Properties

Label 1323.4.a.q
Level $1323$
Weight $4$
Character orbit 1323.a
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 \beta - 1) q^{2} + ( - 4 \beta + 1) q^{4} + ( - \beta + 11) q^{5} + ( - 10 \beta - 9) q^{8} + (23 \beta - 15) q^{10} + ( - 6 \beta + 31) q^{11} + ( - 17 \beta - 32) q^{13} + (24 \beta - 39) q^{16}+ \cdots + (280 \beta - 320) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 22 q^{5} - 18 q^{8} - 30 q^{10} + 62 q^{11} - 64 q^{13} - 78 q^{16} - 32 q^{17} + 162 q^{19} + 38 q^{20} - 110 q^{22} + 170 q^{23} - 4 q^{25} - 72 q^{26} - 128 q^{29} + 178 q^{31}+ \cdots - 640 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−3.82843 0 6.65685 12.4142 0 0 5.14214 0 −47.5269
1.2 1.82843 0 −4.65685 9.58579 0 0 −23.1421 0 17.5269
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.4.a.q yes 2
3.b odd 2 1 1323.4.a.v yes 2
7.b odd 2 1 1323.4.a.p 2
21.c even 2 1 1323.4.a.w yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1323.4.a.p 2 7.b odd 2 1
1323.4.a.q yes 2 1.a even 1 1 trivial
1323.4.a.v yes 2 3.b odd 2 1
1323.4.a.w yes 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1323))\):

\( T_{2}^{2} + 2T_{2} - 7 \) Copy content Toggle raw display
\( T_{5}^{2} - 22T_{5} + 119 \) Copy content Toggle raw display
\( T_{13}^{2} + 64T_{13} + 446 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T - 7 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 22T + 119 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 62T + 889 \) Copy content Toggle raw display
$13$ \( T^{2} + 64T + 446 \) Copy content Toggle raw display
$17$ \( T^{2} + 32T - 392 \) Copy content Toggle raw display
$19$ \( T^{2} - 162T + 5593 \) Copy content Toggle raw display
$23$ \( T^{2} - 170T - 217 \) Copy content Toggle raw display
$29$ \( T^{2} + 128T + 3374 \) Copy content Toggle raw display
$31$ \( T^{2} - 178T - 20401 \) Copy content Toggle raw display
$37$ \( T^{2} + 350T + 28447 \) Copy content Toggle raw display
$41$ \( T^{2} - 58T - 9527 \) Copy content Toggle raw display
$43$ \( T^{2} - 756T + 129436 \) Copy content Toggle raw display
$47$ \( T^{2} + 180T - 103292 \) Copy content Toggle raw display
$53$ \( T^{2} - 1088 T + 294784 \) Copy content Toggle raw display
$59$ \( T^{2} - 508T - 236572 \) Copy content Toggle raw display
$61$ \( T^{2} + 152T + 5704 \) Copy content Toggle raw display
$67$ \( T^{2} - 468T - 513422 \) Copy content Toggle raw display
$71$ \( T^{2} - 14T - 522193 \) Copy content Toggle raw display
$73$ \( T^{2} - 788T + 152348 \) Copy content Toggle raw display
$79$ \( T^{2} + 476T - 45508 \) Copy content Toggle raw display
$83$ \( T^{2} - 1492 T + 546434 \) Copy content Toggle raw display
$89$ \( T^{2} + 230 T - 1418207 \) Copy content Toggle raw display
$97$ \( T^{2} + 640T - 54400 \) Copy content Toggle raw display
show more
show less