109.000 q^{31} -45.0000 q^{32} +36.0000 q^{34} +368.000 q^{37} +372.000 q^{38} -126.000 q^{40} -54.0000 q^{41} +152.000 q^{43} -57.0000 q^{44} +468.000 q^{46} +78.0000 q^{47} -267.000 q^{50} -62.0000 q^{52} +222.000 q^{53} -342.000 q^{55} +783.000 q^{58} -285.000 q^{59} +712.000 q^{61} +327.000 q^{62} +433.000 q^{64} -372.000 q^{65} +170.000 q^{67} +12.0000 q^{68} +396.000 q^{71} +475.000 q^{73} +1104.00 q^{74} +124.000 q^{76} -163.000 q^{79} -426.000 q^{80} -162.000 q^{82} -27.0000 q^{83} +72.0000 q^{85} +456.000 q^{86} +1197.00 q^{88} -642.000 q^{89} +156.000 q^{92} +234.000 q^{94} +744.000 q^{95} -1835.00 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.00000 1.06066 0.530330 0.847791i \(-0.322068\pi\)
0.530330 + 0.847791i \(0.322068\pi\)
\(3\) 0 0
\(4\) 1.00000 0.125000
\(5\) 6.00000 0.536656 0.268328 0.963328i \(-0.413529\pi\)
0.268328 + 0.963328i \(0.413529\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −21.0000 −0.928078
\(9\) 0 0
\(10\) 18.0000 0.569210
\(11\) −57.0000 −1.56238 −0.781188 0.624295i \(-0.785386\pi\)
−0.781188 + 0.624295i \(0.785386\pi\)
\(12\) 0 0
\(13\) −62.0000 −1.32275 −0.661373 0.750057i \(-0.730026\pi\)
−0.661373 + 0.750057i \(0.730026\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −71.0000 −1.10938
\(17\) 12.0000 0.171202 0.0856008 0.996330i \(-0.472719\pi\)
0.0856008 + 0.996330i \(0.472719\pi\)
\(18\) 0 0
\(19\) 124.000 1.49724 0.748620 0.663000i \(-0.230717\pi\)
0.748620 + 0.663000i \(0.230717\pi\)
\(20\) 6.00000 0.0670820
\(21\) 0 0
\(22\) −171.000 −1.65715
\(23\) 156.000 1.41427 0.707136 0.707078i \(-0.249987\pi\)
0.707136 + 0.707078i \(0.249987\pi\)
\(24\) 0 0
\(25\) −89.0000 −0.712000
\(26\) −186.000 −1.40298
\(27\) 0 0
\(28\) 0 0
\(29\) 261.000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) 109.000 0.631515 0.315758 0.948840i \(-0.397741\pi\)
0.315758 + 0.948840i \(0.397741\pi\)
\(32\) −45.0000 −0.248592
\(33\) 0 0
\(34\) 36.0000 0.181587
\(35\) 0 0
\(36\) 0 0
\(37\) 368.000 1.63510 0.817552 0.575855i \(-0.195331\pi\)
0.817552 + 0.575855i \(0.195331\pi\)
\(38\) 372.000 1.58806
\(39\) 0 0
\(40\) −126.000 −0.498059
\(41\) −54.0000 −0.205692 −0.102846 0.994697i \(-0.532795\pi\)
−0.102846 + 0.994697i \(0.532795\pi\)
\(42\) 0 0
\(43\) 152.000 0.539065 0.269532 0.962991i \(-0.413131\pi\)
0.269532 + 0.962991i \(0.413131\pi\)
\(44\) −57.0000 −0.195297
\(45\) 0 0
\(46\) 468.000 1.50006
\(47\) 78.0000 0.242074 0.121037 0.992648i \(-0.461378\pi\)
0.121037 + 0.992648i \(0.461378\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −267.000 −0.755190
\(51\) 0 0
\(52\) −62.0000 −0.165343
\(53\) 222.000 0.575359 0.287680 0.957727i \(-0.407116\pi\)
0.287680 + 0.957727i \(0.407116\pi\)
\(54\) 0 0
\(55\) −342.000 −0.838459
\(56\) 0 0
\(57\) 0 0
\(58\) 783.000 1.77264
\(59\) −285.000 −0.628879 −0.314439 0.949278i \(-0.601816\pi\)
−0.314439 + 0.949278i \(0.601816\pi\)
\(60\) 0 0
\(61\) 712.000 1.49446 0.747232 0.664564i \(-0.231383\pi\)
0.747232 + 0.664564i \(0.231383\pi\)
\(62\) 327.000 0.669823
\(63\) 0 0
\(64\) 433.000 0.845703
\(65\) −372.000 −0.709860
\(66\) 0 0
\(67\) 170.000 0.309982 0.154991 0.987916i \(-0.450465\pi\)
0.154991 + 0.987916i \(0.450465\pi\)
\(68\) 12.0000 0.0214002
\(69\) 0 0
\(70\) 0 0
\(71\) 396.000 0.661923 0.330962 0.943644i \(-0.392627\pi\)
0.330962 + 0.943644i \(0.392627\pi\)
\(72\) 0 0
\(73\) 475.000 0.761569 0.380785 0.924664i \(-0.375654\pi\)
0.380785 + 0.924664i \(0.375654\pi\)
\(74\) 1104.00 1.73429
\(75\) 0 0
\(76\) 124.000 0.187155
\(77\) 0 0
\(78\) 0 0
\(79\) −163.000 −0.232138 −0.116069 0.993241i \(-0.537029\pi\)
−0.116069 + 0.993241i \(0.537029\pi\)
\(80\) −426.000 −0.595353
\(81\) 0 0
\(82\) −162.000 −0.218170
\(83\) −27.0000 −0.0357064 −0.0178532 0.999841i \(-0.505683\pi\)
−0.0178532 + 0.999841i \(0.505683\pi\)
\(84\) 0 0
\(85\) 72.0000 0.0918764
\(86\) 456.000 0.571764
\(87\) 0 0
\(88\) 1197.00 1.45001
\(89\) −642.000 −0.764628 −0.382314 0.924033i \(-0.624873\pi\)
−0.382314 + 0.924033i \(0.624873\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 156.000 0.176784
\(93\) 0 0
\(94\) 234.000 0.256758
\(95\) 744.000 0.803503
\(96\) 0 0
\(97\) −1835.00 −1.92078 −0.960392 0.278653i \(-0.910112\pi\)
−0.960392 + 0.278653i \(0.910112\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −89.0000 −0.0890000
\(101\) −1257.00 −1.23838 −0.619189 0.785242i \(-0.712539\pi\)
−0.619189 + 0.785242i \(0.712539\pi\)
\(102\) 0 0
\(103\) −872.000 −0.834182 −0.417091 0.908865i \(-0.636950\pi\)
−0.417091 + 0.908865i \(0.636950\pi\)
\(104\) 1302.00 1.22761
\(105\) 0 0
\(106\) 666.000 0.610261
\(107\) −636.000 −0.574621 −0.287310 0.957838i \(-0.592761\pi\)
−0.287310 + 0.957838i \(0.592761\pi\)
\(108\) 0 0
\(109\) −64.0000 −0.0562393 −0.0281197 0.999605i \(-0.508952\pi\)
−0.0281197 + 0.999605i \(0.508952\pi\)
\(110\) −1026.00 −0.889321
\(111\) 0 0
\(112\) 0 0
\(113\) 900.000 0.749247 0.374623 0.927177i \(-0.377772\pi\)
0.374623 + 0.927177i \(0.377772\pi\)
\(114\) 0 0
\(115\) 936.000 0.758978
\(116\) 261.000 0.208907
\(117\) 0 0
\(118\) −855.000 −0.667027
\(119\) 0 0
\(120\) 0 0
\(121\) 1918.00 1.44102
\(122\) 2136.00 1.58512
\(123\) 0 0
\(124\) 109.000 0.0789394
\(125\) −1284.00 −0.918756
\(126\) 0 0
\(127\) −1936.00 −1.35269 −0.676347 0.736583i \(-0.736438\pi\)
−0.676347 + 0.736583i \(0.736438\pi\)
\(128\) 1659.00 1.14560
\(129\) 0 0
\(130\) −1116.00 −0.752921
\(131\) 1113.00 0.742315 0.371157 0.928570i \(-0.378961\pi\)
0.371157 + 0.928570i \(0.378961\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 510.000 0.328786
\(135\) 0 0
\(136\) −252.000 −0.158888
\(137\) 1968.00 1.22728 0.613641 0.789585i \(-0.289704\pi\)
0.613641 + 0.789585i \(0.289704\pi\)
\(138\) 0 0
\(139\) 496.000 0.302663 0.151332 0.988483i \(-0.451644\pi\)
0.151332 + 0.988483i \(0.451644\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1188.00 0.702076
\(143\) 3534.00 2.06663
\(144\) 0 0
\(145\) 1566.00 0.896891
\(146\) 1425.00 0.807766
\(147\) 0 0
\(148\) 368.000 0.204388
\(149\) −141.000 −0.0775246 −0.0387623 0.999248i \(-0.512342\pi\)
−0.0387623 + 0.999248i \(0.512342\pi\)
\(150\) 0 0
\(151\) 71.0000 0.0382642 0.0191321 0.999817i \(-0.493910\pi\)
0.0191321 + 0.999817i \(0.493910\pi\)
\(152\) −2604.00 −1.38955
\(153\) 0 0
\(154\) 0 0
\(155\) 654.000 0.338907
\(156\) 0 0
\(157\) −614.000 −0.312118 −0.156059 0.987748i \(-0.549879\pi\)
−0.156059 + 0.987748i \(0.549879\pi\)
\(158\) −489.000 −0.246220
\(159\) 0 0
\(160\) −270.000 −0.133409
\(161\) 0 0
\(162\) 0 0
\(163\) 818.000 0.393072 0.196536 0.980497i \(-0.437031\pi\)
0.196536 + 0.980497i \(0.437031\pi\)
\(164\) −54.0000 −0.0257115
\(165\) 0 0
\(166\) −81.0000 −0.0378724
\(167\) 3474.00 1.60974 0.804869 0.593453i \(-0.202236\pi\)
0.804869 + 0.593453i \(0.202236\pi\)
\(168\) 0 0
\(169\) 1647.00 0.749659
\(170\) 216.000 0.0974497
\(171\) 0 0
\(172\) 152.000 0.0673831
\(173\) −3891.00 −1.70998 −0.854992 0.518641i \(-0.826438\pi\)
−0.854992 + 0.518641i \(0.826438\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 4047.00 1.73326
\(177\) 0 0
\(178\) −1926.00 −0.811010
\(179\) 2499.00 1.04349 0.521743 0.853103i \(-0.325282\pi\)
0.521743 + 0.853103i \(0.325282\pi\)
\(180\) 0 0
\(181\) 1888.00 0.775326 0.387663 0.921801i \(-0.373282\pi\)
0.387663 + 0.921801i \(0.373282\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −3276.00 −1.31255
\(185\) 2208.00 0.877489
\(186\) 0 0
\(187\) −684.000 −0.267481
\(188\) 78.0000 0.0302592
\(189\) 0 0
\(190\) 2232.00 0.852244
\(191\) 570.000 0.215936 0.107968 0.994154i \(-0.465566\pi\)
0.107968 + 0.994154i \(0.465566\pi\)
\(192\) 0 0
\(193\) 2141.00 0.798511 0.399255 0.916840i \(-0.369269\pi\)
0.399255 + 0.916840i \(0.369269\pi\)
\(194\) −5505.00 −2.03730
\(195\) 0 0
\(196\) 0 0
\(197\) −531.000 −0.192042 −0.0960208 0.995379i \(-0.530612\pi\)
−0.0960208 + 0.995379i \(0.530612\pi\)
\(198\) 0 0
\(199\) 91.0000 0.0324162 0.0162081 0.999869i \(-0.494841\pi\)
0.0162081 + 0.999869i \(0.494841\pi\)
\(200\) 1869.00 0.660791
\(201\) 0 0
\(202\) −3771.00 −1.31350
\(203\) 0 0
\(204\) 0 0
\(205\) −324.000 −0.110386
\(206\) −2616.00 −0.884783
\(207\) 0 0
\(208\) 4402.00 1.46742
\(209\) −7068.00 −2.33925
\(210\) 0 0
\(211\) 1610.00 0.525294 0.262647 0.964892i \(-0.415405\pi\)
0.262647 + 0.964892i \(0.415405\pi\)
\(212\) 222.000 0.0719199
\(213\) 0 0
\(214\) −1908.00 −0.609478
\(215\) 912.000 0.289292
\(216\) 0 0
\(217\) 0 0
\(218\) −192.000 −0.0596508
\(219\) 0 0
\(220\) −342.000 −0.104807
\(221\) −744.000 −0.226456
\(222\) 0 0
\(223\) 4273.00 1.28314 0.641572 0.767063i \(-0.278282\pi\)
0.641572 + 0.767063i \(0.278282\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 2700.00 0.794696
\(227\) −15.0000 −0.00438584 −0.00219292 0.999998i \(-0.500698\pi\)
−0.00219292 + 0.999998i \(0.500698\pi\)
\(228\) 0 0
\(229\) −1988.00 −0.573671 −0.286836 0.957980i \(-0.592603\pi\)
−0.286836 + 0.957980i \(0.592603\pi\)
\(230\) 2808.00 0.805018
\(231\) 0 0
\(232\) −5481.00 −1.55106
\(233\) 5070.00 1.42552 0.712761 0.701407i \(-0.247444\pi\)
0.712761 + 0.701407i \(0.247444\pi\)
\(234\) 0 0
\(235\) 468.000 0.129910
\(236\) −285.000 −0.0786098
\(237\) 0 0
\(238\) 0 0
\(239\) 1872.00 0.506651 0.253326 0.967381i \(-0.418476\pi\)
0.253326 + 0.967381i \(0.418476\pi\)
\(240\) 0 0
\(241\) 5185.00 1.38587 0.692936 0.720999i \(-0.256317\pi\)
0.692936 + 0.720999i \(0.256317\pi\)
\(242\) 5754.00 1.52843
\(243\) 0 0
\(244\) 712.000 0.186808
\(245\) 0 0
\(246\) 0 0
\(247\) −7688.00 −1.98047
\(248\) −2289.00 −0.586095
\(249\) 0 0
\(250\) −3852.00 −0.974487
\(251\) 7479.00 1.88076 0.940379 0.340128i \(-0.110470\pi\)
0.940379 + 0.340128i \(0.110470\pi\)
\(252\) 0 0
\(253\) −8892.00 −2.20963
\(254\) −5808.00 −1.43475
\(255\) 0 0
\(256\) 1513.00 0.369385
\(257\) 6288.00 1.52620 0.763102 0.646278i \(-0.223675\pi\)
0.763102 + 0.646278i \(0.223675\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −372.000 −0.0887325
\(261\) 0 0
\(262\) 3339.00 0.787344
\(263\) 7764.00 1.82034 0.910169 0.414238i \(-0.135952\pi\)
0.910169 + 0.414238i \(0.135952\pi\)
\(264\) 0 0
\(265\) 1332.00 0.308770
\(266\) 0 0
\(267\) 0 0
\(268\) 170.000 0.0387478
\(269\) 1299.00 0.294429 0.147215 0.989105i \(-0.452969\pi\)
0.147215 + 0.989105i \(0.452969\pi\)
\(270\) 0 0
\(271\) −6128.00 −1.37361 −0.686807 0.726840i \(-0.740988\pi\)
−0.686807 + 0.726840i \(0.740988\pi\)
\(272\) −852.000 −0.189927
\(273\) 0 0
\(274\) 5904.00 1.30173
\(275\) 5073.00 1.11241
\(276\) 0 0
\(277\) −3646.00 −0.790855 −0.395428 0.918497i \(-0.629404\pi\)
−0.395428 + 0.918497i \(0.629404\pi\)
\(278\) 1488.00 0.321023
\(279\) 0 0
\(280\) 0 0
\(281\) 4950.00 1.05086 0.525431 0.850836i \(-0.323904\pi\)
0.525431 + 0.850836i \(0.323904\pi\)
\(282\) 0 0
\(283\) −4904.00 −1.03008 −0.515040 0.857166i \(-0.672223\pi\)
−0.515040 + 0.857166i \(0.672223\pi\)
\(284\) 396.000 0.0827404
\(285\) 0 0
\(286\) 10602.0 2.19199
\(287\) 0 0
\(288\) 0 0
\(289\) −4769.00 −0.970690
\(290\) 4698.00 0.951297
\(291\) 0 0
\(292\) 475.000 0.0951961
\(293\) 7623.00 1.51993 0.759967 0.649962i \(-0.225215\pi\)
0.759967 + 0.649962i \(0.225215\pi\)
\(294\) 0 0
\(295\) −1710.00 −0.337492
\(296\) −7728.00 −1.51750
\(297\) 0 0
\(298\) −423.000 −0.0822273
\(299\) −9672.00 −1.87072
\(300\) 0 0
\(301\) 0 0
\(302\) 213.000 0.0405853
\(303\) 0 0
\(304\) −8804.00 −1.66100
\(305\) 4272.00 0.802013
\(306\) 0 0
\(307\) 226.000 0.0420147 0.0210073 0.999779i \(-0.493313\pi\)
0.0210073 + 0.999779i \(0.493313\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1962.00 0.359465
\(311\) −3426.00 −0.624664 −0.312332 0.949973i \(-0.601110\pi\)
−0.312332 + 0.949973i \(0.601110\pi\)
\(312\) 0 0
\(313\) −3242.00 −0.585459 −0.292730 0.956195i \(-0.594564\pi\)
−0.292730 + 0.956195i \(0.594564\pi\)
\(314\) −1842.00 −0.331051
\(315\) 0 0
\(316\) −163.000 −0.0290173
\(317\) −5091.00 −0.902016 −0.451008 0.892520i \(-0.648935\pi\)
−0.451008 + 0.892520i \(0.648935\pi\)
\(318\) 0 0
\(319\) −14877.0 −2.61114
\(320\) 2598.00 0.453852
\(321\) 0 0
\(322\) 0 0
\(323\) 1488.00 0.256330
\(324\) 0 0
\(325\) 5518.00 0.941796
\(326\) 2454.00 0.416916
\(327\) 0 0
\(328\) 1134.00 0.190898
\(329\) 0 0
\(330\) 0 0
\(331\) −6640.00 −1.10262 −0.551310 0.834300i \(-0.685872\pi\)
−0.551310 + 0.834300i \(0.685872\pi\)
\(332\) −27.0000 −0.00446331
\(333\) 0 0
\(334\) 10422.0 1.70738
\(335\) 1020.00 0.166354
\(336\) 0 0
\(337\) 2981.00 0.481856 0.240928 0.970543i \(-0.422548\pi\)
0.240928 + 0.970543i \(0.422548\pi\)
\(338\) 4941.00 0.795133
\(339\) 0 0
\(340\) 72.0000 0.0114846
\(341\) −6213.00 −0.986665
\(342\) 0 0
\(343\) 0 0
\(344\) −3192.00 −0.500294
\(345\) 0 0
\(346\) −11673.0 −1.81371
\(347\) −9561.00 −1.47914 −0.739570 0.673080i \(-0.764971\pi\)
−0.739570 + 0.673080i \(0.764971\pi\)
\(348\) 0 0
\(349\) −13004.0 −1.99452 −0.997261 0.0739631i \(-0.976435\pi\)
−0.997261 + 0.0739631i \(0.976435\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2565.00 0.388395
\(353\) 642.000 0.0967995 0.0483997 0.998828i \(-0.484588\pi\)
0.0483997 + 0.998828i \(0.484588\pi\)
\(354\) 0 0
\(355\) 2376.00 0.355225
\(356\) −642.000 −0.0955785
\(357\) 0 0
\(358\) 7497.00 1.10678
\(359\) 3576.00 0.525722 0.262861 0.964834i \(-0.415334\pi\)
0.262861 + 0.964834i \(0.415334\pi\)
\(360\) 0 0
\(361\) 8517.00 1.24173
\(362\) 5664.00 0.822357
\(363\) 0 0
\(364\) 0 0
\(365\) 2850.00 0.408701
\(366\) 0 0
\(367\) −2972.00 −0.422717 −0.211358 0.977409i \(-0.567789\pi\)
−0.211358 + 0.977409i \(0.567789\pi\)
\(368\) −11076.0 −1.56896
\(369\) 0 0
\(370\) 6624.00 0.930717
\(371\) 0 0
\(372\) 0 0
\(373\) −7108.00 −0.986698 −0.493349 0.869832i \(-0.664227\pi\)
−0.493349 + 0.869832i \(0.664227\pi\)
\(374\) −2052.00 −0.283707
\(375\) 0 0
\(376\) −1638.00 −0.224663
\(377\) −16182.0 −2.21065
\(378\) 0 0
\(379\) −5878.00 −0.796656 −0.398328 0.917243i \(-0.630409\pi\)
−0.398328 + 0.917243i \(0.630409\pi\)
\(380\) 744.000 0.100438
\(381\) 0 0
\(382\) 1710.00 0.229035
\(383\) −4332.00 −0.577950 −0.288975 0.957337i \(-0.593314\pi\)
−0.288975 + 0.957337i \(0.593314\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6423.00 0.846948
\(387\) 0 0
\(388\) −1835.00 −0.240098
\(389\) −1173.00 −0.152888 −0.0764440 0.997074i \(-0.524357\pi\)
−0.0764440 + 0.997074i \(0.524357\pi\)
\(390\) 0 0
\(391\) 1872.00 0.242126
\(392\) 0 0
\(393\) 0 0
\(394\) −1593.00 −0.203691
\(395\) −978.000 −0.124579
\(396\) 0 0
\(397\) 8866.00 1.12084 0.560418 0.828210i \(-0.310641\pi\)
0.560418 + 0.828210i \(0.310641\pi\)
\(398\) 273.000 0.0343825
\(399\) 0 0
\(400\) 6319.00 0.789875
\(401\) 8778.00 1.09315 0.546574 0.837411i \(-0.315932\pi\)
0.546574 + 0.837411i \(0.315932\pi\)
\(402\) 0 0
\(403\) −6758.00 −0.835335
\(404\) −1257.00 −0.154797
\(405\) 0 0
\(406\) 0 0
\(407\) −20976.0 −2.55465
\(408\) 0 0
\(409\) 5482.00 0.662757 0.331378 0.943498i \(-0.392486\pi\)
0.331378 + 0.943498i \(0.392486\pi\)
\(410\) −972.000 −0.117082
\(411\) 0 0
\(412\) −872.000 −0.104273
\(413\) 0 0
\(414\) 0 0
\(415\) −162.000 −0.0191621
\(416\) 2790.00 0.328825
\(417\) 0 0
\(418\) −21204.0 −2.48115
\(419\) −3780.00 −0.440728 −0.220364 0.975418i \(-0.570725\pi\)
−0.220364 + 0.975418i \(0.570725\pi\)
\(420\) 0 0
\(421\) 1262.00 0.146095 0.0730476 0.997328i \(-0.476727\pi\)
0.0730476 + 0.997328i \(0.476727\pi\)
\(422\) 4830.00 0.557158
\(423\) 0 0
\(424\) −4662.00 −0.533978
\(425\) −1068.00 −0.121896
\(426\) 0 0
\(427\) 0 0
\(428\) −636.000 −0.0718276
\(429\) 0 0
\(430\) 2736.00 0.306841
\(431\) 5010.00 0.559915 0.279957 0.960012i \(-0.409680\pi\)
0.279957 + 0.960012i \(0.409680\pi\)
\(432\) 0 0
\(433\) 8263.00 0.917077 0.458539 0.888674i \(-0.348373\pi\)
0.458539 + 0.888674i \(0.348373\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −64.0000 −0.00702992
\(437\) 19344.0 2.11750
\(438\) 0 0
\(439\) −3755.00 −0.408238 −0.204119 0.978946i \(-0.565433\pi\)
−0.204119 + 0.978946i \(0.565433\pi\)
\(440\) 7182.00 0.778155
\(441\) 0 0
\(442\) −2232.00 −0.240193
\(443\) 11721.0 1.25707 0.628534 0.777782i \(-0.283655\pi\)
0.628534 + 0.777782i \(0.283655\pi\)
\(444\) 0 0
\(445\) −3852.00 −0.410342
\(446\) 12819.0 1.36098
\(447\) 0 0
\(448\) 0 0
\(449\) 7398.00 0.777580 0.388790 0.921327i \(-0.372893\pi\)
0.388790 + 0.921327i \(0.372893\pi\)
\(450\) 0 0
\(451\) 3078.00 0.321369
\(452\) 900.000 0.0936558
\(453\) 0 0
\(454\) −45.0000 −0.00465188
\(455\) 0 0
\(456\) 0 0
\(457\) 6182.00 0.632783 0.316391 0.948629i \(-0.397529\pi\)
0.316391 + 0.948629i \(0.397529\pi\)
\(458\) −5964.00 −0.608470
\(459\) 0 0
\(460\) 936.000 0.0948722
\(461\) −15291.0 −1.54484 −0.772422 0.635110i \(-0.780955\pi\)
−0.772422 + 0.635110i \(0.780955\pi\)
\(462\) 0 0
\(463\) −18349.0 −1.84179 −0.920897 0.389807i \(-0.872542\pi\)
−0.920897 + 0.389807i \(0.872542\pi\)
\(464\) −18531.0 −1.85405
\(465\) 0 0
\(466\) 15210.0 1.51199
\(467\) 5883.00 0.582940 0.291470 0.956580i \(-0.405856\pi\)
0.291470 + 0.956580i \(0.405856\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1404.00 0.137791
\(471\) 0 0
\(472\) 5985.00 0.583648
\(473\) −8664.00 −0.842222
\(474\) 0 0
\(475\) −11036.0 −1.06603
\(476\) 0 0
\(477\) 0 0
\(478\) 5616.00 0.537385
\(479\) −11742.0 −1.12005 −0.560027 0.828474i \(-0.689209\pi\)
−0.560027 + 0.828474i \(0.689209\pi\)
\(480\) 0 0
\(481\) −22816.0 −2.16283
\(482\) 15555.0 1.46994
\(483\) 0 0
\(484\) 1918.00 0.180128
\(485\) −11010.0 −1.03080
\(486\) 0 0
\(487\) 6923.00 0.644171 0.322085 0.946711i \(-0.395616\pi\)
0.322085 + 0.946711i \(0.395616\pi\)
\(488\) −14952.0 −1.38698
\(489\) 0 0
\(490\) 0 0
\(491\) −8172.00 −0.751114 −0.375557 0.926799i \(-0.622549\pi\)
−0.375557 + 0.926799i \(0.622549\pi\)
\(492\) 0 0
\(493\) 3132.00 0.286122
\(494\) −23064.0 −2.10060
\(495\) 0 0
\(496\) −7739.00 −0.700587
\(497\) 0 0
\(498\) 0 0
\(499\) 9944.00 0.892093 0.446047 0.895010i \(-0.352832\pi\)
0.446047 + 0.895010i \(0.352832\pi\)
\(500\) −1284.00 −0.114844
\(501\) 0 0
\(502\) 22437.0 1.99485
\(503\) 6606.00 0.585580 0.292790 0.956177i \(-0.405416\pi\)
0.292790 + 0.956177i \(0.405416\pi\)
\(504\) 0 0
\(505\) −7542.00 −0.664583
\(506\) −26676.0 −2.34366
\(507\) 0 0
\(508\) −1936.00 −0.169087
\(509\) 20103.0 1.75059 0.875295 0.483590i \(-0.160668\pi\)
0.875295 + 0.483590i \(0.160668\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −8733.00 −0.753804
\(513\) 0 0
\(514\) 18864.0 1.61878
\(515\) −5232.00 −0.447669
\(516\) 0 0
\(517\) −4446.00 −0.378211
\(518\) 0 0
\(519\) 0 0
\(520\) 7812.00 0.658806
\(521\) −4056.00 −0.341068 −0.170534 0.985352i \(-0.554549\pi\)
−0.170534 + 0.985352i \(0.554549\pi\)
\(522\) 0 0
\(523\) 20494.0 1.71346 0.856730 0.515764i \(-0.172492\pi\)
0.856730 + 0.515764i \(0.172492\pi\)
\(524\) 1113.00 0.0927894
\(525\) 0 0
\(526\) 23292.0 1.93076
\(527\) 1308.00 0.108116
\(528\) 0 0
\(529\) 12169.0 1.00016
\(530\) 3996.00 0.327500
\(531\) 0 0
\(532\) 0 0
\(533\) 3348.00 0.272079
\(534\) 0 0
\(535\) −3816.00 −0.308374
\(536\) −3570.00 −0.287688
\(537\) 0 0
\(538\) 3897.00 0.312289
\(539\) 0 0
\(540\) 0 0
\(541\) 7490.00 0.595232 0.297616 0.954686i \(-0.403809\pi\)
0.297616 + 0.954686i \(0.403809\pi\)
\(542\) −18384.0 −1.45694
\(543\) 0 0
\(544\) −540.000 −0.0425594
\(545\) −384.000 −0.0301812
\(546\) 0 0
\(547\) 6326.00 0.494479 0.247240 0.968954i \(-0.420476\pi\)
0.247240 + 0.968954i \(0.420476\pi\)
\(548\) 1968.00 0.153410
\(549\) 0 0
\(550\) 15219.0 1.17989
\(551\) 32364.0 2.50227
\(552\) 0 0
\(553\) 0 0
\(554\) −10938.0 −0.838829
\(555\) 0 0
\(556\) 496.000 0.0378329
\(557\) 10239.0 0.778888 0.389444 0.921050i \(-0.372667\pi\)
0.389444 + 0.921050i \(0.372667\pi\)
\(558\) 0 0
\(559\) −9424.00 −0.713046
\(560\) 0 0
\(561\) 0 0
\(562\) 14850.0 1.11461
\(563\) −9132.00 −0.683602 −0.341801 0.939772i \(-0.611037\pi\)
−0.341801 + 0.939772i \(0.611037\pi\)
\(564\) 0 0
\(565\) 5400.00 0.402088
\(566\) −14712.0 −1.09256
\(567\) 0 0
\(568\) −8316.00 −0.614316
\(569\) 21324.0 1.57109 0.785544 0.618806i \(-0.212383\pi\)
0.785544 + 0.618806i \(0.212383\pi\)
\(570\) 0 0
\(571\) 17840.0 1.30750 0.653748 0.756712i \(-0.273195\pi\)
0.653748 + 0.756712i \(0.273195\pi\)
\(572\) 3534.00 0.258329
\(573\) 0 0
\(574\) 0 0
\(575\) −13884.0 −1.00696
\(576\) 0 0
\(577\) 1189.00 0.0857863 0.0428932 0.999080i \(-0.486342\pi\)
0.0428932 + 0.999080i \(0.486342\pi\)
\(578\) −14307.0 −1.02957
\(579\) 0 0
\(580\) 1566.00 0.112111
\(581\) 0 0
\(582\) 0 0
\(583\) −12654.0 −0.898928
\(584\) −9975.00 −0.706795
\(585\) 0 0
\(586\) 22869.0 1.61213
\(587\) −20124.0 −1.41500 −0.707501 0.706712i \(-0.750178\pi\)
−0.707501 + 0.706712i \(0.750178\pi\)
\(588\) 0 0
\(589\) 13516.0 0.945530
\(590\) −5130.00 −0.357964
\(591\) 0 0
\(592\) −26128.0 −1.81394
\(593\) 7260.00 0.502753 0.251376 0.967889i \(-0.419117\pi\)
0.251376 + 0.967889i \(0.419117\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −141.000 −0.00969058
\(597\) 0 0
\(598\) −29016.0 −1.98420
\(599\) 19122.0 1.30435 0.652173 0.758070i \(-0.273857\pi\)
0.652173 + 0.758070i \(0.273857\pi\)
\(600\) 0 0
\(601\) −5318.00 −0.360941 −0.180471 0.983580i \(-0.557762\pi\)
−0.180471 + 0.983580i \(0.557762\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 71.0000 0.00478303
\(605\) 11508.0 0.773333
\(606\) 0 0
\(607\) −7175.00 −0.479776 −0.239888 0.970801i \(-0.577111\pi\)
−0.239888 + 0.970801i \(0.577111\pi\)
\(608\) −5580.00 −0.372202
\(609\) 0 0
\(610\) 12816.0 0.850663
\(611\) −4836.00 −0.320202
\(612\) 0 0
\(613\) 4346.00 0.286351 0.143176 0.989697i \(-0.454269\pi\)
0.143176 + 0.989697i \(0.454269\pi\)
\(614\) 678.000 0.0445633
\(615\) 0 0
\(616\) 0 0
\(617\) 10926.0 0.712908 0.356454 0.934313i \(-0.383986\pi\)
0.356454 + 0.934313i \(0.383986\pi\)
\(618\) 0 0
\(619\) 388.000 0.0251939 0.0125970 0.999921i \(-0.495990\pi\)
0.0125970 + 0.999921i \(0.495990\pi\)
\(620\) 654.000 0.0423633
\(621\) 0 0
\(622\) −10278.0 −0.662557
\(623\) 0 0
\(624\) 0 0
\(625\) 3421.00 0.218944
\(626\) −9726.00 −0.620973
\(627\) 0 0
\(628\) −614.000 −0.0390148
\(629\) 4416.00 0.279932
\(630\) 0 0
\(631\) −16579.0 −1.04596 −0.522979 0.852346i \(-0.675179\pi\)
−0.522979 + 0.852346i \(0.675179\pi\)
\(632\) 3423.00 0.215442
\(633\) 0 0
\(634\) −15273.0 −0.956732
\(635\) −11616.0 −0.725932
\(636\) 0 0
\(637\) 0 0
\(638\) −44631.0 −2.76953
\(639\) 0 0
\(640\) 9954.00 0.614791
\(641\) −19038.0 −1.17310 −0.586549 0.809914i \(-0.699514\pi\)
−0.586549 + 0.809914i \(0.699514\pi\)
\(642\) 0 0
\(643\) −20438.0 −1.25349 −0.626747 0.779223i \(-0.715614\pi\)
−0.626747 + 0.779223i \(0.715614\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 4464.00 0.271879
\(647\) 9678.00 0.588070 0.294035 0.955795i \(-0.405002\pi\)
0.294035 + 0.955795i \(0.405002\pi\)
\(648\) 0 0
\(649\) 16245.0 0.982545
\(650\) 16554.0 0.998925
\(651\) 0 0
\(652\) 818.000 0.0491340
\(653\) −3786.00 −0.226888 −0.113444 0.993544i \(-0.536188\pi\)
−0.113444 + 0.993544i \(0.536188\pi\)
\(654\) 0 0
\(655\) 6678.00 0.398368
\(656\) 3834.00 0.228190
\(657\) 0 0
\(658\) 0 0
\(659\) 3051.00 0.180349 0.0901746 0.995926i \(-0.471257\pi\)
0.0901746 + 0.995926i \(0.471257\pi\)
\(660\) 0 0
\(661\) 15910.0 0.936199 0.468099 0.883676i \(-0.344939\pi\)
0.468099 + 0.883676i \(0.344939\pi\)
\(662\) −19920.0 −1.16951
\(663\) 0 0
\(664\) 567.000 0.0331384
\(665\) 0 0
\(666\) 0 0
\(667\) 40716.0 2.36361
\(668\) 3474.00 0.201217
\(669\) 0 0
\(670\) 3060.00 0.176445
\(671\) −40584.0 −2.33491
\(672\) 0 0
\(673\) −13534.0 −0.775182 −0.387591 0.921831i \(-0.626693\pi\)
−0.387591 + 0.921831i \(0.626693\pi\)
\(674\) 8943.00 0.511085
\(675\) 0 0
\(676\) 1647.00 0.0937073
\(677\) 28221.0 1.60210 0.801050 0.598598i \(-0.204275\pi\)
0.801050 + 0.598598i \(0.204275\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1512.00 −0.0852685
\(681\) 0 0
\(682\) −18639.0 −1.04652
\(683\) −8841.00 −0.495302 −0.247651 0.968849i \(-0.579659\pi\)
−0.247651 + 0.968849i \(0.579659\pi\)
\(684\) 0 0
\(685\) 11808.0 0.658628
\(686\) 0 0
\(687\) 0 0
\(688\) −10792.0 −0.598025
\(689\) −13764.0 −0.761055
\(690\) 0 0
\(691\) −27728.0 −1.52652 −0.763258 0.646094i \(-0.776402\pi\)
−0.763258 + 0.646094i \(0.776402\pi\)
\(692\) −3891.00 −0.213748
\(693\) 0 0
\(694\) −28683.0 −1.56886
\(695\) 2976.00 0.162426
\(696\) 0 0
\(697\) −648.000 −0.0352148
\(698\) −39012.0 −2.11551
\(699\) 0 0
\(700\) 0 0
\(701\) 21798.0 1.17446 0.587232 0.809419i \(-0.300218\pi\)
0.587232 + 0.809419i \(0.300218\pi\)
\(702\) 0 0
\(703\) 45632.0 2.44814
\(704\) −24681.0 −1.32131
\(705\) 0 0
\(706\) 1926.00 0.102671
\(707\) 0 0
\(708\) 0 0
\(709\) −6904.00 −0.365705 −0.182853 0.983140i \(-0.558533\pi\)
−0.182853 + 0.983140i \(0.558533\pi\)
\(710\) 7128.00 0.376773
\(711\) 0 0
\(712\) 13482.0 0.709634
\(713\) 17004.0 0.893134
\(714\) 0 0
\(715\) 21204.0 1.10907
\(716\) 2499.00 0.130436
\(717\) 0 0
\(718\) 10728.0 0.557612
\(719\) 15270.0 0.792037 0.396019 0.918242i \(-0.370392\pi\)
0.396019 + 0.918242i \(0.370392\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 25551.0 1.31705
\(723\) 0 0
\(724\) 1888.00 0.0969157
\(725\) −23229.0 −1.18994
\(726\) 0 0
\(727\) 3664.00 0.186919 0.0934596 0.995623i \(-0.470207\pi\)
0.0934596 + 0.995623i \(0.470207\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 8550.00 0.433493
\(731\) 1824.00 0.0922888
\(732\) 0 0
\(733\) −10124.0 −0.510148 −0.255074 0.966922i \(-0.582100\pi\)
−0.255074 + 0.966922i \(0.582100\pi\)
\(734\) −8916.00 −0.448359
\(735\) 0 0
\(736\) −7020.00 −0.351577
\(737\) −9690.00 −0.484309
\(738\) 0 0
\(739\) 10034.0 0.499468 0.249734 0.968315i \(-0.419657\pi\)
0.249734 + 0.968315i \(0.419657\pi\)
\(740\) 2208.00 0.109686
\(741\) 0 0
\(742\) 0 0
\(743\) −20898.0 −1.03186 −0.515931 0.856630i \(-0.672554\pi\)
−0.515931 + 0.856630i \(0.672554\pi\)
\(744\) 0 0
\(745\) −846.000 −0.0416041
\(746\) −21324.0 −1.04655
\(747\) 0 0
\(748\) −684.000 −0.0334352
\(749\) 0 0
\(750\) 0 0
\(751\) −9268.00 −0.450325 −0.225163 0.974321i \(-0.572291\pi\)
−0.225163 + 0.974321i \(0.572291\pi\)
\(752\) −5538.00 −0.268551
\(753\) 0 0
\(754\) −48546.0 −2.34475
\(755\) 426.000 0.0205347
\(756\) 0 0
\(757\) 12086.0 0.580282 0.290141 0.956984i \(-0.406298\pi\)
0.290141 + 0.956984i \(0.406298\pi\)
\(758\) −17634.0 −0.844981
\(759\) 0 0
\(760\) −15624.0 −0.745713
\(761\) 2688.00 0.128042 0.0640210 0.997949i \(-0.479608\pi\)
0.0640210 + 0.997949i \(0.479608\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 570.000 0.0269920
\(765\) 0 0
\(766\) −12996.0 −0.613009
\(767\) 17670.0 0.831847
\(768\) 0 0
\(769\) 9871.00 0.462883 0.231442 0.972849i \(-0.425656\pi\)
0.231442 + 0.972849i \(0.425656\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2141.00 0.0998138
\(773\) 24546.0 1.14212 0.571060 0.820909i \(-0.306532\pi\)
0.571060 + 0.820909i \(0.306532\pi\)
\(774\) 0 0
\(775\) −9701.00 −0.449639
\(776\) 38535.0 1.78264
\(777\) 0 0
\(778\) −3519.00 −0.162162
\(779\) −6696.00 −0.307971
\(780\) 0 0
\(781\) −22572.0 −1.03417
\(782\) 5616.00 0.256813
\(783\) 0 0
\(784\) 0 0
\(785\) −3684.00 −0.167500
\(786\) 0 0
\(787\) −30194.0 −1.36760 −0.683799 0.729670i \(-0.739674\pi\)
−0.683799 + 0.729670i \(0.739674\pi\)
\(788\) −531.000 −0.0240052
\(789\) 0 0
\(790\) −2934.00 −0.132135
\(791\) 0 0
\(792\) 0 0
\(793\) −44144.0 −1.97680
\(794\) 26598.0 1.18883
\(795\) 0 0
\(796\) 91.0000 0.00405202
\(797\) −26451.0 −1.17559 −0.587793 0.809011i \(-0.700003\pi\)
−0.587793 + 0.809011i \(0.700003\pi\)
\(798\) 0 0
\(799\) 936.000 0.0414434
\(800\) 4005.00 0.176998
\(801\) 0 0
\(802\) 26334.0 1.15946
\(803\) −27075.0 −1.18986
\(804\) 0 0
\(805\) 0 0
\(806\) −20274.0 −0.886006
\(807\) 0 0
\(808\) 26397.0 1.14931
\(809\) −1650.00 −0.0717069 −0.0358535 0.999357i \(-0.511415\pi\)
−0.0358535 + 0.999357i \(0.511415\pi\)
\(810\) 0 0
\(811\) −1190.00 −0.0515247 −0.0257624 0.999668i \(-0.508201\pi\)
−0.0257624 + 0.999668i \(0.508201\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −62928.0 −2.70961
\(815\) 4908.00 0.210944
\(816\) 0 0
\(817\) 18848.0 0.807109
\(818\) 16446.0 0.702960
\(819\) 0 0
\(820\) −324.000 −0.0137983
\(821\) 26805.0 1.13947 0.569733 0.821830i \(-0.307047\pi\)
0.569733 + 0.821830i \(0.307047\pi\)
\(822\) 0 0
\(823\) −23707.0 −1.00410 −0.502050 0.864839i \(-0.667421\pi\)
−0.502050 + 0.864839i \(0.667421\pi\)
\(824\) 18312.0 0.774185
\(825\) 0 0
\(826\) 0 0
\(827\) 30897.0 1.29915 0.649573 0.760299i \(-0.274948\pi\)
0.649573 + 0.760299i \(0.274948\pi\)
\(828\) 0 0
\(829\) −47126.0 −1.97437 −0.987186 0.159577i \(-0.948987\pi\)
−0.987186 + 0.159577i \(0.948987\pi\)
\(830\) −486.000 −0.0203245
\(831\) 0 0
\(832\) −26846.0 −1.11865
\(833\) 0 0
\(834\) 0 0
\(835\) 20844.0 0.863876
\(836\) −7068.00 −0.292407
\(837\) 0 0
\(838\) −11340.0 −0.467463
\(839\) 2916.00 0.119990 0.0599949 0.998199i \(-0.480892\pi\)
0.0599949 + 0.998199i \(0.480892\pi\)
\(840\) 0 0
\(841\) 43732.0 1.79310
\(842\) 3786.00 0.154957
\(843\) 0 0
\(844\) 1610.00 0.0656617
\(845\) 9882.00 0.402309
\(846\) 0 0
\(847\) 0 0
\(848\) −15762.0 −0.638289
\(849\) 0 0
\(850\) −3204.00 −0.129290
\(851\) 57408.0 2.31248
\(852\) 0 0
\(853\) 25198.0 1.01145 0.505723 0.862696i \(-0.331226\pi\)
0.505723 + 0.862696i \(0.331226\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 13356.0 0.533293
\(857\) −42090.0 −1.67767 −0.838837 0.544382i \(-0.816764\pi\)
−0.838837 + 0.544382i \(0.816764\pi\)
\(858\) 0 0
\(859\) 25984.0 1.03209 0.516043 0.856562i \(-0.327404\pi\)
0.516043 + 0.856562i \(0.327404\pi\)
\(860\) 912.000 0.0361616
\(861\) 0 0
\(862\) 15030.0 0.593879
\(863\) 24942.0 0.983819 0.491909 0.870646i \(-0.336299\pi\)
0.491909 + 0.870646i \(0.336299\pi\)
\(864\) 0 0
\(865\) −23346.0 −0.917674
\(866\) 24789.0 0.972707
\(867\) 0 0
\(868\) 0 0
\(869\) 9291.00 0.362688
\(870\) 0 0
\(871\) −10540.0 −0.410028
\(872\) 1344.00 0.0521945
\(873\) 0 0
\(874\) 58032.0 2.24595
\(875\) 0 0
\(876\) 0 0
\(877\) −9190.00 −0.353847 −0.176924 0.984225i \(-0.556615\pi\)
−0.176924 + 0.984225i \(0.556615\pi\)
\(878\) −11265.0 −0.433002
\(879\) 0 0
\(880\) 24282.0 0.930166
\(881\) −30870.0 −1.18052 −0.590259 0.807214i \(-0.700974\pi\)
−0.590259 + 0.807214i \(0.700974\pi\)
\(882\) 0 0
\(883\) 27002.0 1.02909 0.514547 0.857462i \(-0.327960\pi\)
0.514547 + 0.857462i \(0.327960\pi\)
\(884\) −744.000 −0.0283070
\(885\) 0 0
\(886\) 35163.0 1.33332
\(887\) −10866.0 −0.411324 −0.205662 0.978623i \(-0.565935\pi\)
−0.205662 + 0.978623i \(0.565935\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −11556.0 −0.435234
\(891\) 0 0
\(892\) 4273.00 0.160393
\(893\) 9672.00 0.362442
\(894\) 0 0
\(895\) 14994.0 0.559993
\(896\) 0 0
\(897\) 0 0
\(898\) 22194.0 0.824748
\(899\) 28449.0 1.05543
\(900\) 0 0
\(901\) 2664.00 0.0985025
\(902\) 9234.00 0.340863
\(903\) 0 0
\(904\) −18900.0 −0.695359
\(905\) 11328.0 0.416083
\(906\) 0 0
\(907\) 25190.0 0.922183 0.461092 0.887353i \(-0.347458\pi\)
0.461092 + 0.887353i \(0.347458\pi\)
\(908\) −15.0000 −0.000548230 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3852.00 −0.140091 −0.0700453 0.997544i \(-0.522314\pi\)
−0.0700453 + 0.997544i \(0.522314\pi\)
\(912\) 0 0
\(913\) 1539.00 0.0557869
\(914\) 18546.0 0.671168
\(915\) 0 0
\(916\) −1988.00 −0.0717089
\(917\) 0 0
\(918\) 0 0
\(919\) 9557.00 0.343043 0.171521 0.985180i \(-0.445132\pi\)
0.171521 + 0.985180i \(0.445132\pi\)
\(920\) −19656.0 −0.704390
\(921\) 0 0
\(922\) −45873.0 −1.63855
\(923\) −24552.0 −0.875557
\(924\) 0 0
\(925\) −32752.0 −1.16419
\(926\) −55047.0 −1.95352
\(927\) 0 0
\(928\) −11745.0 −0.415462
\(929\) 15180.0 0.536103 0.268051 0.963405i \(-0.413620\pi\)
0.268051 + 0.963405i \(0.413620\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 5070.00 0.178190
\(933\) 0 0
\(934\) 17649.0 0.618301
\(935\) −4104.00 −0.143546
\(936\) 0 0
\(937\) −494.000 −0.0172233 −0.00861167 0.999963i \(-0.502741\pi\)
−0.00861167 + 0.999963i \(0.502741\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 468.000 0.0162388
\(941\) −20679.0 −0.716383 −0.358191 0.933648i \(-0.616606\pi\)
−0.358191 + 0.933648i \(0.616606\pi\)
\(942\) 0 0
\(943\) −8424.00 −0.290905
\(944\) 20235.0 0.697662
\(945\) 0 0
\(946\) −25992.0 −0.893312
\(947\) 2667.00 0.0915162 0.0457581 0.998953i \(-0.485430\pi\)
0.0457581 + 0.998953i \(0.485430\pi\)
\(948\) 0 0
\(949\) −29450.0 −1.00736
\(950\) −33108.0 −1.13070
\(951\) 0 0
\(952\) 0 0
\(953\) −19602.0 −0.666287 −0.333143 0.942876i \(-0.608109\pi\)
−0.333143 + 0.942876i \(0.608109\pi\)
\(954\) 0 0
\(955\) 3420.00 0.115883
\(956\) 1872.00 0.0633314
\(957\) 0 0
\(958\) −35226.0 −1.18800
\(959\) 0 0
\(960\) 0 0
\(961\) −17910.0 −0.601188
\(962\) −68448.0 −2.29403
\(963\) 0 0
\(964\) 5185.00 0.173234
\(965\) 12846.0 0.428526
\(966\) 0 0
\(967\) −3160.00 −0.105087 −0.0525433 0.998619i \(-0.516733\pi\)
−0.0525433 + 0.998619i \(0.516733\pi\)
\(968\) −40278.0 −1.33738
\(969\) 0 0
\(970\) −33030.0 −1.09333
\(971\) −45012.0 −1.48765 −0.743823 0.668377i \(-0.766989\pi\)
−0.743823 + 0.668377i \(0.766989\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 20769.0 0.683246
\(975\) 0 0
\(976\) −50552.0 −1.65792
\(977\) 32658.0 1.06942 0.534709 0.845036i \(-0.320421\pi\)
0.534709 + 0.845036i \(0.320421\pi\)
\(978\) 0 0
\(979\) 36594.0 1.19464
\(980\) 0 0
\(981\) 0 0
\(982\) −24516.0 −0.796677
\(983\) 20460.0 0.663858 0.331929 0.943304i \(-0.392301\pi\)
0.331929 + 0.943304i \(0.392301\pi\)
\(984\) 0 0
\(985\) −3186.00 −0.103060
\(986\) 9396.00 0.303478
\(987\) 0 0
\(988\) −7688.00 −0.247559
\(989\) 23712.0 0.762384
\(990\) 0 0
\(991\) −42904.0 −1.37527 −0.687634 0.726058i \(-0.741351\pi\)
−0.687634 + 0.726058i \(0.741351\pi\)
\(992\) −4905.00 −0.156990
\(993\) 0 0
\(994\) 0 0
\(995\) 546.000 0.0173963
\(996\) 0 0
\(997\) −19430.0 −0.617206 −0.308603 0.951191i \(-0.599861\pi\)
−0.308603 + 0.951191i \(0.599861\pi\)
\(998\) 29832.0 0.946208
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.m.1.1 1
3.2 odd 2 1323.4.a.b.1.1 1
7.3 odd 6 189.4.e.a.163.1 yes 2
7.5 odd 6 189.4.e.a.109.1 2
7.6 odd 2 1323.4.a.l.1.1 1
21.5 even 6 189.4.e.d.109.1 yes 2
21.17 even 6 189.4.e.d.163.1 yes 2
21.20 even 2 1323.4.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.a.109.1 2 7.5 odd 6
189.4.e.a.163.1 yes 2 7.3 odd 6
189.4.e.d.109.1 yes 2 21.5 even 6
189.4.e.d.163.1 yes 2 21.17 even 6
1323.4.a.b.1.1 1 3.2 odd 2
1323.4.a.c.1.1 1 21.20 even 2
1323.4.a.l.1.1 1 7.6 odd 2
1323.4.a.m.1.1 1 1.1 even 1 trivial